SOME CHARACTERIZATIONS OF $C R$-SUBMANIFOLDS WITH $(n-1) C R$-DIMENSION IN A COMPLEX PROJECTIVE SPACE

Kwan-Ho Сho and Jung-Hwan Kwon*

Abstract

The purpose of this paper is to give some characterizations of n-dimensional $C R$-submanifolds with $(n-1) C R$-dimension immersed in a complex projective space $C P^{\frac{n+p}{2}}$, in terms of the Riemannian curvature tensor R.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codimension p of a complex manifold \bar{M} with complex structure J. If the maximal J-invariant subspace $J T_{x} M \cap T_{x} M$ of $T_{x} M$ has constant dimension for any x in M, then M is called a $C R$-submanifold and the constant is called the $C R$-dimension of $M([8,9])$. Now let M be an n dimensional $C R$-submanifold of $(n-1) C R$-dimension of \bar{M}. Then M admits an induced almost contact structure ($[11,15,16]$). A typical example of an n-dimensional $C R$-submanifold of $(n-1) C R$-dimension is a real hypersurface. When the ambient manifold \bar{M} is a complex projective space, real hypersurfaces are investigated by many authors ($[2,4,5,6,7,10,12,13,14])$ in connection with the shape operator and the induced almost contact structure.

Recently, from these results, the several authors ($[8,11]$) studied about an n-dimensional $C R$-submanifold of $(n-1) C R$-dimension in a complex projective space $C P^{\frac{n+p}{2}}$. Especially, by using the Erbacher's

[^0]reduction theorem ([3]), Okumura and Vanhecke [11] proved the following theorem, which is focused on the induced almost contact metric structure F on M and A_{1} a special kind of shape operators.

Theorem A. Let M be an n-dimensional $C R$-submanifold of $(n-$ 1) $C R$-dimension immersed in a complex projective space $C P^{\frac{n+p}{2}}$. If the normal vector field $\xi_{1}:=\xi$ appeared in (2.1) is parallel with respect to the normal connection and if F and A_{1} commute, then $\pi^{-1}(M)$ is locally a product of $M_{1} \times M_{2}$, where M_{1} and M_{2} belong to some odddimensional spheres (π is the Hopf-fibration $S^{n+p+1}(1) \rightarrow C P^{\frac{n+p}{2}}$).

The purpose of this paper is to give some characterizations of $C R$ -sub- manifolds of $(n-1) C R$-dimension in $C P^{\frac{n+p}{2}}$, in terms of the Riemannian curvature tensor R. We first have a classification of $C R$ submanifold of $(n-1) C R$-dimension in $C P^{\frac{n+p}{2}}$ satisfying $\mathcal{L}_{U_{1}} R=0$, where $\mathcal{L}_{U_{1}}$ denotes the Lie derivative in the direction of the structure vector field U_{1}.

Theorem 1. Let M be an n-dimensional $C R$-submanifold of $(n-1)$ $C R$-dimension immersed in $C P^{\frac{n+p}{2}}$ and let there exist an orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha=1, \ldots, p}\left(\xi_{1}:=\xi\right)$ of normal vectors to M each of which is parallel with respect to the normal connection. If $\mathcal{L}_{U_{1}} R=0$, then $\pi^{-1}(M)$ is locally a product of $M_{1} \times M_{2}$, where M_{1} and M_{2} belong to some odd-dimensional spheres.

Next, we also have a classification of $C R$-submanifold of $(n-1)$ $C R$-dimension in $C P^{\frac{n+p}{2}}$ satisfying $\nabla_{U_{1}} R=0$, where $\nabla_{U_{1}} R$ denotes the covariant derivative in the direction of the structure vector field U_{1}. Namely, we prove the following theorem

Theorem 2. Let M be as in Theorem 1 with $n \geq 3$. If $\nabla_{U_{1}} R=0$ and $g\left(A_{1} U_{1}, U_{1}\right) \neq 0$, then $\pi^{-1}(M)$ is locally a product of $M_{1} \times M_{2}$, where M_{1} and M_{2} belong to some odd-dimensional spheres.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically immersed in a complex space form $\bar{M}=M^{\frac{n+p}{2}}(c)$ and denote by (J, \bar{g}) the Kähler structure on \bar{M}. For x of M we denote by $T_{x} M$ and $T_{x} M^{\perp}$
the tangent space and normal space of M at x, respectively. From now on we assume that M is an n-dimensional $C R$-submanifold of $(n-1)$ $C R$-dimension, that is, $\operatorname{dim}\left(J T_{x} M \cap T_{x} M\right)=n-1$. This implies that $\operatorname{dim} M$ is odd ([11]).

Note that the definition of $C R$-submanifold of $(n-1) C R$-dimension meets the definition of $C R$-submanifold in the sense of Bejancu [1].

