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SOME CHARACTERIZATIONS OF
CR-SUBMANIFOLDS WITH (n—1) CR-DIMENSION
IN A COMPLEX PROJECTIVE SPACE

KwaN-Ho CHO AND JUNG-HwaAN KwoN*

ABSTRACT. The purpose of this paper is to give some characteriza-

tions of n-dimensional C R-submanifolds with (n—1) C R-dimension
+
immersed in a complex projective space CP%

Riemannian curvature tensor R.

, in terms of the

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a complex manifold M with complex structure J. If the
maximal J-invariant subspace JT, M NT,M of T, M has constant di-
mension for any x in M, then M is called a CR-submanifold and the
constant is called the CR-dimension of M ([8,9]). Now let M be an n-
dimensional C R-submanifold of (n — 1) C R-dimension of M. Then M
admits an induced almost contact structure ([11,15,16]). A typical ex-
ample of an n-dimensional C' R-submanifold of (n — 1) C' R-dimension
is a real hypersurface. When the ambient manifold M is a complex
projective space, real hypersurfaces are investigated by many authors
([2,4,5,6,7,10,12,13,14]) in connection with the shape operator and the
induced almost contact structure.

Recently, from these results, the several authors ([8,11]) studied
about an n-dimensional C'R-submanifold of (n — 1) C'R-dimension in a

complex projective space C'P =nt Especially, by using the Erbacher’s
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reduction theorem ([3]), Okumura and Vanhecke [11] proved the fol-
lowing theorem, which is focused on the induced almost contact metric
structure F' on M and A; a special kind of shape operators.

THEOREM A. Let M be an n-dimensional C R-submanifold of (n —
1) CR-dimension immersed in a complex projective space oP* ", If
the normal vector field &; := £ appeared in (2.1) is parallel with respect
to the normal connection and if F' and A, commute, then m=1(M) is
locally a product of My x My, where My and My belong to some odd-
dimensional spheres (r is the Hopf-fibration S"TP+1(1) — CP"3%).

The purpose of this paper is to give some characterizations of C'R-
sub- manifolds of (n — 1) C'R-dimension in CP™3", in terms of the
Riemannian curvature tensor R. We first have a classification of C'R-
submanifold of (n — 1) C'R-dimension in CP"2" satisfying Ly, R =0,
where L7, denotes the Lie derivative in the direction of the structure
vector field U;.

THEOREM 1. Let M be an n-dimensional C' R-submanifold of (n—1)

CR-dimension immersed in CP™3" and let there exist an orthonormal
basis {&a}a=1,...p (&1 = &) of normal vectors to M each of which is
parallel with respect to the normal connection. If Ly, R = 0, then
7~ Y(M) is locally a product of My x My, where M; and My belong to
some odd-dimensional spheres.

Next, we also have a classification of CR-submanifold of (n — 1)
CR-dimension in CP"%" satisfying Vi, R = 0, where V;, R denotes
the covariant derivative in the direction of the structure vector field
U;. Namely, we prove the following theorem

THEOREM 2. Let M be as in Theorem 1 withn > 3. If Vi, R =10
and g(A,Uy,Uy) # 0, then 7=Y(M) is locally a product of My x M,
where My and Ms belong to some odd-dimensional spheres.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically im-

mersed in a complex space form M = M TLTJFP(C) and denote by (J,g)
the Kéhler structure on M. For x of M we denote by T, M and T, M=+
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the tangent space and normal space of M at x, respectively. From now
on we assume that M is an n-dimensional C'R-submanifold of (n — 1)
C'R-dimension, that is, dim(JT,M NT,M) = n — 1. This implies that
dimM 1is odd ([11]).

Note that the definition of C'R-submanifold of (n—1) C' R-dimension
meets the definition of C'R-submanifold in the sense of Bejancu [1].

