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SOME CHARACTERIZATIONS OF
CR-SUBMANIFOLDS WITH (n− 1) CR-DIMENSION

IN A COMPLEX PROJECTIVE SPACE

Kwan-Ho Cho and Jung-Hwan Kwon*

Abstract. The purpose of this paper is to give some characteriza-

tions of n-dimensional CR-submanifolds with (n−1) CR-dimension

immersed in a complex projective space CP
n+p

2 , in terms of the
Riemannian curvature tensor R.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a complex manifold M with complex structure J . If the
maximal J-invariant subspace JTxM ∩ TxM of TxM has constant di-
mension for any x in M , then M is called a CR-submanifold and the
constant is called the CR-dimension of M ([8,9]). Now let M be an n-
dimensional CR-submanifold of (n− 1) CR-dimension of M . Then M
admits an induced almost contact structure ([11,15,16]). A typical ex-
ample of an n-dimensional CR-submanifold of (n − 1) CR-dimension
is a real hypersurface. When the ambient manifold M is a complex
projective space, real hypersurfaces are investigated by many authors
([2,4,5,6,7,10,12,13,14]) in connection with the shape operator and the
induced almost contact structure.

Recently, from these results, the several authors ([8,11]) studied
about an n-dimensional CR-submanifold of (n−1) CR-dimension in a
complex projective space CP

n+p
2 . Especially, by using the Erbacher’s
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reduction theorem ([3]), Okumura and Vanhecke [11] proved the fol-
lowing theorem, which is focused on the induced almost contact metric
structure F on M and A1 a special kind of shape operators.

Theorem A. Let M be an n-dimensional CR-submanifold of (n−
1) CR-dimension immersed in a complex projective space CP

n+p
2 . If

the normal vector field ξ1 := ξ appeared in (2.1) is parallel with respect
to the normal connection and if F and A1 commute, then π−1(M) is
locally a product of M1 ×M2, where M1 and M2 belong to some odd-

dimensional spheres (π is the Hopf-fibration Sn+p+1(1) → CP
n+p

2 ).

The purpose of this paper is to give some characterizations of CR-
sub- manifolds of (n − 1) CR-dimension in CP

n+p
2 , in terms of the

Riemannian curvature tensor R. We first have a classification of CR-
submanifold of (n− 1) CR-dimension in CP

n+p
2 satisfying LU1R = 0,

where LU1 denotes the Lie derivative in the direction of the structure
vector field U1.

Theorem 1. Let M be an n-dimensional CR-submanifold of (n−1)
CR-dimension immersed in CP

n+p
2 and let there exist an orthonormal

basis {ξα}α=1,...,p (ξ1 := ξ) of normal vectors to M each of which is
parallel with respect to the normal connection. If LU1R = 0, then
π−1(M) is locally a product of M1 ×M2, where M1 and M2 belong to
some odd-dimensional spheres.

Next, we also have a classification of CR-submanifold of (n − 1)
CR-dimension in CP

n+p
2 satisfying ∇U1R = 0, where ∇U1R denotes

the covariant derivative in the direction of the structure vector field
U1. Namely, we prove the following theorem

Theorem 2. Let M be as in Theorem 1 with n ≥ 3. If ∇U1R = 0
and g(A1U1, U1) 6= 0, then π−1(M) is locally a product of M1 ×M2,
where M1 and M2 belong to some odd-dimensional spheres.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold isometrically im-
mersed in a complex space form M = M

n+p
2 (c) and denote by (J, g)

the Kähler structure on M . For x of M we denote by TxM and TxM⊥
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the tangent space and normal space of M at x, respectively. From now
on we assume that M is an n-dimensional CR-submanifold of (n− 1)
CR-dimension, that is, dim(JTxM ∩ TxM) = n− 1. This implies that
dimM is odd ([11]).

Note that the definition of CR-submanifold of (n−1) CR-dimension
meets the definition of CR-submanifold in the sense of Bejancu [1].