Furthermore, our hypothesis implies that there exists a unit vector field ξ_{1} normal to M such that $J T M \subset T M \oplus \operatorname{Span}\{\xi\}$. Hence, for any tangent vector field X and for a local orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha=1, \ldots, p}$ ($\xi_{1}:=\xi$) of normal vectors to M, we have the following decomposition in tangential and normal components :

$$
\begin{gather*}
J X=F X+u^{1}(X) \xi_{1} \tag{2.1}\\
J \xi_{\alpha}=-U_{\alpha}+P \xi_{\alpha}, \quad \alpha=1, \ldots, p \tag{2.2}
\end{gather*}
$$

It is easily seen that F and P are skew-symmetric linear endomorphisms acting on $T_{x} M$ and $T_{x} M^{\perp}$, respectively. Moreover, the Hermitian property of J implies

$$
\begin{array}{r}
g\left(F U_{\alpha}, X\right)=-u^{1}(X) \bar{g}\left(\xi_{1}, P \xi_{\alpha}\right), \\
g\left(U_{\alpha}, U_{\beta}\right)=\delta_{\alpha \beta}-\bar{g}\left(P \xi_{\alpha}, P \xi_{\beta}\right) . \tag{2.4}
\end{array}
$$

From $\bar{g}\left(J X, \xi_{\alpha}\right)=-\bar{g}\left(X, J \xi_{\alpha}\right)$, we get $g\left(U_{\alpha}, X\right)=u^{1}(X) \delta_{1 \alpha}$ and hence

$$
\begin{equation*}
g\left(U_{1}, X\right)=u^{1}(X), \quad U_{\alpha}=0, \quad \alpha=2, \ldots, p . \tag{2.5}
\end{equation*}
$$

Next, applying J to (2.1), using (2.2) and (2.5) we have

$$
\begin{equation*}
F^{2} X=-X+u^{1}(X) U_{1}, \quad u^{1}(X) P \xi_{1}=-u^{1}(F X) \xi_{1} . \tag{2.6}
\end{equation*}
$$

Since P is skew-symmetric, (2.3) and the second equation of (2.6) give

$$
\begin{equation*}
u^{1}(F X)=0, \quad P \xi_{1}=0, \quad F U_{1}=0 . \tag{2.7}
\end{equation*}
$$

So, (2.2) may be written in the form

$$
\begin{equation*}
J \xi_{1}=-U_{1}, \quad J \xi_{\alpha}=P \xi_{\alpha}, \quad \alpha=2, \ldots, p \tag{2.8}
\end{equation*}
$$

and further, we may put

$$
\begin{equation*}
P \xi_{\alpha}=\sum_{\beta=2}^{p} P_{\alpha \beta} \xi_{\beta}, \quad \alpha=2, \ldots, p \tag{2.9}
\end{equation*}
$$

where $\left(P_{\alpha \beta}\right)$ is a skew-symmetric matrix which satisfies

$$
\begin{equation*}
\sum_{\beta=2}^{p} P_{\alpha \beta} P_{\beta \gamma}=-\delta_{\alpha \gamma}, \quad \alpha, \gamma=2, \ldots, p \tag{2.10}
\end{equation*}
$$

These results imply that $\left(F, U_{1}, u^{1}, g\right)$ defines an almost contact metric structure on (M, g) ([16]).

Now, let $\bar{\nabla}$ and ∇ denote the Levi-Civita connection on \bar{M} and M, respectively and denote by D the normal connection induced from $\bar{\nabla}$ in the normal bundle $T M^{\perp}$ of M. Then the Gauss and Weingarten equations are given by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.11}\\
\bar{\nabla}_{X} \xi_{\alpha}=-A_{\alpha} X+D_{X} \xi_{\alpha}, \quad \alpha=1, \ldots, p \tag{2.12}
\end{gather*}
$$

for any tangent vector fields X and Y to M. Here h denotes the second fundamental form and A_{α} is the shape operator corresponding to ξ_{α}. They are related by $h(X, Y)=\sum_{\alpha=1}^{p} g\left(A_{\alpha} X, Y\right) \xi_{\alpha}$.

Furthermore, putting

$$
\begin{equation*}
D_{X} \xi_{\alpha}=\sum_{\beta=1}^{p} s_{\alpha \beta}(X) \xi_{\beta} \tag{2.13}
\end{equation*}
$$

it follows that $\left(s_{\alpha \beta}\right)$ is the skew-symmetric matrix of connection forms of D. Next, the Gauss, Codazzi and Ricci equations are ([11]) :
(2.14) $\bar{g}(\bar{R}(X, Y) Z, W)=g(R(X, Y) Z, W)$

$$
+\sum_{\alpha=1}^{p}\left\{g\left(A_{\alpha} X, Z\right) g\left(A_{\alpha} Y, W\right)-g\left(A_{\alpha} Y, Z\right) g\left(A_{\alpha} X, W\right)\right\}
$$

$$
\begin{align*}
& \bar{g}\left(\bar{R}(X, Y) Z, \xi_{\alpha}\right)=g\left(\left(\nabla_{X} A_{\alpha}\right) Y-\left(\nabla_{Y} A_{\alpha}\right) X, Z\right) \tag{2.15}\\
& +\sum_{\beta=1}^{p}\left\{g\left(A_{\beta} Y, Z\right) s_{\beta \alpha}(X)-g\left(A_{\beta} X, Z\right) s_{\beta \alpha}(Y)\right.
\end{align*}
$$

$$
\begin{equation*}
\bar{g}\left(\bar{R}(X, Y) \xi_{\alpha}, \xi_{\beta}\right)=\bar{g}\left(R^{\perp}(X, Y) \xi_{\alpha}, \xi_{\beta}\right)+g\left(\left[A_{\beta}, A_{\alpha}\right] X, Y\right) \tag{2.16}
\end{equation*}
$$

for any tangent vector fields X, Y, Z and W to $M . \bar{R}$ denotes the Riemannian curvature tensor of \bar{M} and R that of $M . R^{\perp}$ is the curvature tensor of the normal connection D.

