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A UNIFORM ESTIMATE ON CONVOLUTION

OPERATORS WITH THE ARCLENGTH MEASURE ON

NONDEGENERATE SPACE CURVES

Youngwoo Choi

Abstract. The Lp-Lq mapping properties of convolution operators
with measures supported on curves in R3 have been studied by many
authors. Oberlin provided examples of nondegenerate compact space
curves whose arclength measures enjoy Lp−improving properties.
This was later extended by Pan who showed that such properties
hold for all nondegenerate compact space curves. In this paper, we
will prove that the operator norm of the convolution operator with
the arclength measure supported on a nondegenerate compact space
curve depends only on certain quantities of the underlying curve.

1. Introduction

Let Γ : I → R3 be a (sufficiently) smooth curve and consider the
(euclidean) arclength measure µΓ on R3 associated with Γ. The mapping
properties of the convolution operator TµΓ

defined by

TµΓ
f(x) =

∫
R3

f(x− y) dµΓ(y) =

∫
I

f
(
x− Γ(t)

)
dt(1)

have been studied by many authors.

Oberlin [1] showed that TµΓ
maps L

3
2 (R3) boundedly into L2 (R3) in

case Γ(t) = (t, t2, t3), t ∈ [0, 1]. Later Pan [2] extended this result to
nondegenerate compact curves in R3. Namely, he proved :
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Theorem 1.1 (Pan [2]). Let Γ be a compact C3 curve which has
nonzero curvature and torsion at every point. Then, there exists a con-
stant C such that ∥∥TµΓ

f
∥∥

L2(R3)
≤ C ‖f‖

L
3
2 (R3)

for any f ∈ L 3
2 (R3).

The main purpose of this paper is to obtain a uniform estimate on
the operator norm ‖TµΓ

‖
L

3
2→L2

in terms of certain quantities related to

Γ. To be more precise, we will prove :

Theorem 1.2. Let Γ : I → R3 be a compact C4 curve and assume
that

4∑
j=1

∣∣Γ(j)(t)
∣∣ ≤ M(2)

and ∣∣∣∣∣∣det

 Γ′(t)
Γ′′(t)
Γ′′′(t)

∣∣∣∣∣∣ ≥ δ > 0(3)

for t ∈ I. Then, there exists a constant C depending only on δ,M and
|I| such that ∥∥TµΓ

∗ f
∥∥

L2(R3)
≤ C ‖f‖

L
3
2 (R3)

for any f ∈ L 3
2 (R3).

The proof will be based on a T ∗T argument by Oberlin [1], which was
later adapted by Pan [2]. The author would like to take this opportunity
to express his sincere gratitude to Stephen Wainger and Andreas Seeger
for bringing this problem into his mind. Also, he would like to thank
Jong-Guk Bak for stimulating conversations.
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2. Proof of Theorem 1.2

The inequalities (2) and (3) imply

M2
∣∣Γ′(t)∣∣ ≥ ∣∣Γ′(t)∣∣∣∣Γ′′(t)∣∣∣∣Γ′′′(t)∣∣

≥

∣∣∣∣∣∣det

 Γ′(t)
Γ′′(t)
Γ′′′(t)

∣∣∣∣∣∣ ≥ δ,

and we obtain ∣∣Γ′(t)∣∣ ≥ δ

M2

for t ∈ I. Writing Γ(t) =
(
γ1(t), γ2(t), γ3(t)

)
, we have∣∣γ′1(t)∣∣+ ∣∣γ′2(t)∣∣+ ∣∣γ′3(t)∣∣ ≥ ∣∣Γ′(t)∣∣ ≥ δ

M2
.(4)

Estimates (2) and (4) allow us to divide the interval I into at most

N =
[

6M3|I|
δ

]
+ 1 disjoint subintervals on each of which∣∣γ′k(t)∣∣ ≥ δ

6M2
,(5)

for some fixed k = 1, 2, 3. So, we may assume (5) holds throughout on
the interval I. Furthermore, we can assume k = 1. We make a change
of variable s = γ1(t) in the integral defining TµΓ

f(x) and get∣∣TµΓ
f(x)

∣∣ ≤ 6M2

δ

∫
γ1(I)

|f |
(
x− Γ̃(s)

)
ds

where

Γ̃(s) =
(
s, γ2

(
γ−1

1 (s)
)
, γ2

(
γ−1

1 (s)
) )

≡
(
s, γ̃1(s), γ̃2(s)

)
≡
(
s, γ̃(s)

)
for s ∈ γ1(I). By chain rule, we get

4∑
j=2

∣∣γ̃(j)(s)
∣∣ ≤ C1(δ,M).

