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SOME EQUATIONS ON THE
SUBMANIFOLDS OF A MANIFOLD GSXn

Keumsook So

Abstract. On a generalized Riemannian manifold Xn, we may im-

pose a particular geometric structure by the basic tensor field gλµ

by means of a particular connection Γλ
ν
µ. For example, Einstein’s

manifold Xn is based on the Einstein’s connection defined by the

Einstein’s equations. Many recurrent connections have been stud-
ied by many geometers, such as Datta and Singel, M. Matsumoto,

and E.M. Patterson. The purpose of the present paper is to study

some relations between a generalized semisymmetric g-recurrent
manifold GSXn and its submanifold.

All considerations in this present paper deal with the general
case n ≥ 2 and all possible classes.

1. Introduction

Let Xn be a generalized n-dimensional Riemannian manifold re-
ferred to a real coordinate system yν , with coordinate transformation
yν → ȳν , for which

(1.1) Det

(
∂y

∂ȳ

)
6= 0.

The manifold Xn is endowed with a general real nonsymmetric ten-
sor gλµ, which may be split into a symmetric part hλµ and a skew-
symmetric part kλµ :

(1.2) gλµ = hλµ + kλµ
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where

(1.3) G = Det(gλµ) 6= 0, H = Det(hλµ) 6= 0.

Hence, we may define a unique tensor hλν by

(1.4) hλµhλν = δν
µ

and Xn is assumed to be connected by a real nonsymmetric connection
Γλ

ν
µ with the following transformation rule:

(1.5) Γ̄λ
ν
µ =

∂ȳν

∂yα
(
∂yβ

∂ȳλ

∂yγ

∂ȳµ
Γβ

α
γ +

∂2yα

∂ȳλ∂ȳµ
).

This connection may also be decomposed into its symmetric part
Λλ

ν
µ and its skew-symmetric part Sλµ

ν , called the torsion tensor of
Γλ

ν
µ:

(1.6) Γλ
ν
µ = Λλ

ν
µ + Sλµ

ν

where

(1.7) Λλ
ν
µ = Γ(λ

ν
µ), Sλµ

ν = Γ[λ
ν
µ].

Now, we will define a manifold GSXn.
A connection Γλ

ν
µ is said to be semisymmetric if its torsion tensor

is of the form

(1.8) Sλµ
ν = 2δν

[λXµ]

for an arbitrary vector Xµ 6= 0.
Hereafter we assume that Xµ is a non-null vector.
A particular differential geometric structure may be imposed on Xn

by the tensor field gλµ by means of the connection Γλ
ν
µ defined by the

following g-recurrent condition:

(1.9) Dωgλµ = −4Xωgλµ.

Here, Dω is the symbolic vector of the covariant derivative with respect
to the connection Γλ

ν
µ.
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Definition 1.1. The connection Γλ
ν
µ which satisfies (1.8) is called

g-recurrent connection.

Definition 1.2. A connection which is both semisymmetric and
g-recurrent is called a GS-connection.

A generalized Riemannian manifold Xn on which the differential
geometric structure is imposed by gλµ through a GS-connection is
called an n-dimensional GS-manifold and will be denoted by GSXn.

The following theorems have been proved ([3])1.

Theorem 1.3. If the system (1.8) admits a solution Γλ
ν
µ, it must

be of the form

(1.10) Γλ
ν
µ = Λλ

ν
µ + 2δν

[λXµ].

Theorem 1.4. If the system (1.9) admits a solution Γλ
ν
µ, it must

be of the form

(1.11) Γλ
ν
µ = {λ

ν
µ} − V ν

λµ − 2Sν
(λµ) + Sλµ

ν

where

(1.12) V ν
λµ = 2Xνhλµ − 4X(λδν

µ).

Theorem 1.5. If the system (1.9) admits a solution Γλ
ν
µ with its

semi-symmetric torsion tensor, it must be of the form

(1.13) Γλ
ν
µ = {λ

ν
µ}+ 2δν

λXµ.

2. Preliminaries

1Numbers in brackets refer to the references at the end of the paper.
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This section is a brief collection of basic concepts, results, and no-
tations needed in the present paper1.

Let Xm be a submanifold of Xn defined by a system of sufficiently
differentiable equations

(2.1) yν = yν(x1, ....., xm)

where the matrix of derivatives

Bν
i =

∂yν

∂xi

is of rank m. Hence at each point of Xm, there exists the first set
{Bν

i , N
x

ν} of n linearly independent nonnull vectors.

The m vectors Bν
i are tangential to Xm and the n−m vectors N

x

ν

are normal to Xm and mutually orthogonal. That is

(2.2) hαβBα
i N

x

β = 0, hαβN
x

αN
y

β = 0 for x 6= y.

