Kangweon-Kyungki Math. Jour. 6 (1998), No. 2, pp. 281–289

SOME EQUATIONS ON THE SUBMANIFOLDS OF A MANIFOLD GSX_n

Keumsook So

ABSTRACT. On a generalized Riemannian manifold X_n , we may impose a particular geometric structure by the basic tensor field $g_{\lambda\mu}$ by means of a particular connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. For example, Einstein's manifold X_n is based on the Einstein's connection defined by the Einstein's equations. Many *recurrent* connections have been studied by many geometers, such as Datta and Singel, M. Matsumoto, and E.M. Patterson. The purpose of the present paper is to study some relations between a generalized semisymmetric g-recurrent manifold GSX_n and its submanifold.

All considerations in this present paper deal with the general case $n \ge 2$ and all possible classes.

1. Introduction

Let X_n be a generalized *n*-dimensional Riemannian manifold referred to a real coordinate system y^{ν} , with coordinate transformation $y^{\nu} \to \bar{y}^{\nu}$, for which

(1.1)
$$Det\left(\frac{\partial y}{\partial \bar{y}}\right) \neq 0.$$

The manifold X_n is endowed with a general real nonsymmetric tensor $g_{\lambda\mu}$, which may be split into a symmetric part $h_{\lambda\mu}$ and a skewsymmetric part $k_{\lambda\mu}$:

(1.2)
$$g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu}$$

Received June 30, 1998.

Key words and phrases: g-recurrent manifold, Gauss equations, Cdazzi equations, parallelism.

¹⁹⁹¹ Mathematics Subject Classification: 83E50, 83C05, 58A05.

where

(1.3)
$$\mathcal{G} = Det(g_{\lambda\mu}) \neq 0, \qquad \mathcal{H} = Det(h_{\lambda\mu}) \neq 0.$$

Hence, we may define a unique tensor $h^{\lambda\nu}$ by

(1.4)
$$h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}$$

and X_n is assumed to be connected by a real nonsymmetric connection $\Gamma_{\lambda \mu}^{\nu}$ with the following transformation rule:

(1.5)
$$\bar{\Gamma}_{\lambda \ \mu}^{\ \nu} = \frac{\partial \bar{y}^{\nu}}{\partial y^{\alpha}} (\frac{\partial y^{\beta}}{\partial \bar{y}^{\lambda}} \frac{\partial y^{\gamma}}{\partial \bar{y}^{\mu}} \Gamma_{\beta \ \gamma}^{\ \alpha} + \frac{\partial^2 y^{\alpha}}{\partial \bar{y}^{\lambda} \partial \bar{y}^{\mu}}).$$

This connection may also be decomposed into its symmetric part $\Lambda_{\lambda}{}^{\nu}{}_{\mu}$ and its skew-symmetric part $S_{\lambda\mu}{}^{\nu}$, called the torsion tensor of $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$:

(1.6)
$$\Gamma_{\lambda \ \mu}^{\ \nu} = \Lambda_{\lambda \ \mu}^{\ \nu} + S_{\lambda \mu}^{\ \nu}$$

where

(1.7)
$$\Lambda_{\lambda}^{\nu}{}_{\mu} = \Gamma_{(\lambda}{}^{\nu}{}_{\mu}), \qquad S_{\lambda\mu}{}^{\nu} = \Gamma_{[\lambda}{}^{\nu}{}_{\mu}].$$

Now, we will define a manifold GSX_n .

A connection $\Gamma_{\lambda \ \mu}^{\ \nu}$ is said to be *semisymmetric* if its torsion tensor is of the form

(1.8)
$$S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda}X_{\mu]}$$

for an arbitrary vector $X_{\mu} \neq 0$.

Hereafter we assume that X_{μ} is a non-null vector.