Moreover, if the ambient space \bar{M} is of constant holomorphic sectional curvature c, since

$$
\begin{aligned}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}= & \frac{c}{4}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}+\bar{g}(J \bar{Y}, \bar{Z}) J \bar{X} \\
& -\bar{g}(J \bar{X}, \bar{Z}) J \bar{Y}-2 \bar{g}(J \bar{X}, \bar{Y}) J \bar{Z}\}
\end{aligned}
$$

for any tangent vector fields \bar{X}, \bar{Y} and \bar{Z} to \bar{M}, the Riemannian curvature tensor R of M given by

$$
\begin{align*}
& R(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+g(F Y, Z) F X \tag{2.17}\\
&-g(F X, Z) F Y-2 g(F X, Y) F Z\} \\
&+ \sum_{\alpha=1}^{p}\left\{g\left(A_{\alpha} Y, Z\right) A_{\alpha} X-g\left(A_{\alpha} X, Z\right) A_{\alpha} Y\right\}
\end{align*}
$$

for any tangent vector fields X, Y and Z to M.
In the sequel, we consider the case of a complex space form $\bar{M}=$ $M^{\frac{n+p}{2}}(c)$ and $\bar{\nabla} J=0$. Then by differentiating (2.1) and (2.2) covariantly and by comparing the tangential and normal parts, we have

$$
\begin{gather*}
\left(\nabla_{Y} F\right) X=u^{1}(X) A_{1} Y-g\left(A_{1} X, Y\right) U_{1}, \tag{2.18}\\
\left(\nabla_{Y} u^{1}\right) X=g\left(F A_{1} Y, X\right) \tag{2.19}\\
\nabla_{X} U_{1}=F A_{1} X, \tag{2.20}\\
g\left(A_{\alpha} U_{1}, X\right)=-\sum_{\beta=2}^{p} s_{1 \beta}(X) P_{\beta \alpha}, \quad \alpha=2, \ldots, p \tag{2.21}
\end{gather*}
$$

for any tangent vector fields X and Y to M.
In the rest of this paper we suppose that there exists an orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha=1, \ldots, p}$ of normal vectors to M each of which is parallel with respect to the normal connection D. Then from (2.13) we have

$$
\begin{equation*}
s_{\alpha \beta}=0 . \tag{2.22}
\end{equation*}
$$

Hence, from (2.21) and (2.22) we obtain

$$
\begin{equation*}
A_{\alpha} U_{1}=0, \quad \alpha=2, \ldots, p \tag{2.23}
\end{equation*}
$$

Moreover, from (2.22) and (2.23), the Codazzi equation (2.15) becomes

$$
\begin{align*}
& \left(\nabla_{X} A_{1}\right) Y-\left(\nabla_{Y} A_{1}\right) X \tag{2.24}\\
& =\frac{c}{4}\left\{g\left(X, U_{1}\right) F Y-g\left(Y, U_{1}\right) F X-2 g(F X, Y) U_{1}\right\},
\end{align*}
$$

for any tangent vector fields X and Y to M. Also, by differentiating (2.23) covariantly and using (2.25) we get

$$
\begin{equation*}
\left(\nabla_{U_{1}} A_{\alpha}\right) U_{1}=0, \quad \alpha=2, \ldots, p \tag{2.26}
\end{equation*}
$$

Especially, recently Kwon and Pak [8] proved the following lemma.
Lemma 2.1. Let M be an n-dimensional $C R$-submanifold of $(n-1)$ $C R$-dimension immersed in a complex space form $M^{\frac{n+p}{2}}(c), c \neq 0$ and let there exist an orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha=1, \ldots, p}$ of normal vectors to M each of which is parallel with respect to the normal connection. If $A_{1} U_{1}=\lambda U_{1}$ for some function λ, then λ is locally constant.

Finally, we suppose that U_{1} is principal with corresponding principal curvature λ. Then, by Lemma 2.1, λ is constant on M and it satisfies

$$
\begin{gather*}
\left(\nabla_{U_{1}} A_{1}\right) U_{1}=0 \tag{2.27}\\
A_{1} F A_{1}=\frac{c}{4} F+\frac{1}{2} \lambda\left(A_{1} F+F A_{1}\right) \tag{2.28}
\end{gather*}
$$

by virtue of (2.20) and (2.24). Hence from (2.24) and (2.28), we get

$$
\begin{equation*}
\nabla_{U_{1}} A_{1}=-\frac{1}{2} \lambda\left(A_{1} F-F A_{1}\right) \tag{2.29}
\end{equation*}
$$

3. Proof of Theorem 1

In this section, we are concerned with the proof of Theorem 1. Let M be an n-dimensional $C R$-submanifold of $(n-1) C R$-dimension immersed in a complex space form $M^{\frac{n+p}{2}}(c)$. Then M admits an almost contact metric structure $\left(F, U_{1}, u^{1}, g\right)$. The Lie derivative $\mathcal{L}_{U_{1}} R$ of R with respect to the structure vector field U_{1} satisfies

$$
\begin{align*}
\left(\mathcal{L}_{U_{1}} R\right)(X, Y, Z)= & \mathcal{L}_{U_{1}}(R(X, Y) Z)-R\left(\mathcal{L}_{U_{1}} X, Y\right) Z \tag{3.1}\\
& -R\left(X, \mathcal{L}_{U_{1}} Y\right) Z-R(X, Y) \mathcal{L}_{U_{1}} Z
\end{align*}
$$

for any vector fields X, Y and Z on M. From now on we shall prove the following lemma.