The process of determining the set {N
x

ν} is not unique unless m =
n− 1.

However, we may choose their magnitudes such that

(2.3) hαβN
x

αN
x

β = εx

where εx = ±1 according as the left-hand side of (2.3) is positive or
negative.

1In our further considerations in the present paper, we use the following types of

indices (m < n): (1) Lower Greek indices α, β, γ,..., running from 1 to n and used
for the holonomic components of tensors in Xn. (2) Capital Latin indices A,B,C,...,

running from 1 to n and used for the C-nonholonomic components of tensors in

Xn at points of Xm. (3) Lower Latin indices i, j, k,..., with the exception of x, y,
and z, running from 1 to m. (4) Lower Latin indices x, y, z, running from m + 1

to n. The summation convention is operative with respect to each set of the above

indices within their range, with exception of x, y, z.
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3. The induced connection on Xm of GSXn (m < n)

If Γλ
ν
µ is a connection on Xn, the connection Γi

k
j defined by

(3.1) Γi
k
j = Bk

γ (Bγ
ij + Γα

γ
βBα

i Bβ
j ), Bγ

ij =
∂Bγ

i

∂xj
=

∂2yγ

∂xi∂xj

is called the induced connection of Γλ
ν
µ on Xm of Xn.

The following statements have been already proved([3]):
(a) The torsion tensor Sij

k of the induced connection Γi
k
j is the

induced tensor of the torsion tensor Sλµ
ν of the connection Γλ

ν
µ. That

is

(3.2) Sij
k = Sαβ

γBα
i Bβ

j Bk
γ .

(b) The induced connection {i
k
j} of {λ

ν
µ} is the Christoffel symbol

defined by hij . That is

(3.3) {i
k
j} =

1
2
hkp(∂ihjp + ∂jhip − ∂phij).

(c) On an Xm of GSXn, the induced connection Γi
k
j is of the form

(3.4) Γi
k
j = {i

k
j}+ 2δk

i Xj .

Here {i
k
j} are the induced Christoffel symbols defined by (3.3) and

Xj is the induced vector on Xm of a vector Xµ 6= 0 determining
Γλ

ν
µ.
(d) On an Xm of GSXn, a necessary and sufficient condition for the

induced connection Γi
k
j to be g-recurrent is

(3.5)
∑

x

kx[i

x

Λj]k = 0, where
x

Λij = (5β

x

Nα)Bα
i Bβ

j .

Let
o

Dj be the symbolic vector of the generalized covariant derivative
with respect to the x′s. That is

(3.6)
o

DjB
α
i = Bα

ij + Γβ
α
γBβ

i Bγ
j − Γi

k
jB

α
k .
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Then the vector
o

DjB
α
i in Xn is normal to Xm and is given by

(3.7)
o

DjB
α
i = −

∑
x

x

ΩijN
x

α

where

(3.8)
x

Ωij = −(
o

DjB
α
i )

x

Nα.

And we know that the tensors
x

Ωij are the induced tensors on Xm of

the tensor Dβ

x

Nα in Xn. That is

(3.9)
x

Ωij = (Dβ

x

Nα)Bα
i Bβ

j .

The tensor
x

Ωij will be called the generalized coefficients of the second
fundamental form of Xm.

4. The generalized fundamental equations for Xm of GSXn

On an Xm of GSXn, the following identities hold ([2]):

(4.1)
o

DjB
α
i = −

∑
x

x

ΛijN
x

α where
x

Λij = (5β

x

Nα)Bα
i Bβ

j

(Generalized Gauss formulas for an Xm of GSXn)

(4.2)
o

DjN
x

α = (εxhim
x

Λmj)Bα
i +

∑
y

(εy

y

H
x

γBγ
j + 2δy

xXj)N
y

α.

(Generalized Weingarten equations on an Xm of GSXn)

In order to derive the generalized Gauss-Codazzi equations,we need
the following curvature tensors of GSXn and Xm:

(4.3) Rωµλ
ν = 2(∂[µΓ|λ|

ν
ω] + Γλ

α
[ωΓ|α|

ν
µ])

(4.4) Rijk
h = 2(∂[jΓ|k|

h
i] + Γk

p
[iΓ|p|

h
j])

The following notation will be used in further considerations:

(4.5)
y

H
x

γ = εy(5γN
x

α)
y

Nα



Some equations on the submanifolds of a manifold GSXn 287

Theorem 4.1. On an Xm of GSXn, the curvature tensors defined
by (4.3) and (4.4) satisfy the following identities:

Rijk
h = Rβγε

αBβ
i Bγ

j Bε
kBh

α

+ 2
∑

x

x

Λk[i(
x

Λj]mεxhhm − δh
j]Xx + kj]

hXx + kj]xXh)