Furthermore, our hypothesis implies that there exists a unit vector
field ξ1 normal to M such that JTM ⊂ TM⊕Span{ξ}. Hence, for any
tangent vector field X and for a local orthonormal basis {ξα}α=1,...,p

(ξ1 := ξ) of normal vectors to M , we have the following decomposition
in tangential and normal components :

JX = FX + u1(X)ξ1,(2.1)

Jξα = −Uα + Pξα, α = 1, . . . , p.(2.2)

It is easily seen that F and P are skew-symmetric linear endomor-
phisms acting on TxM and TxM⊥, respectively. Moreover, the Her-
mitian property of J implies

g(FUα, X) = −u1(X)g(ξ1, P ξα),(2.3)

g(Uα, Uβ) = δαβ − g(Pξα, P ξβ).(2.4)

From g(JX, ξα) = −g(X, Jξα), we get g(Uα, X) = u1(X)δ1α and hence

(2.5) g(U1, X) = u1(X), Uα = 0, α = 2, . . . , p.

Next, applying J to (2.1), using (2.2) and (2.5) we have

(2.6) F 2X = −X + u1(X)U1, u1(X)Pξ1 = −u1(FX)ξ1.

Since P is skew-symmetric, (2.3) and the second equation of (2.6) give

(2.7) u1(FX) = 0, P ξ1 = 0, FU1 = 0.

So, (2.2) may be written in the form

(2.8) Jξ1 = −U1, Jξα = Pξα, α = 2, . . . , p
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and further, we may put

(2.9) Pξα =
∑

p
β=2Pαβξβ , α = 2, . . . , p,

where (Pαβ) is a skew-symmetric matrix which satisfies

(2.10)
∑

p
β=2PαβPβγ = −δαγ , α, γ = 2, . . . , p.

These results imply that (F,U1, u
1, g) defines an almost contact metric

structure on (M, g) ([16]).
Now, let ∇ and ∇ denote the Levi-Civita connection on M and M ,

respectively and denote by D the normal connection induced from ∇
in the normal bundle TM⊥ of M . Then the Gauss and Weingarten
equations are given by

∇XY = ∇XY + h(X, Y ),(2.11)

∇Xξα = −AαX + DXξα, α = 1, . . . , p(2.12)

for any tangent vector fields X and Y to M . Here h denotes the second
fundamental form and Aα is the shape operator corresponding to ξα.
They are related by h(X, Y ) =

∑p
α=1 g(AαX, Y )ξα.

Furthermore, putting

(2.13) DXξα =
∑

p
β=1sαβ(X)ξβ ,

it follows that (sαβ) is the skew-symmetric matrix of connection forms
of D. Next, the Gauss, Codazzi and Ricci equations are ([11]) :

g(R(X, Y )Z,W ) = g(R(X, Y )Z,W )(2.14)

+
p∑

α=1

{g(AαX, Z)g(AαY, W )− g(AαY, Z)g(AαX, W )},

g(R(X, Y )Z, ξα) = g((∇XAα)Y − (∇Y Aα)X, Z)(2.15)

+
p∑

β=1

{g(AβY, Z)sβα(X)− g(AβX, Z)sβα(Y ),
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(2.16) g(R(X, Y )ξα, ξβ) = g(R⊥(X, Y )ξα, ξβ) + g([Aβ , Aα]X, Y )

for any tangent vector fields X, Y , Z and W to M . R denotes the Rie-
mannian curvature tensor of M and R that of M . R⊥ is the curvature
tensor of the normal connection D.

Moreover, if the ambient space M is of constant holomorphic sec-
tional curvature c, since

R(X,Y )Z =
c

4
{g(Y ,Z)X − g(X,Z)Y + g(JY , Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ}

for any tangent vector fields X, Y and Z to M , the Riemannian cur-
vature tensor R of M given by

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y + g(FY,Z)FX(2.17)

− g(FX, Z)FY − 2g(FX, Y )FZ}
+

∑
p
α=1{g(AαY, Z)AαX − g(AαX, Z)AαY }

for any tangent vector fields X, Y and Z to M .
In the sequel, we consider the case of a complex space form M =

M
n+p

2 (c) and ∇J = 0. Then by differentiating (2.1) and (2.2) covari-
antly and by comparing the tangential and normal parts, we have

(∇Y F )X = u1(X)A1Y − g(A1X, Y )U1,(2.18)

(∇Y u1)X = g(FA1Y, X),(2.19)

∇XU1 = FA1X,(2.20)

g(AαU1, X) = −
∑

p
β=2s1β(X)Pβα, α = 2, . . . , p(2.21)

for any tangent vector fields X and Y to M .
In the rest of this paper we suppose that there exists an orthonormal

basis {ξα}α=1,...,p of normal vectors to M each of which is parallel with
respect to the normal connection D. Then from (2.13) we have

(2.22) sαβ = 0.
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Hence, from (2.21) and (2.22) we obtain

(2.23) AαU1 = 0, α = 2, ..., p.