A particular differential geometric structure may be imposed on X_n by the tensor field $g_{\lambda\mu}$ by means of the connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ defined by the following *g*-recurrent condition:

(1.9)
$$D_{\omega}g_{\lambda\mu} = -4X_{\omega}g_{\lambda\mu}.$$

Here, D_{ω} is the symbolic vector of the covariant derivative with respect to the connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$.

DEFINITION 1.1. The connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ which satisfies (1.8) is called *g*-recurrent connection.

DEFINITION 1.2. A connection which is both semisymmetric and g-recurrent is called a GS-connection.

A generalized Riemannian manifold X_n on which the differential geometric structure is imposed by $g_{\lambda\mu}$ through a *GS*-connection is called an *n*-dimensional *GS*-manifold and will be denoted by GSX_n .

The following theorems have been proved $([3])^1$.

THEOREM 1.3. If the system (1.8) admits a solution $\Gamma_{\lambda \mu}^{\nu}$, it must be of the form

(1.10)
$$\Gamma_{\lambda \ \mu}^{\nu} = \Lambda_{\lambda \ \mu}^{\nu} + 2\delta_{[\lambda}^{\nu} X_{\mu]}.$$

THEOREM 1.4. If the system (1.9) admits a solution $\Gamma^{\nu}_{\lambda \mu}$, it must be of the form

(1.11)
$$\Gamma_{\lambda \ \mu}^{\ \nu} = \{ {}_{\lambda \ \mu}^{\ \nu} \} - V^{\nu}{}_{\lambda \mu} - 2S^{\nu}{}_{(\lambda \mu)} + S_{\lambda \mu}^{\ \nu}$$

where

(1.12)
$$V^{\nu}{}_{\lambda\mu} = 2X^{\nu}h_{\lambda\mu} - 4X_{(\lambda}\delta^{\nu}{}_{\mu)}.$$

THEOREM 1.5. If the system (1.9) admits a solution $\Gamma_{\lambda \mu}^{\nu}$ with its semi-symmetric torsion tensor, it must be of the form

(1.13)
$$\Gamma_{\lambda \mu}^{\nu} = \{ \lambda_{\mu}^{\nu} \} + 2\delta_{\lambda}^{\nu} X_{\mu}.$$

2. Preliminaries

¹Numbers in brackets refer to the references at the end of the paper.

This section is a brief collection of basic concepts, results, and notations needed in the present paper¹.

Let X_m be a submanifold of X_n defined by a system of sufficiently differentiable equations

(2.1)
$$y^{\nu} = y^{\nu}(x^1, \dots, x^m)$$

where the matrix of derivatives

$$B_i^{\nu} = \frac{\partial y^{\nu}}{\partial x^i}$$

is of rank *m*. Hence at each point of X_m , there exists the first set $\{B_i^{\nu}, N_r^{\nu}\}$ of *n* linearly independent nonnull vectors.

The *m* vectors B_i^{ν} are tangential to X_m and the n-m vectors N_x^{ν} are normal to X_m and mutually orthogonal. That is

(2.2)
$$h_{\alpha\beta}B_i^{\alpha}N_x^{\beta} = 0, \qquad h_{\alpha\beta}N_x^{\alpha}N_y^{\beta} = 0 \quad \text{for } x \neq y.$$

The process of determining the set $\{N_x^{\nu}\}$ is not unique unless m = n - 1.

However, we may choose their magnitudes such that

(2.3)
$$h_{\alpha\beta} \underset{x}{\overset{N^{\alpha}}{\overset{N}{\overset{\beta}}}} = \varepsilon_x$$

where $\varepsilon_x = \pm 1$ according as the left-hand side of (2.3) is positive or negative.

¹In our further considerations in the present paper, we use the following types of indices (m < n): (1) Lower Greek indices $\alpha, \beta, \gamma,...$, running from 1 to n and used for the holonomic components of tensors in X_n . (2) Capital Latin indices A, B, C,..., running from 1 to n and used for the C-nonholonomic components of tensors in X_n at points of X_m . (3) Lower Latin indices i, j, k,..., with the exception of x, y, and z, running from 1 to m. (4) Lower Latin indices x, y, z, running from m + 1 to n. The summation convention is operative with respect to each set of the above indices within their range, with exception of x, y, z.

