SOME EQUATIONS ON THE SUBMANIFOLDS OF A MANIFOLD $G S X_{n}$

Keumsook So

Abstract

On a generalized Riemannian manifold X_{n}, we may impose a particular geometric structure by the basic tensor field $g_{\lambda \mu}$ by means of a particular connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. For example, Einstein's manifold X_{n} is based on the Einstein's connection defined by the Einstein's equations. Many recurrent connections have been studied by many geometers, such as Datta and Singel, M. Matsumoto, and E.M. Patterson. The purpose of the present paper is to study some relations between a generalized semisymmetric g-recurrent manifold $G S X_{n}$ and its submanifold.

All considerations in this present paper deal with the general case $n \geq 2$ and all possible classes.

1. Introduction

Let X_{n} be a generalized n-dimensional Riemannian manifold referred to a real coordinate system y^{ν}, with coordinate transformation $y^{\nu} \rightarrow \bar{y}^{\nu}$, for which

$$
\begin{equation*}
\operatorname{Det}\left(\frac{\partial y}{\partial \bar{y}}\right) \neq 0 . \tag{1.1}
\end{equation*}
$$

The manifold X_{n} is endowed with a general real nonsymmetric tensor $g_{\lambda \mu}$, which may be split into a symmetric part $h_{\lambda \mu}$ and a skewsymmetric part $k_{\lambda \mu}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} \tag{1.2}
\end{equation*}
$$

Received June 30, 1998.
1991 Mathematics Subject Classification: 83E50, 83C05, 58A05.
Key words and phrases: g-recurrent manifold, Gauss equations, Cdazzi equations, parallelism.
where

$$
\begin{equation*}
\mathcal{G}=\operatorname{Det}\left(g_{\lambda \mu}\right) \neq 0, \quad \mathcal{H}=\operatorname{Det}\left(h_{\lambda \mu}\right) \neq 0 \tag{1.3}
\end{equation*}
$$

Hence, we may define a unique tensor $h^{\lambda \nu}$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} \tag{1.4}
\end{equation*}
$$

and X_{n} is assumed to be connected by a real nonsymmetric connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ with the following transformation rule:

$$
\begin{equation*}
\bar{\Gamma}_{\lambda}{ }^{\nu}{ }_{\mu}=\frac{\partial \bar{y}^{\nu}}{\partial y^{\alpha}}\left(\frac{\partial y^{\beta}}{\partial \bar{y}^{\lambda}} \frac{\partial y^{\gamma}}{\partial \bar{y}^{\mu}} \Gamma_{\beta}{ }^{\alpha}{ }_{\gamma}+\frac{\partial^{2} y^{\alpha}}{\partial \bar{y}^{\lambda} \partial \bar{y}^{\mu}}\right) . \tag{1.5}
\end{equation*}
$$

This connection may also be decomposed into its symmetric part $\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}$ and its skew-symmetric part $S_{\lambda \mu}{ }^{\nu}$, called the torsion tensor of $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$:

$$
\begin{equation*}
\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}=\Lambda_{\lambda}{ }_{\mu}{ }_{\mu}+S_{\lambda \mu}{ }^{\nu} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}=\Gamma_{(\lambda}{ }^{\nu}{ }_{\mu}, \quad S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda}{ }^{\nu}{ }_{\mu]} . \tag{1.7}
\end{equation*}
$$

Now, we will define a manifold $G S X_{n}$.
A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be semisymmetric if its torsion tensor is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=2 \delta_{[\lambda}^{\nu} X_{\mu]} \tag{1.8}
\end{equation*}
$$

for an arbitrary vector $X_{\mu} \neq 0$.
Hereafter we assume that X_{μ} is a non-null vector.
A particular differential geometric structure may be imposed on X_{n} by the tensor field $g_{\lambda \mu}$ by means of the connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ defined by the following g-recurrent condition:

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=-4 X_{\omega} g_{\lambda \mu} . \tag{1.9}
\end{equation*}
$$

Here, D_{ω} is the symbolic vector of the covariant derivative with respect to the connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$.

Definition 1.1. The connection $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$ which satisfies (1.8) is called g-recurrent connection.

Definition 1.2. A connection which is both semisymmetric and g-recurrent is called a $G S$-connection.