Furthermore, our hypothesis implies that there exists a unit vector
field & normal to M such that JTM C TM @& Span{{}. Hence, for any
tangent vector field X and for a local orthonormal basis {{y }a=1,...p
(&1 := &) of normal vectors to M, we have the following decomposition
in tangential and normal components :

JX = FX +u!(X)&,
JEo = —Uy+ P&y, a=1,...,p.
It is easily seen that F' and P are skew-symmetric linear endomor-

phisms acting on T, M and T, M=, respectively. Moreover, the Her-
mitian property of J implies

(2'3) g<FUouX) = —ul(X)g(fl’Pga),
9(Ua,Up) = dap — G(PEa, PSp).

From g(JX,&,) = —g(X, J&,), we get g(Un, X) = ul(X)d1, and hence
(2.5) g(U,X)=u'(X), Uy,=0 a=2,...,p.

Next, applying J to (2.1), using (2.2) and (2.5) we have
(2.6) F2X = - X +u'(X)U;, u'(X)P& = —u' (FX)E.
Since P is skew-symmetric, (2.3) and the second equation of (2.6) give
(2.7) w'(FX)=0, P& =0, FU =0.
So, (2.2) may be written in the form

(2.8) Jé = Uy, Jéo =Pl a=2,...,p
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and further, we may put

(2.9) Péa=> 5 yPapls, a=2,....p,

where (P,p) is a skew-symmetric matrix which satisfies

(2.10) > B PapPsy = —0ay, 0,7=2,...,p.

These results imply that (F, Uy, u!, g) defines an almost contact metric
structure on (M, g) ([16]).

Now, let V and V denote the Levi-Civita connection on M and M,
respectively and denote by D the normal connection induced from V
in the normal bundle TM~* of M. Then the Gauss and Weingarten
equations are given by

(2.11) VxY =VxY + h(X,Y),
(2.12) nga =—-A, X+ Dx&., a=1,...,p

for any tangent vector fields X and Y to M. Here h denotes the second
fundamental form and A, is the shape operator corresponding to &,.
They are related by h(X,Y) =>"_ (4. X,Y)&.

Furthermore, putting

(2.13) Dxéa =) b 15ap(X)és,

it follows that (s,p) is the skew-symmetric matrix of connection forms
of D. Next, the Gauss, Codazzi and Ricci equations are ([11]) :

(2.14) g(R(X,Y)Z, W) = g(R(X,Y)Z,W)

+ Z{Q(AaXu Z)g(AaY, W) - g<AaK Z)g(AaX, W)}7

a=1

(2'15) §<R(X7 Y)Z, goz) = g((vXAa)Y - (VyAa)X, Z)

+ > {9(AY, Z)spa(X) — g(ApX, Z)sa(Y),
B=1
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(2.16)  G(R(X,Y)&a,&s) = G(RT(X,Y)a, &) + 9([Ap, Aa] X, Y)

for any tangent vector fields X, Y, Z and W to M. R denotes the Rie-
mannian curvature tensor of M and R that of M. R™* is the curvature
tensor of the normal connection D.

Moreover, if the ambient space M is of constant holomorphic sec-
tional curvature ¢, since

RX,Y)Z = 2{5(?, )X —9(X,2)Y +5(JY,2)JX
~9(JX,Z)JY —29(JX,Y)JZ}

for any tangent vector fields X, Y and Z to M, the Riemannian cur-
vature tensor R of M given by

(2.17) R(X,Y)Z zg{g(Y, 2)X — g(X, 2)Y + g(FY, Z)FX
— g(FX,Z)FY — 29(FX,Y)FZ}
+ Zgzl{g(Aayy Z)AaX - g(AozXa Z)AGY}

for any tangent vector fields X, Yand Z to M.

In the sequel, we consider the case of a complex space form M =
p

M %(c) and VJ = 0. Then by differentiating (2.1) and (2.2) covari-
antly and by comparing the tangential and normal parts, we have

(2.18) (Vy )X =u'(X)AY — g(A1 X, Y)Uy,
(2.19) (Vyu')X = g(FAY, X),
(2.20) VxU, = FA, X,
(221)  g(AaU1, X) == 5 ,515(X)Ppa; a=2,...,p
for any tangent vector fields X and Y to M.
In the rest of this paper we suppose that there exists an orthonormal

basis {€a ta=1,...p of normal vectors to M each of which is parallel with
respect to the normal connection D. Then from (2.13) we have

(2.22) S68 = 0.
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Hence, from (2.21) and (2.22) we obtain
(2.23) AU =0, a=2,...p.
Moreover, from (2.22) and (2.23), the Codazzi equation (2.15) becomes

(224)  (VxA)Y — (VyAX
- E{g(X, U)FY —g(Y,U)FX — 29(FX,Y)Us },

(2.25) (VxAa)Y — (VyA)X =0, a=2,...,p

for any tangent vector fields X and Y to M. Also, by differentiating
(2.23) covariantly and using (2.25) we get

(2.26) (Vu,Ag)Ur =0, a=2,...,p.