Some equations on the submanifolds of a manifold GSX_n

3. The induced connection on X_m of GSX_n (m < n)

If $\Gamma_{\lambda \mu}^{\nu}$ is a connection on X_n , the connection Γ_{ij}^k defined by

(3.1)
$$\Gamma_{ij}^{k} = B_{\gamma}^{k} (B_{ij}^{\gamma} + \Gamma_{\alpha}{}^{\gamma}{}_{\beta} B_{i}^{\alpha} B_{j}^{\beta}), \qquad B_{ij}^{\gamma} = \frac{\partial B_{i}^{\gamma}}{\partial x^{j}} = \frac{\partial^{2} y^{\gamma}}{\partial x^{i} \partial x^{j}}$$

is called the *induced connection* of $\Gamma_{\lambda}^{\nu}{}_{\mu}$ on X_m of X_n .

The following statements have been already proved([3]):

(a) The torsion tensor $S_{ij}{}^k$ of the induced connection $\Gamma_i{}^k{}_j$ is the induced tensor of the torsion tensor $S_{\lambda\mu}{}^{\nu}$ of the connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$. That is

(3.2)
$$S_{ij}{}^k = S_{\alpha\beta}{}^{\gamma}B_i^{\alpha}B_j^{\beta}B_{\gamma}^k.$$

(b) The induced connection $\{{}^k_{i\,j}\}$ of $\{{}^{\nu}_{\mu}\}$ is the Christoffel symbol defined by h_{ij} . That is

(3.3)
$$\{ {}^k_{i\,j} \} = \frac{1}{2} h^{kp} (\partial_i h_{jp} + \partial_j h_{ip} - \partial_p h_{ij}).$$

(c) On an X_m of GSX_n , the induced connection Γ_{ij}^k is of the form

(3.4)
$$\Gamma_{ij}^{k} = \{ {}_{ij}^{k} \} + 2\delta_{i}^{k} X_{j}.$$

Here $\{{}^k_i{}_j\}$ are the induced Christoffel symbols defined by (3.3) and X_j is the induced vector on X_m of a vector $X_\mu \neq 0$ determining $\Gamma^{\nu}_{\lambda\mu}$.

(d) On an X_m of GSX_n , a necessary and sufficient condition for the induced connection Γ_{ij}^k to be g-recurrent is

(3.5)
$$\sum_{x} k_{x[i} \mathring{A}_{j]k} = 0, \quad \text{where} \quad \mathring{A}_{ij} = (\bigtriangledown_{\beta} \mathring{N}_{\alpha}) B_{i}^{\alpha} B_{j}^{\beta}.$$

Let D_j be the symbolic vector of the generalized covariant derivative with respect to the x's. That is

(3.6)
$$\overset{o}{D}_{j}B_{i}^{\alpha} = B_{ij}^{\alpha} + \Gamma_{\beta}{}^{\alpha}{}_{\gamma}B_{i}^{\beta}B_{j}^{\gamma} - \Gamma_{ij}^{k}B_{k}^{\alpha}.$$

Then the vector $\overset{o}{D}_{j}B_{i}^{\alpha}$ in X_{n} is normal to X_{m} and is given by

(3.7)
$$\overset{o}{D}_{j}B_{i}^{\alpha} = -\sum_{x} \overset{x}{\Omega}_{ij} \underset{x}{N^{\alpha}}$$

where

(3.8)
$$\overset{x}{\Omega}_{ij} = -(\overset{o}{D}_{j}B^{\alpha}_{i})\overset{x}{N}_{\alpha}$$

And we know that the tensors $\stackrel{x}{\Omega}_{ij}$ are the induced tensors on X_m of the tensor $D_{\beta} \stackrel{x}{N_{\alpha}}$ in X_n . That is

(3.9)
$$\overset{x}{\Omega}_{ij} = (D_{\beta}\overset{x}{N_{\alpha}})B_{i}^{\alpha}B_{j}^{\beta}.$$

The tensor $\hat{\Omega}_{ij}$ will be called the generalized coefficients of the second fundamental form of X_m .