Lemma 3.1. Let M be as in Lemma 2.1. If $\mathcal{L}_{U_{1}} R=0$, then $A_{1} F=$ $F A_{1}$.

Proof. Let T_{0} be a distribution defined by the subspace $T_{0}(x)=$ $\left\{u \in T_{x} M: g\left(u, U_{1}(x)\right)=0\right\}$ of the tangent space $T_{x} M$ of M at any point x, which is called the holomorphic distribution. Suppose that the structure vector field U_{1} is not necessarily principal. Then we can put $A_{1} U_{1}=\lambda U_{1}+\mu V$, where V is a unit vector field in T_{0}, λ and μ are smooth functions on M. From (2.17), (2.18), (2.20), (3.1) and our assumption, we have

$$
\begin{align*}
0 & =\frac{c}{4} \mu\left[\left\{u^{1}(Y) g(Z, V)-u^{1}(Z) g(Y, V)\right\} F X\right. \tag{3.2}\\
& -\left\{u^{1}(X) g(Z, V)-u^{1}(Z) g(X, V)\right\} F Y \\
& -2\left\{u^{1}(X) g(Y, V)-u^{1}(Y) g(X, V)\right\} F Z \\
& +g(F Y, Z)\left\{u^{1}(X) V-g(X, V) U_{1}\right\} \\
& -g(F X, Z)\left\{u^{1}(Y) V-g(Y, V) U_{1}\right\} \\
& \left.-2 g(F X, Y)\left\{u^{1}(Z) V-g(Z, V) U_{1}\right\}\right] \\
& -\frac{c}{4}\left\{g(F Y, Z) F\left(A_{1} F-F A_{1}\right) X-g(F X, Z) F\left(A_{1} F-F A_{1}\right) Y\right. \\
& -2 g(F X, Y) F\left(A_{1} F-F A_{1}\right) Z+g\left(\left(A_{1} F-F A_{1}\right) Y, Z\right) X \\
& -g\left(\left(A_{1} F-F A_{1}\right) X, Z\right) Y+g\left(\left(A_{1} F^{2}-F^{2} A_{1}\right) Y, Z\right) F X
\end{align*}
$$

$$
\begin{aligned}
& \left.-g\left(\left(A_{1} F^{2}-F^{2} A_{1}\right) X, Z\right) F Y-2 g\left(\left(A_{1} F^{2}-F^{2} A_{1}\right) X, Y\right) F Z\right\} \\
& +g\left(\left(\nabla_{U_{1}} A_{1}\right) Y, Z\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) X, Z\right) A_{1} Y \\
& +g\left(A_{1} Y, Z\right)\left\{\left(\nabla_{U_{1}} A_{1}\right) X+\left(A_{1} F-F A_{1}\right) A_{1} X\right\} \\
& -g\left(A_{1} X, Z\right)\left\{\left(\nabla_{U_{1}} A_{1}\right) Y+\left(A_{1} F-F A_{1}\right) A_{1} Y\right\} \\
& -\sum_{\alpha=2}^{p}\left[\left\{g\left(A_{1} F A_{\alpha} Y, Z\right)-g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) Y, Z\right)-g\left(A_{\alpha} F A_{1} Y, Z\right)\right\} A_{\alpha} X\right. \\
& \left.-g\left(A_{\alpha} Y, Z\right)\left\{\left(\nabla_{U_{1}} A_{\alpha}\right) X-F A_{1} A_{\alpha} X+A_{\alpha} F A_{1} X\right\}\right] \\
& +\sum_{\alpha=2}^{p}\left[\left\{g\left(A_{1} F A_{\alpha} X, Z\right)-g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) X, Z\right)-g\left(A_{\alpha} F A_{1} X, Z\right)\right\} A_{\alpha} Y\right. \\
& \left.-g\left(A_{\alpha} X, Z\right)\left\{\left(\nabla_{U_{1}} A_{\alpha}\right) Y-F A_{1} A_{\alpha} Y+A_{\alpha} F A_{1} Y\right\}\right]
\end{aligned}
$$