(4.6)

(The generalized Gauss equations for an Xm of GSXn)

2
o

D[k

x

Λj]i = Rβγε
αBβ

k Bγ
j Bε

i

x

Nα + 6
x

Λi[kXj]

+ 2
∑

y

y

Λi[k(Bγ
j]εx

x

H
y

γ + Xj]ky
x + kj]

xXy)

(4.7)

(The generalized Codazzi equations for an Xm of GSXn)

Proof. In virtue of (3.1),(3.6),(4.3) and (4.4), we have

2
o

D[k

o

Dj]B
α
i = 2[∂[k(

o

Dj]B
α
i )− Γ[j

m
k](

o

DmBα
i )

− Γi
m

[k(
o

Dj]B
α
m) + Γβ

α
γ(

o

D[jB
β
|i|)B

γ
k]]

= −Rεγβ
αBβ

i Bγ
j Bε

k + Rkji
mBα

m + 4
∑

x

x

Λi[jXk]N
x

α

(4.8)

On the other hand, the equations (4.1) and (4.2) give

(4.9) 2
o

D[k

o

Dj]B
α
i = −2

∑
x

o

D[k(
x

Λj]iN
x

α)

= 2
∑

x

(
o

D[j

x

Λk]i)N
x

α + 2
∑

x

x

Λi[k

o

Dj])N
x

α

= 2
∑

x

(
o

D[j

x

Λk]i +
x

Λi[kXj])N
x

α

+ 2
∑
x,y

x

Λi[k(Bγ
j]εx

y

H
x

γ + Xj]kx
y + kj]

yXx)N
y

α

+ 2
∑

x

x

Λi[k(
x

Λj]mεxhpm − δp
j]Xx + kj]xXx + kj]

pXx)Bα
p
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By means of (4.8) and (4.9), we have

(4.10) Rkji
mBα

m = Rεγβ
αBε

kBβ
i Bγ

j + 2
∑

x

(
o

D[j

x

Λk]i + 3
x

Λi[kXj])N
x

α

+ 2
∑
x,y

x

Λi[k(Bγ
j]εx

y

H
x

γ + Xj]kx
y + kj]

yXx)N
y

α

+ 2
∑

x

x

Λi[k(
x

Λj]mεxhpm − δp
j]Xx + kj]xXx + kj]

pXx)Bα
p

Multiplying both sides of (4.10) by Bh
α, we have(4.6). Similarly, the

identity (4.7) follows by multiplying
z

Nα into both sides of (4.10). �

5. Parallelism. Paths

In this section we investigate parallelism and paths in Xn and GSXn.
Let C be any curve in Xn, given by

(5.1) yν = yν(t).

Definition 5.1. A vector field V ν is said to be parallel along C
with respect to a connection Γλ

ν
µ if it satisfies the following condition:

(5.2a)
dyα

dt
V [λDαV ν] = 0, V ν 6= ρ

dyα

dt
DαV ν , ρ 6= 0

or equivalently,
(5.2b)

V [λ(
dV ν]

dt
+ Γβ

ν]
αV β dyα

dt
) = 0, V ν 6= ρ

dyα

dt
DαV ν , ρ 6= 0.

In particular, the curves whose tangents are parallel along them-
selves are called the paths in Xn with respect to Γλ

ν
µ. A path with

respect to {λ
ν
µ} is called a geodesic of Xn.

Therefore, a curve C in Xn, given by (5.1), is a path if it satisfies
(5.3).

(5.3)
dy[λ

dt
(
d2yν]

dt2
+ Γα

ν]
β
dyα

dt

dyβ

dt
) = 0

As a consequence of (5.3), we have the following result:
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Theorem 5.2. Every path C in GSXn is a geodesic.

Theorem 5.3. A necessary and sufficient condition that parallelism
be the same along every curve in Xn with respect to two connections
one of which is a GS connection is that other connection Γ̄λ

ν
µ be given

by

(5.4) Γ̄λ
ν
µ = {λ

ν
µ}+ 2δν

λAµ for an arbitrary vector Aµ.

Proof. Suppose that parallelism is the same along every curve with
respect to two connections Γλ

ν
µ and Γ̄λ

ν
µ. Then Γ̄λ

ν
µ is given by

([3])

(5.5) Γ̄λ
ν
µ = Γλ

ν
µ + 2δν

λPµ for an arbitrary vector Pµ.

By means of (1.12) and (5.5) , we have (5.4). �

Remark 5.4. As an immediate consequence of Theorem 5.3, we
know that if parallelism is preserved along every curve in Xn with
respect to a GS connection Γλ

ν
µ, then the other connection Γ̄λ

ν
µ is

also a GS connection.
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