4. The generalized fundamental equations for X_m of GSX_n

On an X_m of GSX_n , the following identities hold ([2]):

(4.1)
$$\overset{o}{D}_{j}B_{i}^{\alpha} = -\sum_{x} \overset{x}{\Lambda}_{ij} \overset{N}{}_{x}^{\alpha}$$
 where $\overset{x}{\Lambda}_{ij} = (\bigtriangledown_{\beta} \overset{x}{N}_{\alpha}) B_{i}^{\alpha} B_{j}^{\beta}$

(Generalized Gauss formulas for an X_m of GSX_n)

(4.2)
$$\overset{o}{D}_{j} \overset{N}{\overset{\alpha}{x}} = (\varepsilon_{x} h^{im} \overset{x}{\Lambda}_{mj}) B_{i}^{\alpha} + \sum_{y} (\varepsilon_{y} \overset{y}{\overset{H}{\overset{\gamma}{x}}} B_{j}^{\gamma} + 2\delta_{x}^{y} X_{j}) \overset{N}{\overset{\alpha}{y}}.$$

(Generalized Weingarten equations on an X_m of GSX_n)

In order to derive the generalized *Gauss-Codazzi equations*, we need the following curvature tensors of GSX_n and X_m :

(4.3)
$$R_{\omega\mu\lambda}{}^{\nu} = 2(\partial_{[\mu}\Gamma_{[\lambda]}{}^{\nu}_{\omega]} + \Gamma_{\lambda}{}^{\alpha}_{[\omega}\Gamma_{[\alpha]}{}^{\nu}_{\mu]})$$

(4.4)
$$R_{ijk}{}^{h} = 2(\partial_{[j}\Gamma_{[k]}{}^{h}{}_{i]} + \Gamma_{k}{}^{p}{}_{[i}\Gamma_{[p]}{}^{h}{}_{j]})$$

The following notation will be used in further considerations:

THEOREM 4.1. On an X_m of GSX_n , the curvature tensors defined by (4.3) and (4.4) satisfy the following identities: (4.6)

$$R_{ijk}{}^{h} = R_{\beta\gamma\epsilon}{}^{\alpha}B_{i}^{\beta}B_{j}^{\gamma}B_{k}^{\epsilon}B_{\alpha}^{h}$$

+
$$2\sum_{x} \stackrel{x}{\Lambda}_{k[i}(\stackrel{x}{\Lambda}_{j]m}\varepsilon_{x}h^{hm} - \delta_{j]}^{h}X_{x} + k_{j]x}X^{h})$$

(The generalized Gauss equations for an X_m of GSX_n)

(4.7)

$$2 \overset{o}{D}_{[k} \overset{x}{\Lambda}_{j]i} = R_{\beta\gamma\epsilon} {}^{\alpha}B_{k}^{\beta}B_{j}^{\gamma}B_{i}^{\epsilon} \overset{x}{N}_{\alpha} + 6 \overset{x}{\Lambda}_{i[k}X_{j]}$$
$$+ 2 \sum_{y} \overset{y}{\Lambda}_{i[k}(B_{j]}^{\gamma}\varepsilon_{x} \overset{x}{H}_{y} + X_{j]}k_{y} \overset{x}{x} + k_{j]} \overset{x}{X}_{y})$$

(The generalized Codazzi equations for an X_m of GSX_n)