for any vector fields X, Y and Z on $T_{x} M$. Putting $Z=U_{1}$ and taking X and Y in the holomorphic distribution T_{0} in (3.2) and using (2.23) and (2.26), we have
(3.3) $0=\frac{c}{4} \mu\{g(Y, F V) X-g(X, F V) Y\}+g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right) A_{1} X$
$-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} Y$
$+\mu\left[g(Y, V)\left\{\left(\nabla_{U_{1}} A_{1}\right) X+\left(A_{1} F-F A_{1}\right) A_{1} X\right\}\right.$
$\left.-g(X, V)\left\{\left(\nabla_{U_{1}} A_{1}\right) Y+\left(A_{1} F-F A_{1}\right) A_{1} Y\right\}\right]$
$+\sum_{\alpha=2}^{p} \mu\left\{g\left(A_{\alpha} Y, F V\right) A_{\alpha} X-g\left(A_{\alpha} X, F V\right) A_{\alpha} Y\right\}$.
Again, putting $Y=Z=U_{1}$ and taking X in the holomorphic distribution T_{0} in (3.2) and using (2.23), we have

$$
\begin{align*}
\lambda\left(\nabla_{U_{1}} A_{1}\right) X & =\mu g(X, V)\left(\nabla_{U_{1}} A_{1}\right) U_{1}-d \lambda\left(U_{1}\right) A_{1} X \tag{3.4}\\
& +g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} U_{1} \\
& +\frac{c}{4} \mu g(X, F V) U_{1}+\mu^{2} g(X, V)\left(A_{1} F-F A_{1}\right) V \\
& -\lambda \mu^{2} g(X, V) F V-\lambda\left(A_{1} F-F A_{1}\right) A_{1} X .
\end{align*}
$$

Eliminating $\left(\nabla_{U_{1}} A_{1}\right) X$ and $\left(\nabla_{U_{1}} A_{1}\right) Y$ in (3.3) and (3.4) and using
(2.26), we obtain

$$
\begin{align*}
0= & \frac{c}{4} \mu[\lambda\{g(Y, F V) X-g(X, F V) Y\}+\mu\{g(X, F V) g(Y, V) \tag{3.5}\\
& \left.-g(X, V) g(Y, F V)\} U_{1}\right] \\
& +\lambda\left\{g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} Y\right\} \\
& +\mu\left[g(Y, V)\left\{g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} U_{1}-d \lambda\left(U_{1}\right) A_{1} X\right\}\right. \\
& \left.-g(X, V)\left\{g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right) A_{1} U_{1}-d \lambda\left(U_{1}\right) A_{1} Y\right\}\right] \\
& +\sum_{\alpha=2}^{p} \mu\left\{g\left(A_{\alpha} Y, F V\right) A_{\alpha} X-g\left(A_{\alpha} X, F V\right) A_{\alpha} Y\right\}
\end{align*}
$$

for any vector fields X and Y in T_{0}. Now, putting $X=V$ and $Y=F V$ in (3.5) and using (2.26), we get

$$
\begin{align*}
0= & \frac{c}{4} \mu\left(\lambda V-\mu U_{1}\right)+\lambda\left\{g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right) A_{1} V\right. \tag{3.6}\\
& \left.-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, V\right) A_{1} F V\right\} \\
& -\mu\left\{g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right) A_{1} U_{1}-d \lambda\left(U_{1}\right) A_{1} F V\right\} \\
& +\sum_{\alpha=2}^{p} \mu\left\{g\left(A_{\alpha} F V, F V\right) A_{\alpha} V-g\left(A_{\alpha} V, F V\right) A_{\alpha} F V\right\} .
\end{align*}
$$

Taking the inner product of (3.6) with U_{1} and using (2.23), we obtain $\mu=0$, that is, the structure vector field U_{1} is principal. Hence, by Lemma 2.1, λ is constant. If $\lambda=0$, then putting $X=U_{1}$ in (3.2) and using (2.23), (2.26) and $c \neq 0$, we get $A_{1} F-F A_{1}=0$. Next, suppose that $\lambda \neq 0$. Then from (3.4) and (2.27) we have

$$
\begin{equation*}
\left(\nabla_{U_{1}} A_{1}\right) X+A_{1} F A_{1} X-F A_{1}^{2} X=0 \tag{3.7}
\end{equation*}
$$

for any vector field X in T_{0}.
Furthermore, putting $Y=Z=U_{1}$ in (3.2) and using (2.23) and (2.27), we see that (3.7) holds for any vector field X. This implies that

$$
\begin{equation*}
F\left(A_{1}^{2}-\lambda A_{1}-\frac{c}{4} I\right) X=0 \tag{3.8}
\end{equation*}
$$

for any vector field X, where I denotes the identity transformation and we have used (2.28) and (2.29). (3.8) is equivalent to

$$
A_{1}^{2}-\lambda A_{1}-\frac{c}{4}\left(I-u^{1} \otimes U_{1}\right)=0
$$

from which it follows that A_{1} satisfies $\left(A_{1} F-F A_{1}\right)^{2}=0$, where we have used that (2.28) and $A_{1} F^{2}=F^{2} A_{1}=-A_{1}+\lambda u^{1} \otimes U_{1}$. Hence, we have $A_{1} F-F A_{1}=0$.

Proof of Theorem 1. Combining Lemma 3.1 and Theorem A, we have Theorem 1.