Especially, recently Kwon and Pak [8] proved the following lemma.

LEMMA 2.1. Let M be an n-dimensional C' R-submanifold of (n—1)

C R-dimension immersed in a complex space form M =n (¢),c # 0 and
let there exist an orthonormal basis {{q }a=1,...p of normal vectors to
M each of which is parallel with respect to the normal connection. If
AU, = \U; for some function \, then X is locally constant.

Finally, we suppose that U is principal with corresponding principal
curvature A. Then, by Lemma 2.1, A is constant on M and it satisfies

(2.27) (Vy, AUy =0,
C

(2.28) AP Ay =7

1
F+ §/\(AlF + FA))
by virtue of (2.20) and (2.24). Hence from (2.24) and (2.28), we get

1
(2.29) Vi AL = S AMAF — FA).
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3. Proof of Theorem 1

In this section, we are concerned with the proof of Theorem 1. Let
M be an n-dimensional C'R-submanifold of (n — 1) C'R-dimension im-

mersed in a complex space form M nTer(c) Then M admits an almost
contact metric structure (F,Uy,u', g). The Lie derivative Ly, R of R
with respect to the structure vector field U; satisfies

(3.1) (L, R)(X,Y,Z) =Ly, (R(X,Y)Z) — R(Ly, X, Y)Z

— R(X,Ly,Y)Z — R(X,Y)Ly, Z
for any vector fields X, Y and Z on M. From now on we shall prove
the following lemma.

LEMMA 3.1. Let M be as in Lemma 2.1. If L5, R = 0, then A1 F =
FA,.

Proof. Let Ty be a distribution defined by the subspace Ty(z) =
{u € T,M : g(u,Uy(z)) = 0} of the tangent space T, M of M at any
point x, which is called the holomorphic distribution. Suppose that
the structure vector field U; is not necessarily principal. Then we can
put A U; = AUy + pV, where V is a unit vector field in Ty, A and g
are smooth functions on M. From (2.17), (2.18), (2.20), (3.1) and our
assumption, we have

(3.2)
0= Jul{u' (V)g(2,V) —u' (2)g(Y, V)}F X
— W (X)g(Z,V) —u'(2)g(X,V)}FY
—2{u'(X)g(Y,V) —u' (Y)g(X,V)}FZ
+9(FY, Z){u'(X)V — g(X,V)U:}
— g(FX, Z){u'(Y)V — g(Y,V)U1}
—29(FX,Y){u'(Z2)V — g(Z,V)U1}]
~ SHg(FY, 2)F(ALF ~ FANX — g(FX, Z)F(ALF — FA)Y
—29(FX,Y)F(A F — FA))Z + g((A F — FA)Y, 2)X
—g((ALF = FANX, 2)Y + g((ALF? — F2A)Y, Z)FX
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(AL F? — F2A\)X,Z)FY —29((A1F? — F?A\)X,Y)FZ}
+9((Vu, &)Y, Z) A1 X — g((Vu, A1) X, Z) A Y
+ g(ALY, 2){(Vu, A)X + (ALF — FA)A X}
—g(AL X, Z2){(Vy, A))Y + (A F — FA)A Y}

p

Y K9(A1FALY, Z) — g((Vu, Aa)Y, Z) — g(AaF ALY, Z)} Aa X
;( 2){(Vi A)X — FA ALX + Ay FA XY
i {g AlFA X Z) - g((leAoz)Xa Z) - g(AaFAlXa Z)}AaY

g( ){(VU1AQ)Y_FAIAQY+AQFA1Y}]

for any vector fields X, Y and Z on T, M. Putting Z = U; and taking
X and Y in the holomorphic distribution Ty in (3.2) and using (2.23)
and (2.26), we have