Moreover, from (2.22) and (2.23), the Codazzi equation (2.15) becomes

(∇XA1)Y − (∇Y A1)X(2.24)

=
c

4
{g(X, U1)FY − g(Y,U1)FX − 2g(FX, Y )U1},

(2.25) (∇XAα)Y − (∇Y Aα)X = 0, α = 2, . . . , p

for any tangent vector fields X and Y to M . Also, by differentiating
(2.23) covariantly and using (2.25) we get

(2.26) (∇U1Aα)U1 = 0, α = 2, . . . , p.

Especially, recently Kwon and Pak [8] proved the following lemma.

Lemma 2.1. Let M be an n-dimensional CR-submanifold of (n−1)
CR-dimension immersed in a complex space form M

n+p
2 (c), c 6= 0 and

let there exist an orthonormal basis {ξα}α=1,...,p of normal vectors to
M each of which is parallel with respect to the normal connection. If
A1U1 = λU1 for some function λ, then λ is locally constant.

Finally, we suppose that U1 is principal with corresponding principal
curvature λ. Then, by Lemma 2.1, λ is constant on M and it satisfies

(∇U1A1)U1 = 0,(2.27)

A1FA1 =
c

4
F +

1
2
λ(A1F + FA1)(2.28)

by virtue of (2.20) and (2.24). Hence from (2.24) and (2.28), we get

(2.29) ∇U1A1 = −1
2
λ(A1F − FA1).



Some characterizations of CR-submanifolds 249

3. Proof of Theorem 1

In this section, we are concerned with the proof of Theorem 1. Let
M be an n-dimensional CR-submanifold of (n− 1) CR-dimension im-
mersed in a complex space form M

n+p
2 (c). Then M admits an almost

contact metric structure (F,U1, u
1, g). The Lie derivative LU1R of R

with respect to the structure vector field U1 satisfies

(LU1R)(X, Y, Z) =LU1(R(X, Y )Z)−R(LU1X, Y )Z(3.1)
−R(X,LU1Y )Z −R(X, Y )LU1Z

for any vector fields X, Y and Z on M . From now on we shall prove
the following lemma.

Lemma 3.1. Let M be as in Lemma 2.1. If LU1R = 0, then A1F =
FA1.

Proof. Let T0 be a distribution defined by the subspace T0(x) =
{u ∈ TxM : g(u, U1(x)) = 0} of the tangent space TxM of M at any
point x, which is called the holomorphic distribution. Suppose that
the structure vector field U1 is not necessarily principal. Then we can
put A1U1 = λU1 + µV , where V is a unit vector field in T0, λ and µ
are smooth functions on M . From (2.17), (2.18), (2.20), (3.1) and our
assumption, we have

0 =
c

4
µ[{u1(Y )g(Z, V )− u1(Z)g(Y, V )}FX

− {u1(X)g(Z, V )− u1(Z)g(X, V )}FY

− 2{u1(X)g(Y, V )− u1(Y )g(X, V )}FZ

+ g(FY,Z){u1(X)V − g(X, V )U1}
− g(FX, Z){u1(Y )V − g(Y, V )U1}
− 2g(FX, Y ){u1(Z)V − g(Z, V )U1}]

− c

4
{g(FY,Z)F (A1F − FA1)X − g(FX, Z)F (A1F − FA1)Y

− 2g(FX, Y )F (A1F − FA1)Z + g((A1F − FA1)Y, Z)X

− g((A1F − FA1)X, Z)Y + g((A1F
2 − F 2A1)Y, Z)FX

(3.2)
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− g((A1F
2 − F 2A1)X, Z)FY − 2g((A1F

2 − F 2A1)X, Y )FZ}
+ g((∇U1A1)Y, Z)A1X − g((∇U1A1)X, Z)A1Y

+ g(A1Y,Z){(∇U1A1)X + (A1F − FA1)A1X}
− g(A1X, Z){(∇U1A1)Y + (A1F − FA1)A1Y }

−
p∑

α=2

[{g(A1FAαY,Z)− g((∇U1Aα)Y,Z)− g(AαFA1Y, Z)}AαX

− g(AαY,Z){(∇U1Aα)X − FA1AαX + AαFA1X}]