4. Proof of Theorem 2

In this section, we are concerned with the proof of Theorem 2. Let M be an n-dimensional $C R$-submanifold of $(n-1) C R$-dimension immersed in a complex space form $M^{\frac{n+p}{2}}(c)$. Then M admits an almost contact metric structure $\left(F, U_{1}, u^{1}, g\right)$. The covariant derivative $\nabla_{U_{1}} R$ of R with respect to the structure vector field U_{1} satisfies

$$
\begin{align*}
\left(\nabla_{U_{1}} R\right)(X, Y, Z)= & \nabla_{U_{1}}(R(X, Y) Z)-R\left(\nabla_{U_{1}} X, Y\right) Z \tag{4.1}\\
& -R\left(X, \nabla_{U_{1}} Y\right) Z-R(X, Y) \nabla_{U_{1}} Z
\end{align*}
$$

for any vector fields X, Y and Z on M. From now on we shall prove the following lemma.

Lemma 4.1. Let M be as in Lemma 2.1 with $n \geq 3$. If $\nabla_{U_{1}} R=0$, then $\nabla_{U_{1}} A_{1}=0$.

Proof. From (2.17), (2.18), (4.1) and our assumption, we have

$$
\begin{align*}
0= & \frac{c}{4}\left[\left\{u^{1}(Y) g\left(A_{1} U_{1}, Z\right)-u^{1}(Z) g\left(A_{1} U_{1}, Y\right)\right\} F X\right. \tag{4.2}\\
& -\left\{u^{1}(X) g\left(A_{1} U_{1}, Z\right)-u^{1}(Z) g\left(A_{1} U_{1}, X\right)\right\} F Y \\
& -2\left\{u^{1}(X) g\left(A_{1} U_{1}, Y\right)-u^{1}(Y) g\left(A_{1} U_{1}, X\right)\right\} F Z \\
& +g(F Y, Z)\left\{u^{1}(X) A_{1} U_{1}-g\left(A_{1} U_{1}, X\right) U_{1}\right\} \\
& -g(F X, Z)\left\{u^{1}(Y) A_{1} U_{1}-g\left(A_{1} U_{1}, Y\right) U_{1}\right\}
\end{align*}
$$

$$
\begin{aligned}
& \left.-2 g(F X, Y)\left\{u^{1}(Z) A_{1} U_{1}-g\left(A_{1} U_{1}, Z\right) U_{1}\right\}\right] \\
& +g\left(\left(\nabla_{U_{1}} A_{1}\right) Y, Z\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) X, Z\right) A_{1} Y \\
& +g\left(A_{1} Y, Z\right)\left(\nabla_{U_{1}} A_{1}\right) X-g\left(A_{1} X, Z\right)\left(\nabla_{U_{1}} A_{1}\right) Y \\
& +\sum_{\alpha=2}^{p}\left\{g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) Y, Z\right) A_{\alpha} X-g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) X, Z\right) A_{\alpha} Y\right. \\
& \left.+g\left(A_{\alpha} Y, Z\right)\left(\nabla_{U_{1}} A_{\alpha}\right) X-g\left(A_{\alpha} X, Z\right)\left(\nabla_{U_{1}} A_{\alpha}\right) Y\right\}
\end{aligned}
$$

for any vector fields X, Y and Z on $T_{x} M$. Suppose that the structure vector field U_{1} is not necessarily principal. Then we can put $A_{1} U_{1}=$ $\lambda U_{1}+\mu V$, where V is a unit vector field in T_{0}, and λ and μ are smooth functions on M. Let M_{0} be the non-empty open subset of M consisting of points x at which $\mu(x) \neq 0$. Hereafter unless otherwise stated, we shall discuss on the subset M_{0} of M. By the form $A_{1} U_{1}=\lambda U_{1}+\mu V$, (4.2) is reformed as

$$
\begin{align*}
0= & \frac{c}{4} \mu\left[\left\{u^{1}(Y) g(Z, V)-u^{1}(Z) g(Y, V)\right\} F X\right. \tag{4.3}\\
& -\left\{u^{1}(X) g(Z, V)-u^{1}(Z) g(X, V)\right\} F Y \\
& -2\left\{u^{1}(X) g(Y, V)-u^{1}(Y) g(X, V)\right\} F Z \\
& +g(F Y, Z)\left\{u^{1}(X) V-g(X, V) U_{1}\right\} \\
& -g(F X, Z)\left\{u^{1}(Y) V-g(Y, V) U_{1}\right\} \\
& \left.-2 g(F X, Y)\left\{u^{1}(Z) V-g(Z, V) U_{1}\right\}\right] \\
& +g\left(\left(\nabla_{U_{1}} A_{1}\right) Y, Z\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) X, Z\right) A_{1} Y \\
& +g\left(A_{1} Y, Z\right)\left(\nabla_{U_{1}} A_{1}\right) X-g\left(A_{1} X, Z\right)\left(\nabla_{U_{1}} A_{1}\right) Y \\
& +\sum_{\alpha=2}^{p}\left\{g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) Y, Z\right) A_{\alpha} X-g\left(\left(\nabla_{U_{1}} A_{\alpha}\right) X, Z\right) A_{\alpha} Y\right. \\
& \left.+g\left(A_{\alpha} Y, Z\right)\left(\nabla_{U_{1}} A_{\alpha}\right) X-g\left(A_{\alpha} X, Z\right)\left(\nabla_{U_{1}} A_{\alpha}\right) Y\right\}
\end{align*}
$$

for any vector fields X, Y and Z on $T_{x} M$. Putting $Z=U_{1}$ and taking X and Y in the holomorphic distribution T_{0} in (4.3) and using (2.23) and (2.26), we have

$$
\begin{align*}
0= & \frac{c}{4} \mu\{-g(Y, V) F X+g(X, V) F Y-2 g(F X, Y) V\} \tag{4.4}\\
& +g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} Y \\
& +\mu\left\{g(Y, V)\left(\nabla_{U_{1}} A_{1}\right) X-g(X, V)\left(\nabla_{U_{1}} A_{1}\right) Y\right\} .
\end{align*}
$$