A generalized Riemannian manifold X_{n} on which the differential geometric structure is imposed by $g_{\lambda \mu}$ through a $G S$-connection is called an n-dimensional $G S$-manifold and will be denoted by $G S X_{n}$.

The following theorems have been proved $([3])^{1}$.
Theorem 1.3. If the system (1.8) admits a solution $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$, it must be of the form

$$
\begin{equation*}
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}+2 \delta_{[\lambda}^{\nu} X_{\mu]} . \tag{1.10}
\end{equation*}
$$

Theorem 1.4. If the system (1.9) admits a solution $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$, it must be of the form

$$
\begin{equation*}
\Gamma_{\lambda}^{\nu}{ }_{\mu}=\left\{\lambda_{\mu}^{\nu}\right\}-V_{\lambda \mu}^{\nu}-2 S_{(\lambda \mu)}^{\nu}+S_{\lambda \mu}{ }^{\nu} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{\lambda \mu}^{\nu}=2 X^{\nu} h_{\lambda \mu}-4 X_{(\lambda} \delta_{\mu)}^{\nu} . \tag{1.12}
\end{equation*}
$$

Theorem 1.5. If the system (1.9) admits a solution $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$ with its semi-symmetric torsion tensor, it must be of the form

$$
\begin{equation*}
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\left\{\lambda^{\nu}{ }_{\mu}\right\}+2 \delta_{\lambda}^{\nu} X_{\mu} . \tag{1.13}
\end{equation*}
$$

2. Preliminaries

[^0]This section is a brief collection of basic concepts, results, and notations needed in the present paper ${ }^{1}$.

Let X_{m} be a submanifold of X_{n} defined by a system of sufficiently differentiable equations

$$
\begin{equation*}
y^{\nu}=y^{\nu}\left(x^{1}, \ldots . ., x^{m}\right) \tag{2.1}
\end{equation*}
$$

where the matrix of derivatives

$$
B_{i}^{\nu}=\frac{\partial y^{\nu}}{\partial x^{i}}
$$

is of rank m. Hence at each point of X_{m}, there exists the first set $\left\{B_{i}^{\nu}, N_{x}^{\nu}\right\}$ of n linearly independent nonnull vectors.

The m vectors B_{i}^{ν} are tangential to X_{m} and the $n-m$ vectors ${ }_{x}^{N^{\nu}}$ are normal to X_{m} and mutually orthogonal. That is

$$
\begin{equation*}
h_{\alpha \beta} B_{i}^{\alpha}{ }_{x}^{N^{\beta}}=0, \quad h_{\alpha \beta}{\underset{x}{x}}_{N^{\alpha}}^{N^{\beta}}=0 \quad \text { for } x \neq y \tag{2.2}
\end{equation*}
$$

The process of determining the set $\left\{\begin{array}{l}N_{x}^{\nu}\end{array}\right\}$ is not unique unless $m=$ $n-1$.

However, we may choose their magnitudes such that

$$
\begin{equation*}
h_{\alpha \beta}{ }_{x} N_{x}^{\alpha}{ }_{x} N^{\beta}=\varepsilon_{x} \tag{2.3}
\end{equation*}
$$

where $\varepsilon_{x}= \pm 1$ according as the left-hand side of (2.3) is positive or negative.

[^1]
3. The induced connection on X_{m} of $G S X_{n}(m<n)$

If $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is a connection on X_{n}, the connection $\Gamma_{i}{ }_{j}$ defined by

$$
\begin{equation*}
\Gamma_{i}^{k}{ }_{j}=B_{\gamma}^{k}\left(B_{i j}^{\gamma}+\Gamma_{\alpha}{ }_{\beta} B_{i}^{\alpha} B_{j}^{\beta}\right), \quad B_{i j}^{\gamma}=\frac{\partial B_{i}^{\gamma}}{\partial x^{j}}=\frac{\partial^{2} y^{\gamma}}{\partial x^{i} \partial x^{j}} \tag{3.1}
\end{equation*}
$$

is called the induced connection of $\Gamma_{\lambda}{ }_{\mu}$ on X_{m} of X_{n}.
The following statements have been already proved([3]):
(a) The torsion tensor $S_{i j}{ }^{k}$ of the induced connection $\Gamma_{i}^{k}{ }_{j}$ is the induced tensor of the torsion tensor $S_{\lambda \mu}{ }^{\nu}$ of the connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. That is

$$
\begin{equation*}
S_{i j}^{k}=S_{\alpha \beta}^{\gamma} B_{i}^{\alpha} B_{j}^{\beta} B_{\gamma}^{k} . \tag{3.2}
\end{equation*}
$$