(3:3) 0 =2{g(Y. FV)X = g(X, FV)Y} + g((Vur, A)U1, ¥Y) A X
—g(Vy, AU, X)AY
+plg(Y, V){(Vy, A1) X + (AL F — FA)A X}
—g(X, VH{(Vu, A)Y + (A F — FA))A Y}
+ 3 P i{g(ALY, FV) Ao X — g(Au X, FV) ALY}

Again, putting Y = Z = U; and taking X in the holomorphic distri-
bution Tj in (3.2) and using (2.23), we have

(3.4) MV, ADNX = pug(X,V)(Vy, AU — dANU) AL X
‘f—g((VUlAl)Ul,X)AlUl
n Eug(X, FV)U; + 12g(X, V) (AL F — FA)V
— M2g(X,V)FV — N A F — FA)) A X.

Eliminating (Vy, 41)X and (Vy, 41)Y in (3.3) and (3.4) and using
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(2.26), we obtain

(3.5)
0 =3uMg(Y, FV)X —g(X. FV)Y} + u{g(X. FV)g(Y,V)
- g(X, V)g(Y7 FV)}Ul]
+ Mg((Vy, AU, YA X — g(Vy, AU, X)ALY }
+ ulg(Y, V){g((Vu, AUy, X) AUy — dA(Ur) A1 X }

—9(X, V){g((Vu, A1)U1, Y) A Uy — dA(Ur) ArY'}]
+ 3 0 oi{g(AY, FV)AaX — g(AaX, FV)A.Y'}

for any vector fields X and Y in Ty. Now, putting X =V and Y = FV
in (3.5) and using (2.26), we get

(3:6) 0 ="p(AV = pU1) + Mo((Vo, AU FV) AV

— g((leAl)Ul, V)AlFV}
— /L{g((VUlAl)Ul, FV)AlUl — d)\(Ul)AlFV}
+ 3 P o {g(AaFV, FV)ALV — g(AV, FV) AL FV}.

Taking the inner product of (3.6) with U; and using (2.23), we obtain
@ = 0, that is, the structure vector field U; is principal. Hence, by
Lemma 2.1, A is constant. If A\ = 0, then putting X = U; in (3.2) and
using (2.23), (2.26) and ¢ # 0, we get A1 F — FA; = 0. Next, suppose
that A # 0. Then from (3.4) and (2.27) we have

(3.7) (Vu,A)X + AjFA X —FA3X =0
for any vector field X in Tj.

Furthermore, putting Y = Z = U; in (3.2) and using (2.23) and
(2.27), we see that (3.7) holds for any vector field X. This implies that

(3.8) F(A% — 24, — ZI)X =0



252 K.-H. Cho and J.-H. Kwon

for any vector field X, where I denotes the identity transformation and
we have used (2.28) and (2.29). (3.8) is equivalent to

A%-AAl—g(I—m@Ul):o,

from which it follows that A; satisfies (A1 F — FA;)? = 0, where we
have used that (2.28) and A;F? = F?A; = —A; + \u! ® U;. Hence,
we have A1 F — FA; = 0. O

Proof of Theorem 1. Combining Lemma 3.1 and Theorem A, we
have Theorem 1. 0J

4. Proof of Theorem 2

In this section, we are concerned with the proof of Theorem 2. Let
M be an n-dimensional C' R-submanifold of (n — 1) C' R-dimension im-

mersed in a complex space form M =N (¢). Then M admits an almost
contact metric structure (F, Uy, u!,g). The covariant derivative Vi, R
of R with respect to the structure vector field U; satisfies

(4'1) (VU1R)(Xa Y, Z) :VU1(R(X7 Y)Z) _R<VU1X7 Y)Z
— R(X,V,Y)Z — R(X,Y)Vi, Z

for any vector fields X, Y and Z on M. From now on we shall prove
the following lemma.