+
p∑

α=2

[{g(A1FAαX, Z)− g((∇U1Aα)X, Z)− g(AαFA1X, Z)}AαY

− g(AαX, Z){(∇U1Aα)Y − FA1AαY + AαFA1Y }]

for any vector fields X, Y and Z on TxM . Putting Z = U1 and taking
X and Y in the holomorphic distribution T0 in (3.2) and using (2.23)
and (2.26), we have

0 =
c

4
µ{g(Y, FV )X − g(X, FV )Y }+ g((∇U1A1)U1, Y )A1X(3.3)

− g((∇U1A1)U1, X)A1Y

+ µ[g(Y, V ){(∇U1A1)X + (A1F − FA1)A1X}
− g(X, V ){(∇U1A1)Y + (A1F − FA1)A1Y }]
+

∑
p
α=2µ{g(AαY, FV )AαX − g(AαX, FV )AαY }.

Again, putting Y = Z = U1 and taking X in the holomorphic distri-
bution T0 in (3.2) and using (2.23), we have

λ(∇U1A1)X = µg(X, V )(∇U1A1)U1 − dλ(U1)A1X(3.4)
+ g((∇U1A1)U1, X)A1U1

+
c

4
µg(X, FV )U1 + µ2g(X, V )(A1F − FA1)V

− λµ2g(X, V )FV − λ(A1F − FA1)A1X.

Eliminating (∇U1A1)X and (∇U1A1)Y in (3.3) and (3.4) and using
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(2.26), we obtain

0 =
c

4
µ[λ{g(Y, FV )X − g(X, FV )Y }+ µ{g(X, FV )g(Y, V )

− g(X, V )g(Y, FV )}U1]

+ λ{g((∇U1A1)U1, Y )A1X − g((∇U1A1)U1, X)A1Y }
+ µ[g(Y, V ){g((∇U1A1)U1, X)A1U1 − dλ(U1)A1X}

(3.5)

− g(X, V ){g((∇U1A1)U1, Y )A1U1 − dλ(U1)A1Y }]

+
∑

p
α=2µ{g(AαY, FV )AαX − g(AαX, FV )AαY }

for any vector fields X and Y in T0. Now, putting X = V and Y = FV
in (3.5) and using (2.26), we get

0 =
c

4
µ(λV − µU1) + λ{g((∇U1A1)U1, FV )A1V(3.6)

− g((∇U1A1)U1, V )A1FV }
− µ{g((∇U1A1)U1, FV )A1U1 − dλ(U1)A1FV }
+

∑
p
α=2µ{g(AαFV, FV )AαV − g(AαV, FV )AαFV }.

Taking the inner product of (3.6) with U1 and using (2.23), we obtain
µ = 0, that is, the structure vector field U1 is principal. Hence, by
Lemma 2.1, λ is constant. If λ = 0, then putting X = U1 in (3.2) and
using (2.23), (2.26) and c 6= 0, we get A1F − FA1 = 0. Next, suppose
that λ 6= 0. Then from (3.4) and (2.27) we have

(3.7) (∇U1A1)X + A1FA1X − FA2
1X = 0

for any vector field X in T0.
Furthermore, putting Y = Z = U1 in (3.2) and using (2.23) and

(2.27), we see that (3.7) holds for any vector field X. This implies that

(3.8) F (A2
1 − λA1 −

c

4
I)X = 0
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for any vector field X, where I denotes the identity transformation and
we have used (2.28) and (2.29). (3.8) is equivalent to

A2
1 − λA1 −

c

4
(I − u1 ⊗ U1) = 0,

from which it follows that A1 satisfies (A1F − FA1)2 = 0, where we
have used that (2.28) and A1F

2 = F 2A1 = −A1 + λu1 ⊗ U1. Hence,
we have A1F − FA1 = 0. �

Proof of Theorem 1. Combining Lemma 3.1 and Theorem A, we
have Theorem 1. �

4. Proof of Theorem 2

In this section, we are concerned with the proof of Theorem 2. Let
M be an n-dimensional CR-submanifold of (n− 1) CR-dimension im-
mersed in a complex space form M

n+p
2 (c). Then M admits an almost

contact metric structure (F,U1, u
1, g). The covariant derivative ∇U1R

of R with respect to the structure vector field U1 satisfies

(∇U1R)(X, Y, Z) =∇U1(R(X, Y )Z)−R(∇U1X, Y )Z(4.1)
−R(X,∇U1Y )Z −R(X, Y )∇U1Z

for any vector fields X, Y and Z on M . From now on we shall prove
the following lemma.