Next, putting $Y=Z=U_{1}$ and taking X in the holomorphic distribution T_{0} in (4.3) and using (2.20), (2.23) and (2.26) we have

$$
\begin{align*}
\lambda\left(\nabla_{U_{1}} A_{1}\right) X= & \left.g\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} U_{1} \tag{4.5}\\
& +\mu g(X, V)\left(\nabla_{U_{1}} A_{1}\right) U_{1}-d \lambda\left(U_{1}\right) A_{1} X .
\end{align*}
$$

Combining (4.4) and (4.5) and using (2.26), we obtain

$$
\begin{align*}
0= & \frac{c}{4} \lambda \mu\{-g(Y, V) F X+g(X, V) F Y-2 g(F X, Y) V\} \tag{4.6}\\
& +\mu\left\{g(Y, V) g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right)\right. \\
& \left.-g(X, V) g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right)\right\} A_{1} U_{1} \\
& +\left\{\lambda g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right)-\mu d \lambda\left(U_{1}\right) g(Y, V)\right\} A_{1} X \\
& -\left\{\lambda g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right)-\mu d \lambda\left(U_{1}\right) g(X, V)\right\} A_{1} Y
\end{align*}
$$

for any vector fields X and Y in T_{0}. Let $L\left(U_{1}, V, F V\right)$ be a distribution defined by the subspace $L_{x}\left(U_{1}, V, F V\right)$ in the tangent space $T_{x} M$ spanned by the vectors $U_{1}(x), V(x)$ and $F V(x)$ at any point x in M, and let T_{1} be the orthogonal complement in the tangent bundle $T M$ of the distribution $L\left(U_{1}, V, F V\right)$. Then T_{1} is not empty because of $n \geq 3$. For any unit vector field X in T_{1}, putting $Y=F X$ in (4.6) and using (2.26), we have

$$
\begin{equation*}
\frac{c}{2} \mu V=g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F X\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} F X \tag{4.7}
\end{equation*}
$$

provided $\lambda \neq 0$. Suppose that there is a unit vector field X_{0} in T_{1} at which $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X_{0}\right)=0$. Then from (4.7) we obtain

$$
\begin{equation*}
\frac{c}{2} \mu V=g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F X_{0}\right) A_{1} X_{0} \neq 0 . \tag{4.8}
\end{equation*}
$$

Accordingly we can put $A_{1} X_{0}=\omega\left(X_{0}\right) V$, where ω is a 1-form on M_{0}. Putting $X=X_{0}, Y=V$ in (4.6), we have

$$
\begin{equation*}
\frac{c}{4} \lambda \mu F X_{0}-\omega\left(X_{0}\right)\left\{\lambda g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, V\right)-\mu d \lambda\left(U_{1}\right)\right\} V=0 . \tag{4.9}
\end{equation*}
$$

Thus, since $F X_{0}$ and V are orthonormal vector fields and $\lambda \neq 0$, (4.9) implies $\mu=0$, a contradiction. Accordingly we get

$$
\begin{equation*}
g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) \neq 0 \tag{4.10}
\end{equation*}
$$

for any non-zero vector field X in T_{1}. On the other hand, putting $Y=F V$ in (4.6) and using (2.26), we have

$$
\begin{equation*}
g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right) A_{1} X-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) A_{1} F V=0 \tag{4.11}
\end{equation*}
$$

for any X in T_{1} under the assumption $\lambda \neq 0$. If $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right)=0$, then from (4.10) and (4.11) we obtain $A_{1} F V=0$. Now, we suppose that $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right) \neq 0$. From (4.10) and (4.11) we have

$$
\begin{equation*}
A_{1} X=\theta(X) A_{1} F V, \quad \theta(X) \neq 0 \tag{4.12}
\end{equation*}
$$

for any non-zero vector field X in T_{1}, where θ is a 1-form on M_{0}. Hence, for any non-zero vector fields X and Y in T_{1}, we obtain

$$
\begin{equation*}
A_{1}\{\theta(Y) X-\theta(X) Y\}=0, \quad \theta(X) \neq 0, \quad \theta(Y) \neq 0 \tag{4.13}
\end{equation*}
$$

If we put $Z_{1}=\theta\left(Y_{1}\right) X_{1}-\theta\left(X_{1}\right) Y_{1}$ for given linearly independent vector fields X_{1} and Y_{1} in T_{1}, then from (4.13) $A_{1} Z_{1}=0$ and hence $A_{1} F V=0$ by virtue of (4.12).