(b) The induced connection $\left\{{ }_{i}{ }_{j}\right\}$ of $\left\{\lambda^{\nu}{ }_{\mu}\right\}$ is the Christoffel symbol defined by $h_{i j}$. That is

$$
\begin{equation*}
\left\{i_{j}^{k}\right\}=\frac{1}{2} h^{k p}\left(\partial_{i} h_{j p}+\partial_{j} h_{i p}-\partial_{p} h_{i j}\right) \tag{3.3}
\end{equation*}
$$

(c) On an X_{m} of $G S X_{n}$, the induced connection $\Gamma_{i}^{k}{ }_{j}$ is of the form

$$
\begin{equation*}
\Gamma_{i}^{k}{ }_{j}=\left\{{ }_{i}{ }_{j}{ }_{j}\right\}+2 \delta_{i}^{k} X_{j} . \tag{3.4}
\end{equation*}
$$

Here $\left\{{ }_{i}{ }_{j}\right\}$ are the induced Christoffel symbols defined by (3.3) and X_{j} is the induced vector on X_{m} of a vector $\quad X_{\mu} \neq 0$ determining $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$.
(d) On an X_{m} of $G S X_{n}$, a necessary and sufficient condition for the induced connection $\Gamma_{i}^{k}{ }_{j}$ to be g-recurrent is

$$
\begin{equation*}
\left.\sum_{x} k_{x[i} \stackrel{x}{\Lambda} j\right] k=0, \quad \text { where } \quad \stackrel{x}{\Lambda_{i j}}=\left(\nabla{ }_{\beta} \stackrel{x}{N}_{\alpha}\right) B_{i}^{\alpha} B_{j}^{\beta} . \tag{3.5}
\end{equation*}
$$

Let $\stackrel{o}{D}_{j}$ be the symbolic vector of the generalized covariant derivative with respect to the $x^{\prime} s$. That is

$$
\begin{equation*}
\stackrel{o}{D}_{j} B_{i}^{\alpha}=B_{i j}^{\alpha}+\Gamma_{\beta}^{\alpha}{ }_{\gamma} B_{i}^{\beta} B_{j}^{\gamma}-\Gamma_{i}^{k}{ }_{j} B_{k}^{\alpha} . \tag{3.6}
\end{equation*}
$$

Then the vector $\stackrel{o}{D}_{j} B_{i}^{\alpha}$ in X_{n} is normal to X_{m} and is given by

$$
\begin{equation*}
\stackrel{o}{D}_{j} B_{i}^{\alpha}=-\sum_{x} \stackrel{x}{\Omega}_{i j} N_{x}^{\alpha} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\stackrel{x}{\Omega}_{i j}=-\left(\stackrel{o}{D}_{j} B_{i}^{\alpha}\right) \stackrel{x}{N}_{\alpha} . \tag{3.8}
\end{equation*}
$$

And we know that the tensors $\stackrel{x}{\Omega}_{i j}$ are the induced tensors on X_{m} of the tensor $D_{\beta} \stackrel{x}{N}$ in X_{n}. That is

$$
\begin{equation*}
\stackrel{x}{\Omega}_{i j}=\left(D_{\beta} \stackrel{x}{N}_{\alpha}\right) B_{i}^{\alpha} B_{j}^{\beta} . \tag{3.9}
\end{equation*}
$$

The tensor $\stackrel{x}{\Omega}_{i j}$ will be called the generalized coefficients of the second fundamental form of X_{m}.
4. The generalized fundamental equations for X_{m} of $G S X_{n}$

On an X_{m} of $G S X_{n}$, the following identities hold ([2]):

$$
\begin{equation*}
\stackrel{o}{D}_{j} B_{i}^{\alpha}=-\sum_{x} \stackrel{x}{\Lambda_{i j}} N_{x}^{\alpha} \quad \text { where } \quad \stackrel{x}{\Lambda}_{i j}=\left(\nabla{ }_{\beta} \stackrel{x}{N}{ }_{\alpha}\right) B_{i}^{\alpha} B_{j}^{\beta} \tag{4.1}
\end{equation*}
$$