Lemma 4.1. Let M be as in Lemma 2.1 with n ≥ 3. If ∇U1R = 0,
then ∇U1A1 = 0.

Proof. From (2.17), (2.18), (4.1) and our assumption, we have

0 =
c

4
[{u1(Y )g(A1U1, Z)− u1(Z)g(A1U1, Y )}FX(4.2)

− {u1(X)g(A1U1, Z)− u1(Z)g(A1U1, X)}FY

− 2{u1(X)g(A1U1, Y )− u1(Y )g(A1U1, X)}FZ

+ g(FY,Z){u1(X)A1U1 − g(A1U1, X)U1}
− g(FX, Z){u1(Y )A1U1 − g(A1U1, Y )U1}
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− 2g(FX, Y ){u1(Z)A1U1 − g(A1U1, Z)U1}]
+ g((∇U1A1)Y,Z)A1X − g((∇U1A1)X, Z)A1Y

+ g(A1Y, Z)(∇U1A1)X − g(A1X, Z)(∇U1A1)Y

+
∑

p
α=2{g((∇U1Aα)Y, Z)AαX − g((∇U1Aα)X, Z)AαY

+ g(AαY,Z)(∇U1Aα)X − g(AαX, Z)(∇U1Aα)Y }

for any vector fields X, Y and Z on TxM . Suppose that the structure
vector field U1 is not necessarily principal. Then we can put A1U1 =
λU1 +µV , where V is a unit vector field in T0, and λ and µ are smooth
functions on M . Let M0 be the non-empty open subset of M consisting
of points x at which µ(x) 6= 0. Hereafter unless otherwise stated, we
shall discuss on the subset M0 of M . By the form A1U1 = λU1 + µV ,
(4.2) is reformed as

0 =
c

4
µ[{u1(Y )g(Z, V )− u1(Z)g(Y, V )}FX(4.3)

− {u1(X)g(Z, V )− u1(Z)g(X, V )}FY

− 2{u1(X)g(Y, V )− u1(Y )g(X, V )}FZ

+ g(FY,Z){u1(X)V − g(X, V )U1}
− g(FX, Z){u1(Y )V − g(Y, V )U1}
− 2g(FX, Y ){u1(Z)V − g(Z, V )U1}]
+ g((∇U1A1)Y, Z)A1X − g((∇U1A1)X, Z)A1Y

+ g(A1Y, Z)(∇U1A1)X − g(A1X, Z)(∇U1A1)Y

+
∑

p
α=2{g((∇U1Aα)Y, Z)AαX − g((∇U1Aα)X, Z)AαY

+ g(AαY,Z)(∇U1Aα)X − g(AαX, Z)(∇U1Aα)Y }

for any vector fields X, Y and Z on TxM . Putting Z = U1 and taking
X and Y in the holomorphic distribution T0 in (4.3) and using (2.23)
and (2.26), we have

0 =
c

4
µ{−g(Y, V )FX + g(X, V )FY − 2g(FX, Y )V }(4.4)

+ g((∇U1A1)U1, Y )A1X − g((∇U1A1)U1, X)A1Y

+ µ{g(Y, V )(∇U1A1)X − g(X, V )(∇U1A1)Y }.
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Next, putting Y = Z = U1 and taking X in the holomorphic distribu-
tion T0 in (4.3) and using (2.20), (2.23) and (2.26) we have

λ(∇U1A1)X =g(∇U1A1)U1, X)A1U1(4.5)
+ µg(X, V )(∇U1A1)U1 − dλ(U1)A1X.

Combining (4.4) and (4.5) and using (2.26), we obtain

0 =
c

4
λµ{−g(Y, V )FX + g(X, V )FY − 2g(FX, Y )V }(4.6)

+ µ{g(Y, V )g((∇U1A1)U1, X)
− g(X, V )g((∇U1A1)U1, Y )}A1U1

+ {λg((∇U1A1)U1, Y )− µdλ(U1)g(Y, V )}A1X

− {λg((∇U1A1)U1, X)− µdλ(U1)g(X, V )}A1Y

for any vector fields X and Y in T0. Let L(U1, V, FV ) be a distribu-
tion defined by the subspace Lx(U1, V, FV ) in the tangent space TxM
spanned by the vectors U1(x), V (x) and FV (x) at any point x in M ,
and let T1 be the orthogonal complement in the tangent bundle TM of
the distribution L(U1, V, FV ). Then T1 is not empty because of n ≥ 3.
For any unit vector field X in T1, putting Y = FX in (4.6) and using
(2.26), we have

(4.7)
c

2
µV = g((∇U1A1)U1, FX)A1X − g((∇U1A1)U1, X)A1FX,

provided λ 6= 0. Suppose that there is a unit vector field X0 in T1 at
which g((∇U1A1)U1, X0) = 0. Then from (4.7) we obtain

(4.8)
c

2
µV = g((∇U1A1)U1, FX0)A1X0 6= 0.