LEMMA 4.1. Let M be as in Lemma 2.1 withn > 3. If Vi;, R = 0,
then Vi, A1 = 0.
Proof. From (2.17), (2.18), (4.1) and our assumption, we have

(42) 0 =S[{u!(V)g(AUy, Z) — ul(Z)g(AiUL, Y )} FX

= {u!(X)g(A1U1, Z) — u!(2)g(Ar U, X)}FY
—2{u! (X)g(A1U1,Y) —u' (Y)g(A1 Uy, X)}FZ
+ g(FY, Z){u"(X) A Uy — g(A1Ur, X)Ur}

— g(FX, Z){u'(Y)A Uy — g(A1U, Y)Ur }
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—2g(FX,Y
+9((Vu, A1

{u"(Z) AUy — g(A1UL, 2)Ub )]
Y, Z)A1 X — g((Vy, A1) X, Z)A Y
+ gAY, Z)(Vu, ADX — g(A1X, Z)(Vi, A)Y
+3 2 {9(Ve, A0)Y. 2) Aa X — g(Vi, Aa)X, 2)AsY
+9(AuY, Z)(Vu, Aa) X — g(Aa X, Z)(Vi, Aa)Y'}

/—\A\_/v

for any vector fields X, Y and Z on T, M. Suppose that the structure
vector field U; is not necessarily principal. Then we can put A,U; =
AU1 4+ 1V, where V' is a unit vector field in Tj, and A and p are smooth
functions on M. Let My be the non-empty open subset of M consisting
of points z at which p(z) # 0. Hereafter unless otherwise stated, we
shall discuss on the subset My of M. By the form AUy = \Uy + uV,
(4.2) is reformed as

(4.3) 0— ul{u! (Y)g(2,V) = u!(2)g(Y,V)}FX

—{u (X)9(Z,V) —u!(Z)g(X,V)}FY
—2{ut(X)g(Y, V) —u' (Y)g(X,V)}FZ
+g(FY, Z){u' (X)V — g(X,V)U1}
— g(FX, Z){u*(Y)V — g(Y,V)U1}
—29(FX,Y){u" (Z2)V — g(Z,V)U1 }]
+9((Vy, A1)Y, 2)A1 X — g(Vu, A1) X, Z)AY
+9(AY, Z)(Vy, A1) X — g(A1 X, Z)(Vy, A1)Y
+ 3 P {0(Vi, Aa)Y, 2)AaX — g((Vi, Aa) X, Z)AoY
+ 9(AaY, 2)(Vur, Aa)X = g(Aa X, 2)(Vi, Aa)Y }
for any vector fields X, Y and Z on T, M. Putting Z = U; and taking

X and Y in the holomorphic distribution Tp in (4.3) and using (2.23)
and (2.26), we have

(4.4) 0 zg,u{—g(Y, V)FX + g(X,V)FY — 2¢9(FX,Y)V}

+9(Vu, A)U1LY)ALX — g((V, AUy, X) A Y
+ :u{g(Y’ V)(VU1A1)X - g(X7 V)<VU1A1)Y}
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Next, putting Y = Z = U; and taking X in the holomorphic distribu-
tion Ty in (4.3) and using (2.20), (2.23) and (2.26) we have

(45) )\(VUlAl)X :g(leAl)Ul,X)AlUl
+ ug(X, V) (Vy, AUy — dA(U) A1 X

Combining (4.4) and (4.5) and using (2.26), we obtain

(4.6) 0 ngu{—g(Y, V)FX + g(X,V)FY — 29(FX,Y)V}

+1{g(Y, V)g((Vu, A1)Us, X)

—9(X,V)g((Vu, AU, Y ) A Uy

+{Ag((Vu, A1)ULY ) — pdA(Ur)g(Y, V) A1 X

—{Ag(Vu, A)Ur, X) — pdA(Ur)g(X, V) }A Y
for any vector fields X and Y in Ty. Let L(Uy,V, FV) be a distribu-
tion defined by the subspace L, (U, V, FV) in the tangent space T, M
spanned by the vectors Uy (z), V(x) and FV(x) at any point = in M,
and let T7 be the orthogonal complement in the tangent bundle T'M of
the distribution L(U;, V, FV). Then T; is not empty because of n > 3.