(Generalized Gauss formulas for an X_{m} of $G S X_{n}$)

$$
\begin{equation*}
\stackrel{o}{D}_{j}{ }_{x}^{N^{\alpha}}=\left(\varepsilon_{x} h^{i m} \stackrel{x}{\Lambda}_{m j}\right) B_{i}^{\alpha}+\sum_{y}\left(\varepsilon_{y} \stackrel{y}{H}_{x} B_{j}^{\gamma}+2 \delta_{x}^{y} X_{j}\right) N_{y}^{\alpha} . \tag{4.2}
\end{equation*}
$$

(Generalized Weingarten equations on an X_{m} of $G S X_{n}$)
In order to derive the generalized Gauss-Codazzi equations, we need the following curvature tensors of $G S X_{n}$ and X_{m} :

$$
\begin{gather*}
\left.R_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu} \Gamma_{|\lambda|}{ }^{\nu} \omega\right]+\Gamma_{\lambda}^{\alpha}{ }_{[\omega} \Gamma_{|\alpha| \mu]}{ }^{\nu}\right) \tag{4.3}\\
R_{i j k}{ }^{h}=2\left(\partial_{[j} \Gamma_{|k|}{ }^{h}{ }_{i]}+\Gamma_{k}{ }^{p}{ }_{[i} \Gamma_{|p|}{ }^{h}{ }_{j]}\right) \tag{4.4}
\end{gather*}
$$

The following notation will be used in further considerations:

$$
\begin{equation*}
\stackrel{y}{H}_{x}=\varepsilon_{y}\left(\nabla \gamma{ }_{x}{ }_{x}^{\alpha}\right) \stackrel{y}{N_{\alpha}} \tag{4.5}
\end{equation*}
$$

Theorem 4.1. On an X_{m} of $G S X_{n}$, the curvature tensors defined by (4.3) and (4.4) satisfy the following identities:

$$
\begin{align*}
R_{i j k}{ }^{h}= & R_{\beta \gamma \epsilon}{ }^{\alpha} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\epsilon} B_{\alpha}^{h} \tag{4.6}\\
& +2 \sum_{x}{ }_{x}^{x} \Lambda_{k[i}^{x}\left(\Lambda_{j] m} \varepsilon_{x} h^{h m}-\delta_{j]}^{h} X_{x}+k_{j]}^{h} X_{x}+k_{j] x} X^{h}\right)
\end{align*}
$$

(The generalized Gauss equations for an X_{m} of $G S X_{n}$)

$$
\begin{align*}
& 2 \stackrel{o}{D}_{[k} \stackrel{x}{\Lambda}_{j] i}=R_{\beta \gamma \epsilon}{ }^{\alpha} B_{k}^{\beta} B_{j}^{\gamma} B_{i}^{\epsilon} \stackrel{x}{N}_{\alpha}+6 \stackrel{x}{\Lambda}_{i[k} X_{j]} \tag{4.7}\\
&+2 \sum_{y} \stackrel{y}{\Lambda}_{i[k}\left(B_{j]}^{\gamma} \varepsilon_{x} \stackrel{x}{y}_{\gamma}^{\gamma}+X_{j]} k_{y}^{x}+k_{j]}^{x} X_{y}\right)
\end{align*}
$$

(The generalized Codazzi equations for an X_{m} of $G S X_{n}$)
Proof. In virtue of (3.1),(3.6),(4.3) and (4.4), we have

$$
\begin{align*}
2 \stackrel{o}{D}_{[k} \stackrel{o}{D}_{j]} B_{i}^{\alpha}= & 2\left[\partial_{[k}\left(\stackrel{o}{D}_{j]} B_{i}^{\alpha}\right)-\Gamma_{[j}^{m}{ }_{k]}\left(\stackrel{o}{D}_{m} B_{i}^{\alpha}\right)\right. \tag{4.8}\\
& \left.\quad-\Gamma_{i}^{m}{ }_{[k}\left(\stackrel{o}{D}_{j]} B_{m}^{\alpha}\right)+\Gamma_{\beta}^{\alpha}{ }_{\gamma}\left(\stackrel{o}{D}_{[j} B_{|i|}^{\beta}\right) B_{k]}^{\gamma}\right] \\
= & -R_{\epsilon \gamma \beta}{ }^{\alpha} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\epsilon}+R_{k j i}{ }^{m} B_{m}^{\alpha}+4 \sum_{x} \Lambda_{i[j} X_{k]} N_{x}^{\alpha}
\end{align*}
$$