Accordingly we can put A1X0 = ω(X0)V , where ω is a 1-form on M0.
Putting X = X0, Y = V in (4.6), we have

(4.9)
c

4
λµFX0 − ω(X0){λg((∇U1A1)U1, V )− µdλ(U1)}V = 0.

Thus, since FX0 and V are orthonormal vector fields and λ 6= 0, (4.9)
implies µ = 0, a contradiction. Accordingly we get

(4.10) g((∇U1A1)U1, X) 6= 0
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for any non-zero vector field X in T1. On the other hand, putting
Y = FV in (4.6) and using (2.26), we have

(4.11) g((∇U1A1)U1, FV )A1X − g((∇U1A1)U1, X)A1FV = 0

for any X in T1 under the assumption λ 6= 0. If g((∇U1A1)U1, FV ) = 0,
then from (4.10) and (4.11) we obtain A1FV = 0. Now, we suppose
that g((∇U1A1)U1, FV ) 6= 0. From (4.10) and (4.11) we have

(4.12) A1X = θ(X)A1FV, θ(X) 6= 0

for any non-zero vector field X in T1, where θ is a 1-form on M0. Hence,
for any non-zero vector fields X and Y in T1, we obtain

(4.13) A1{θ(Y )X − θ(X)Y } = 0, θ(X) 6= 0, θ(Y ) 6= 0.

If we put Z1 = θ(Y1)X1−θ(X1)Y1 for given linearly independent vector
fields X1 and Y1 in T1, then from (4.13) A1Z1 = 0 and hence A1FV = 0
by virtue of (4.12).

Next, putting X = V and Y = FV in (4.6), and using A1FV = 0,
we have

(4.14)
3c

4
λµV − g((∇U1A1)U1, FV )(λA1V − µA1U1) = 0.

Consequently, we get g((∇U1A1)U1, FV ) 6= 0 which together with
(4.11) we have A1X = 0 for any vector field X in T1. Hence, putting
X = U1 and taking Y,Z ∈ T1 in (4.3), and using (2.23) and (2.26), we
obtain

(4.15) λg((∇U1A1)Y,Z)U1 + µ{ c

4
g(FY,Z) + g((∇U1A1)Y,Z)}V = 0.

Accordingly it turns out to be µ = 0 on M0 provided λ 6= 0, a con-
tradiction. This means that U1 is principal on M ′, where M ′ denotes
the open subset of M consisting of points x at which λ(x) 6= 0. Thus,
putting Y = Z = U1 in (4.3) and using (2.23), (2.26) and (2.27), we
have ∇U1A1 = 0.

Now, let us denote by Int(M −M ′) the interior of the subset (M −
M ′). Then λ = 0 on Int(M −M ′). Suppose that U1 is not principal
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on Int(M −M ′). Then the subset M1 of Int(M −M ′) consisting of
points x at which µ(x) 6= 0 is non-empty open set. Hence, from (4.5)
we have

(4.16) g((∇U1A1)U1, X)V + g(X, V )(∇U1A1)U1 = 0

on M1 for any vector field X in T0. Accordingly g((∇U1A1)U1, Y ) = 0
for any vector field Y in T0 orthogonal to V . Taking the inner product
of (4.16) with X in T0, we have g((∇U1A1)U1, X)g(X, V ) = 0. Putting
X = V in this equation, we get g((∇U1A1)U1, V ) = 0. Hence, putting
X = V in (4.16), we obtain (∇U1A1)U1 = 0 on M1. Taking X and Y
in T0 orthogonal to V in (4.4) and using (∇U1A1)U1 = 0, we obtain
g(FX, Y ) = 0 on M1, a contradiction. This means that U1 is principal
with corresponding principal curvature λ = 0. Accordingly we have
∇U1A1 = 0 on Int(M −M ′) by virtue of (2.29). This completes the
proof by the continuity of ∇U1A1 = 0. �

Proof of Theorem 2. Combining (2.29), Lemma 4.1 and Theorem
A, we have Theorem 2. �
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