Proof. In virtue of (3.1), (3.6), (4.3) and (4.4), we have (4.8)

$$2 \overset{o}{D}_{[k} \overset{o}{D}_{j]} B_{i}^{\alpha} = 2 [\partial_{[k} (\overset{o}{D}_{j]} B_{i}^{\alpha}) - \Gamma_{[j} \overset{m}{}_{k]} (\overset{o}{D}_{m} B_{i}^{\alpha}) - \Gamma_{i} \overset{o}{}_{[k} (\overset{o}{D}_{j]} B_{m}^{\alpha}) + \Gamma_{\beta} \overset{\alpha}{}_{\gamma} (\overset{o}{D}_{[j} B_{|i|}^{\beta}) B_{k}^{\gamma}] = -R_{\epsilon \gamma \beta} \overset{\alpha}{}_{\beta} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\epsilon} + R_{k j i} \overset{m}{}_{m} B_{m}^{\alpha} + 4 \sum_{x} \overset{x}{\Lambda}_{i[j} X_{k]} \overset{N}{}_{x}^{\alpha}$$

On the other hand, the equations (4.1) and (4.2) give

$$(4.9) \quad 2\overset{o}{D}_{[k}\overset{o}{D}_{j]}B_{i}^{\alpha} = -2\sum_{x}\overset{o}{D}_{[k}(\overset{x}{\Lambda}_{j]i}\overset{N}{N}^{\alpha}) \\ = 2\sum_{x}(\overset{o}{D}_{[j}\overset{x}{\Lambda}_{k]i})\overset{N}{x}^{\alpha} + 2\sum_{x}\overset{x}{\Lambda}_{i[k}\overset{o}{D}_{j]})\overset{N}{x}^{\alpha} \\ = 2\sum_{x}(\overset{o}{D}_{[j}\overset{x}{\Lambda}_{k]i} + \overset{x}{\Lambda}_{i[k}X_{j]})\overset{N}{x}^{\alpha} \\ + 2\sum_{x,y}\overset{x}{\Lambda}_{i[k}(B_{j]}^{\gamma}\varepsilon_{x}\overset{y}{H}_{x}^{\gamma} + X_{j]}k_{x}^{y} + k_{j]}^{y}X_{x})\overset{N}{y}^{\alpha} \\ + 2\sum_{x}\overset{x}{\Lambda}_{i[k}(\overset{x}{\Lambda}_{j]m}\varepsilon_{x}h^{pm} - \delta_{j]}^{p}X_{x} + k_{j]x}X_{x} + k_{j]}^{p}X_{x})B_{p}^{\alpha}$$

By means of (4.8) and (4.9), we have

$$(4.10) \quad R_{kji}{}^{m}B_{m}^{\alpha} = R_{\epsilon\gamma\beta}{}^{\alpha}B_{k}^{\epsilon}B_{j}^{\beta}B_{j}^{\gamma} + 2\sum_{x} (\overset{o}{D}_{[j}\overset{x}{\Lambda}_{k]i} + 3\overset{x}{\Lambda}_{i[k}X_{j]})\overset{N}{x}^{\alpha} + 2\sum_{x,y}\overset{x}{\Lambda}_{i[k}(B_{j]}^{\gamma}\varepsilon_{x}\overset{y}{H}_{x}^{\gamma} + X_{j]}k_{x}{}^{y} + k_{j]}{}^{y}X_{x})\overset{N}{y}^{\alpha} + 2\sum_{x}\overset{x}{\Lambda}_{i[k}(\overset{x}{\Lambda}_{j]m}\varepsilon_{x}h^{pm} - \delta_{j]}^{p}X_{x} + k_{j]x}X_{x} + k_{j]}{}^{p}X_{x})B_{p}^{\alpha}$$

Multiplying both sides of (4.10) by B^h_{α} , we have(4.6). Similarly, the identity (4.7) follows by multiplying $\overset{z}{N}_{\alpha}$ into both sides of (4.10).