On the other hand, the equations (4.1) and (4.2) give

$$
\begin{align*}
& 2 \stackrel{o}{D}_{[k} \stackrel{o}{D}_{j]} B_{i}^{\alpha}=-2 \sum_{x} \stackrel{o}{D}_{[k}\left(\stackrel{x}{\Lambda}_{j] i} N_{x}^{\alpha}\right) \tag{4.9}\\
& \left.=2 \sum_{x}\left(\stackrel{o}{D}_{[j} \stackrel{x}{\Lambda}_{k] i}\right) N_{x}^{\alpha}+2 \sum_{x} \stackrel{x}{\Lambda}_{i[k} \stackrel{o}{D}_{j]}\right) N_{x}^{\alpha} \\
& =2 \sum_{x}\left(\stackrel{o}{D}_{[j}{ }^{x} \Lambda_{k] i}+\stackrel{x}{\Lambda}_{i[k} X_{j]}\right) N_{x}^{\alpha} \\
& +2 \sum_{x, y}{ }_{\Lambda}^{x} \Lambda_{i[k}\left(B_{j]}^{\gamma} \varepsilon_{x} \stackrel{y}{x}_{\gamma}+X_{j]} k_{x}{ }^{y}+k_{j]}^{y} X_{x}\right){\underset{y}{N}}_{N^{\alpha}} \\
& +2 \sum_{x}{ }^{x} \Lambda_{i[k}\left(\stackrel{x}{\Lambda}_{j] m} \varepsilon_{x} h^{p m}-\delta_{j]}^{p} X_{x}+k_{j] x} X_{x}+k_{j]}^{p} X_{x}\right) B_{p}^{\alpha}
\end{align*}
$$

By means of (4.8) and (4.9), we have

$$
\begin{align*}
& R_{k j i}^{m} B_{m}^{\alpha}=R_{\epsilon \gamma \beta}{ }^{\alpha} B_{k}^{\epsilon} B_{i}^{\beta} B_{j}^{\gamma}+2 \sum_{x}\left(\stackrel{o}{D}_{[j} \Lambda_{k] i}+3 \stackrel{x}{\left.\Lambda_{i[k} X_{j]}\right)}\right)_{x}^{\alpha} \tag{4.10}\\
& \quad+2 \sum_{x, y}{ }^{x} \Lambda_{i[k}\left(B_{j]}^{\gamma} \varepsilon_{x} \stackrel{y}{x}_{x}^{y}+X_{j]} k_{x}^{y}+k_{j]}^{y} X_{x}\right) N_{y}^{\alpha} \\
& \quad+2 \sum_{x}{ }_{x}^{x}{ }_{i[k}\left(\stackrel{x}{\Lambda} \Lambda_{j] m} \varepsilon_{x} h^{p m}-\delta_{j]}^{p} X_{x}+k_{j] x} X_{x}+k_{j]}^{p} X_{x}\right) B_{p}^{\alpha}
\end{align*}
$$

Multiplying both sides of (4.10) by B_{α}^{h}, we have(4.6). Similarly, the identity (4.7) follows by multiplying $\stackrel{z}{N}_{\alpha}$ into both sides of (4.10).

5. Parallelism. Paths

In this section we investigate parallelism and paths in X_{n} and $G S X_{n}$. Let C be any curve in X_{n}, given by

$$
\begin{equation*}
y^{\nu}=y^{\nu}(t) \tag{5.1}
\end{equation*}
$$

Definition 5.1. A vector field V^{ν} is said to be parallel along C with respect to a connection $\Gamma_{\lambda}{ }_{\mu}$ if it satisfies the following condition:

$$
\begin{equation*}
\frac{d y^{\alpha}}{d t} V^{[\lambda} D_{\alpha} V^{\nu]}=0, \quad V^{\nu} \neq \rho \frac{d y^{\alpha}}{d t} D_{\alpha} V^{\nu}, \quad \rho \neq 0 \tag{5.2a}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
V^{[\lambda}\left(\frac{d V^{\nu]}}{d t}+\Gamma_{\beta}{ }_{\beta}{ }_{\alpha} V^{\beta} \frac{d y^{\alpha}}{d t}\right)=0, \quad V^{\nu} \neq \rho \frac{d y^{\alpha}}{d t} D_{\alpha} V^{\nu}, \quad \rho \neq 0 . \tag{5.2b}
\end{equation*}
$$