For any unit vector field X in T3, putting Y = FX in (4.6) and using
(2.26), we have

(4.7) guv — g(Vu, AU FX) A1 X — g((V, AU X) A FX,

provided A\ # 0. Suppose that there is a unit vector field Xy in T at
which g((Vy, 41)Uy, Xo) = 0. Then from (4.7) we obtain

(4.8) guV = g((Vu, AU, FX) A1 Xo 2 0.

Accordingly we can put A; Xg = w(Xo)V, where w is a 1-form on M.
Putting X = Xy, Y =V in (4.6), we have

(49)  TMFXo = w(Xo){Ag(Vo, 4)UL V) = pdMUD}IV =0,

Thus, since F' Xy and V are orthonormal vector fields and A # 0, (4.9)
implies u = 0, a contradiction. Accordingly we get

(4.10) 9((Vu, A1)Up, X) #0
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for any non-zero vector field X in 77. On the other hand, putting
Y = FV in (4.6) and using (2.26), we have

(411) g((vU1A1>U17 FV)AlX — g((leAl)Ul,X)AlFV =0

for any X in 77 under the assumption A # 0. If g((Vy, A1)Uy, FV) =0,
then from (4.10) and (4.11) we obtain A;FV = 0. Now, we suppose
that g((Vy, A1)U1, FV) # 0. From (4.10) and (4.11) we have

(4.12) A1 X =0(X)AFV, 0(X)+#0

for any non-zero vector field X in T, where 6 is a 1-form on M. Hence,
for any non-zero vector fields X and Y in T3, we obtain

(4.13) A{OV)X —0(X)Y} =0, 6(X)#0, 6(Y)#0.

If we put Z; = (Y1) X1 —6(X1)Y; for given linearly independent vector
fields X5 and Y; in 77, then from (4.13) A1 Z; = 0 and hence A1 FV =0
by virtue of (4.12).

Next, putting X =V and Y = FV in (4.6), and using A1 FV =0,
we have

3c
(4.14) TV = 9(Vo, AU FV)(AALV — pAUy) = 0.
Consequently, we get g((Vy, A1)Ur, FV) # 0 which together with
(4.11) we have A1 X = 0 for any vector field X in 7. Hence, putting
X =U; and taking Y, Z € T in (4.3), and using (2.23) and (2.26), we
obtain

(4.15) Ag((Vo, ADY, Z)Us + p{ S9(FY, 2) + 9(Vo, A1), Z)}V = 0.

Accordingly it turns out to be p = 0 on My provided A # 0, a con-
tradiction. This means that U; is principal on M’, where M’ denotes
the open subset of M consisting of points = at which A(x) # 0. Thus,
putting Y = Z = U in (4.3) and using (2.23), (2.26) and (2.27), we
have Vi, A1 = 0.

Now, let us denote by Int(M — M') the interior of the subset (M —
M'"). Then A = 0 on Int(M — M"). Suppose that U; is not principal
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on Int(M — M"). Then the subset M; of Int(M — M') consisting of
points z at which u(x) # 0 is non-empty open set. Hence, from (4.5)
we have

(4.16) g((leAl)Ul,X)V—f—g(X, V)(VUlAl)Ul =0

on M for any vector field X in Tj. Accordingly ¢((Vy, 41)U1,Y) =0
for any vector field Y in Ty orthogonal to V. Taking the inner product
of (4.16) with X in T}, we have g((Vy, A1)Ur, X)g(X,V) = 0. Putting
X =V in this equation, we get g((Vy, A1)U1, V) = 0. Hence, putting
X =V in (4.16), we obtain (Vy, A1)Us = 0 on M;. Taking X and Y
in Ty orthogonal to V in (4.4) and using (Vy, A1)U; = 0, we obtain
g(FX,Y)=0on M, a contradiction. This means that U; is principal
with corresponding principal curvature A = 0. Accordingly we have
Vu, A1 = 0 on Int(M — M’) by virtue of (2.29). This completes the

proof by the continuity of Vi, A1 = 0. O

Proof of Theorem 2. Combining (2.29), Lemma 4.1 and Theorem

A, we have Theorem 2. O
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