Next, putting $X=V$ and $Y=F V$ in (4.6), and using $A_{1} F V=0$, we have

$$
\begin{equation*}
\frac{3 c}{4} \lambda \mu V-g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right)\left(\lambda A_{1} V-\mu A_{1} U_{1}\right)=0 \tag{4.14}
\end{equation*}
$$

Consequently, we get $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, F V\right) \neq 0$ which together with (4.11) we have $A_{1} X=0$ for any vector field X in T_{1}. Hence, putting $X=U_{1}$ and taking $Y, Z \in T_{1}$ in (4.3), and using (2.23) and (2.26), we obtain

$$
\begin{equation*}
\lambda g\left(\left(\nabla_{U_{1}} A_{1}\right) Y, Z\right) U_{1}+\mu\left\{\frac{c}{4} g(F Y, Z)+g\left(\left(\nabla_{U_{1}} A_{1}\right) Y, Z\right)\right\} V=0 \tag{4.15}
\end{equation*}
$$

Accordingly it turns out to be $\mu=0$ on M_{0} provided $\lambda \neq 0$, a contradiction. This means that U_{1} is principal on M^{\prime}, where M^{\prime} denotes the open subset of M consisting of points x at which $\lambda(x) \neq 0$. Thus, putting $Y=Z=U_{1}$ in (4.3) and using (2.23), (2.26) and (2.27), we have $\nabla_{U_{1}} A_{1}=0$.

Now, let us denote by $\operatorname{Int}\left(M-M^{\prime}\right)$ the interior of the subset ($M-$ $\left.M^{\prime}\right)$. Then $\lambda=0$ on $\operatorname{Int}\left(M-M^{\prime}\right)$. Suppose that U_{1} is not principal
on $\operatorname{Int}\left(M-M^{\prime}\right)$. Then the subset M_{1} of $\operatorname{Int}\left(M-M^{\prime}\right)$ consisting of points x at which $\mu(x) \neq 0$ is non-empty open set. Hence, from (4.5) we have

$$
\begin{equation*}
g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) V+g(X, V)\left(\nabla_{U_{1}} A_{1}\right) U_{1}=0 \tag{4.16}
\end{equation*}
$$

on M_{1} for any vector field X in T_{0}. Accordingly $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, Y\right)=0$ for any vector field Y in T_{0} orthogonal to V. Taking the inner product of (4.16) with X in T_{0}, we have $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, X\right) g(X, V)=0$. Putting $X=V$ in this equation, we get $g\left(\left(\nabla_{U_{1}} A_{1}\right) U_{1}, V\right)=0$. Hence, putting $X=V$ in (4.16), we obtain $\left(\nabla_{U_{1}} A_{1}\right) U_{1}=0$ on M_{1}. Taking X and Y in T_{0} orthogonal to V in (4.4) and using $\left(\nabla_{U_{1}} A_{1}\right) U_{1}=0$, we obtain $g(F X, Y)=0$ on M_{1}, a contradiction. This means that U_{1} is principal with corresponding principal curvature $\lambda=0$. Accordingly we have $\nabla_{U_{1}} A_{1}=0$ on $\operatorname{Int}\left(M-M^{\prime}\right)$ by virtue of (2.29). This completes the proof by the continuity of $\nabla_{U_{1}} A_{1}=0$.

Proof of Theorem 2. Combining (2.29), Lemma 4.1 and Theorem A, we have Theorem 2.

References

1. A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
3. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
4. H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357.
5. U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, J. Okayama Univ. 32 (1990), 207-221.
6. J.-H. Kwon and H. Nakagawa, Real hypersurfaces with cyclic-parallel Ricci tensor of a complex projective space, Hokkaido Math. J. 17-3 (1988), 355-371.
7. J.-H. Kwon and H. Nakagawa, A note on real hypersurfaces of a complex projective space, J. Austral. Math. Soc.(A) 47 (1989), 108-113.
8. J.-H. Kwon and J. S. Pak, CR-submanifolds of $(n-1) C R$-dimension in a complex projective space, Saitama Math. J. 15 (1997), 55-65.
9. R. Nirenberg and R. O. Wells Jr., Approximation theorems on differential submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1965), 15-35.
10. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
11. M. Okumura and L. Vanhecke, n-dimensional real submanifolds with ($n-1$)-dimensional maximal holomorphic tangent subspace in complex projective spaces, Rendiconti del Circolo Mat. di. Palermo XLIII (1994), 233-249.
12. Y.-S. Pyo and Y. J. Suh, Characterizations of real hypersurfaces in complex space forms in terms of curvature tensors, Tsukuba J. Math. 19 (1995), 163172.
13. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
14. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53 and 507-516.
15. Y. Tashiro, On contact structure of hypersurfaces in complex manifolds I, Tôhoku Math. J. 15 (1963), 62-78.
16. Y. Tashiro, Relations between almost complex spaces and almost contact spaces (in Japanese), Sûgaku 16 (1964), 34-61.

Department of Mathematics Education
Taegu University
Taegu 705-714, Korea
E-mail: jhkwon@biho.taegu.ac.kr

[^0]: Received June 18, 1998.
 1991 Mathematics Subject Classification: 53C40, 53C55.
 Key words and phrases: $C R$-submanifold, $C R$-dimension, Maximal J-invariant subspace, Shape operator, Complex projective space.
 *This research was supported by the Taegu University Research Grant, 1998