In particular, the curves whose tangents are parallel along themselves are called the paths in X_{n} with respect to $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. A path with respect to $\left\{\lambda^{\nu}{ }_{\mu}\right\}$ is called a geodesic of X_{n}.

Therefore, a curve C in X_{n}, given by (5.1), is a path if it satisfies (5.3).

$$
\begin{equation*}
\frac{d y^{[\lambda}}{d t}\left(\frac{d^{2} y^{\nu]}}{d t^{2}}+\Gamma_{\alpha}^{\nu]}{ }_{\beta} \frac{d y^{\alpha}}{d t} \frac{d y^{\beta}}{d t}\right)=0 \tag{5.3}
\end{equation*}
$$

As a consequence of (5.3), we have the following result:

Theorem 5.2. Every path C in $G S X_{n}$ is a geodesic.
Theorem 5.3. A necessary and sufficient condition that parallelism be the same along every curve in X_{n} with respect to two connections one of which is a $G S$ connection is that other connection $\bar{\Gamma}_{\lambda}{ }_{\mu}{ }_{\mu}$ be given by

$$
\begin{equation*}
\bar{\Gamma}_{\lambda}{ }_{\mu}{ }_{\mu}=\left\{\lambda^{\nu}{ }_{\mu}\right\}+2 \delta_{\lambda}^{\nu} A_{\mu} \quad \text { for an arbitrary vector } A_{\mu} . \tag{5.4}
\end{equation*}
$$

Proof. Suppose that parallelism is the same along every curve with respect to two connections $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$ and $\bar{\Gamma}_{\lambda}{ }^{\nu}{ }_{\mu}$. Then $\bar{\Gamma}_{\lambda}{ }^{\nu}{ }_{\mu}$ is given by ([3])

$$
\begin{equation*}
\bar{\Gamma}_{\lambda}{ }_{\mu}=\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}+2 \delta_{\lambda}^{\nu} P_{\mu} \quad \text { for an arbitrary vector } P_{\mu} \tag{5.5}
\end{equation*}
$$

By means of (1.12) and (5.5), we have (5.4).

Remark 5.4. As an immediate consequence of Theorem 5.3, we know that if parallelism is preserved along every curve in X_{n} with respect to a $G S$ connection $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$, then the other connection $\bar{\Gamma}_{\lambda}{ }^{\nu}{ }_{\mu}$ is also a $G S$ connection.

References

[1] Chung, K.T. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 867-873.
[2] Chung, K.T., So, K.S. and Lee, J.W., International Journal of Theoretical Physics 28 (1989), 851-866.
[3] Chung, K.T. and So, K.S., International Journal of Theoretical Physics 30 (1991), 1381-1401.
[4] Hlavaty, V., Geometry of Einstein's Unified Field Theory, Noordhoop Ltd, 1957.
[5] Han, K.H., So, K.S. and Chung, K.T., A Study on Some Identities in the g-Recurrent Manifold X_{n}, Journal of NSRI 26 (1992), 41-50.

Department of Mathematics
Hallym University
Chuncheon, 200-702, Korea

[^0]: ${ }^{1}$ Numbers in brackets refer to the references at the end of the paper.

[^1]: ${ }^{1}$ In our further considerations in the present paper, we use the following types of indices $(m<n)$: (1) Lower Greek indices $\alpha, \beta, \gamma, \ldots$, running from 1 to n and used for the holonomic components of tensors in X_{n}. (2) Capital Latin indices A, B, C, \ldots, running from 1 to n and used for the C-nonholonomic components of tensors in X_{n} at points of X_{m}. (3) Lower Latin indices i, j, k, \ldots, with the exception of x, y, and z, running from 1 to m. (4) Lower Latin indices x, y, z, running from $m+1$ to n. The summation convention is operative with respect to each set of the above indices within their range, with exception of x, y, z.