5. Parallelism. Paths

In this section we investigate parallelism and paths in X_n and GSX_n . Let C be any curve in X_n , given by

(5.1)
$$y^{\nu} = y^{\nu}(t).$$

DEFINITION 5.1. A vector field V^{ν} is said to be parallel along C with respect to a connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ if it satisfies the following condition:

(5.2a)
$$\frac{dy^{\alpha}}{dt}V^{[\lambda}D_{\alpha}V^{\nu]} = 0, \qquad V^{\nu} \neq \rho \frac{dy^{\alpha}}{dt}D_{\alpha}V^{\nu}, \qquad \rho \neq 0$$

or equivalently,

(5.2b)

$$V^{[\lambda}(\frac{dV^{\nu]}}{dt} + \Gamma_{\beta}{}^{\nu]}{}_{\alpha}V^{\beta}\frac{dy^{\alpha}}{dt}) = 0, \qquad V^{\nu} \neq \rho\frac{dy^{\alpha}}{dt}D_{\alpha}V^{\nu}, \qquad \rho \neq 0.$$

In particular, the curves whose tangents are parallel along themselves are called the *paths* in X_n with respect to $\Gamma_{\lambda \mu}^{\nu}$. A path with respect to $\{\lambda_{\mu}^{\nu}\}$ is called a *geodesic* of X_n .

Therefore, a curve C in X_n , given by (5.1), is a path if it satisfies (5.3).

(5.3)
$$\frac{dy^{[\lambda}}{dt}\left(\frac{d^2y^{\nu]}}{dt^2} + \Gamma_{\alpha}{}^{\nu]}{}_{\beta}\frac{dy^{\alpha}}{dt}\frac{dy^{\beta}}{dt}\right) = 0$$

As a consequence of (5.3), we have the following result:

THEOREM 5.2. Every path C in GSX_n is a geodesic.

THEOREM 5.3. A necessary and sufficient condition that parallelism be the same along every curve in X_n with respect to two connections one of which is a GS connection is that other connection $\bar{\Gamma}^{\nu}_{\lambda \mu}$ be given by

(5.4)
$$\bar{\Gamma}_{\lambda \mu}^{\nu} = \{\lambda_{\mu}^{\nu}\} + 2\delta_{\lambda}^{\nu}A_{\mu}$$
 for an arbitrary vector A_{μ} .

Proof. Suppose that parallelism is the same along every curve with respect to two connections $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$ and $\bar{\Gamma}_{\lambda}{}^{\nu}{}_{\mu}$. Then $\bar{\Gamma}_{\lambda}{}^{\nu}{}_{\mu}$ is given by ([3])

(5.5)
$$\bar{\Gamma}_{\lambda \ \mu}^{\ \nu} = \Gamma_{\lambda \ \mu}^{\ \nu} + 2\delta_{\lambda}^{\nu}P_{\mu}$$
 for an arbitrary vector P_{μ} .

By means of (1.12) and (5.5), we have (5.4).

REMARK 5.4. As an immediate consequence of Theorem 5.3, we know that if parallelism is preserved along every curve in X_n with respect to a GS connection $\Gamma_{\lambda}{}^{\nu}{}_{\mu}$, then the other connection $\bar{\Gamma}_{\lambda}{}^{\nu}{}_{\mu}$ is also a GS connection.

References

- Chung, K.T. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 867-873.
- [2] Chung, K.T., So, K.S. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 851-866.
- [3] Chung, K.T. and So, K.S., International Journal of Theoretical Physics 30 (1991), 1381-1401.
- [4] Hlavaty, V., Geometry of Einstein's Unified Field Theory, Noordhoop Ltd, 1957.
- [5] Han, K.H., So, K.S. and Chung, K.T., A Study on Some Identities in the g-Recurrent Manifold X_n , Journal of NSRI **26** (1992), 41-50.

Department of Mathematics Hallym University Chuncheon, 200-702, Korea