Moreover, we have∣∣∣∣det

[
γ̃′′(s)
γ̃′′′(s)

]∣∣∣∣ =

∣∣∣∣∣∣ 1

γ′1(s)
6

det

 Γ′
(
γ−1

1 (s)
)

Γ′′
(
γ−1

1 (s)
)

Γ′′′
(
γ−1

1 (s)
)
∣∣∣∣∣∣ ≥

(
δ

M2

)6

δ.
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Therefore it suffices to prove the following lemma :

Lemma 2.1. Suppose γ1, γ2 ∈ C4(I) and let γ(t) =
(
γ1(t), γ2(t)

)
for

t ∈ I. Suppose

4∑
j=2

∣∣γ(j)(t)
∣∣ ≤ M(6)

∣∣∣∣det

[
γ

′′
(t)

γ
′′′
(t)

]∣∣∣∣ ≥ δ > 0(7)

for t ∈ I. Define the measure ν on R3 by∫
R3

f dν =

∫
I

f
(
t, γ(t)

)
dt

for f ∈ C∞
0 (R3) . Then, there exists a constant C depending only on

M, δ and |I| such that∥∥ν ∗ f∥∥
L2(R3)

≤ C ‖f‖
L

3
2 (R3)

whenever f ∈ L 3
2 (R3).

Proof of Lemma 2.1. We state a lemma by Pan [2].

Lemma 2.2. Let ψ : J → R2 be a compact C2 curve. Let A1, A2

be arcs on S1 ⊂ R2 and S1, S2 be corresponding sectors in the plane.
Assume that

1. l (A1) ≤ π
4

;
2. l (A2) ≤ π

4
;

3. d (A1 ∪ −A1, A2 ∪ −A2) = d0 > 0.

Suppose for every t ∈ J ,

1. ψ′(t) ∈ S1 ;
2. ψ′′(t) ∈ S2 ;
3. |ψ′(t)| ≥ δ ; and
4. δ ≤ |ψ′′(t)| ≤M

for some positive constants δ and M. Also, we assume |J | ≤ M. Then,
there is a constant C (d0, δ,M) such that∥∥σ ∗ f∥∥

L3(R2)
≤ C (d0, δ,M) ‖f‖

L
3
2 (R2)

,
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where σ is the measure on R2 given by∫
R2

f dσ =

∫
J

f
(
ψ(t)

)
dt

for f ∈ C∞
0 (R2) .

Proof of Lemma 2.2. We refer to [2].

We observe that

δ ≤
∣∣∣∣det

[
γ′′(t)
γ′′′(t)

]∣∣∣∣
=

∣∣γ′′(t)∣∣ ∣∣γ′′′(t)∣∣ ∣∣∣∣∣det

[
γ′′(t)
|γ′′(t)|
γ′′′(t)
|γ′′′(t)|

]∣∣∣∣∣ ≤ M
∣∣γ′′(t)∣∣,

which means ∣∣γ′′(t)∣∣ ≥ δ

M
.

Similarly, we get ∣∣γ′′′(t)∣∣ ≥ δ

M
.

Let

h1 = inf

{∣∣∣∣ γ′′(t)|γ′′(t)|
− γ′′′(t)

|γ′′′(t)|

∣∣∣∣ : t ∈ I
}

and

h2 = inf

{∣∣∣∣ γ′′(t)|γ′′(t)|
+

γ′′′(t)

|γ′′′(t)|

∣∣∣∣ : t ∈ I
}
.

From ∣∣∣∣ γ′′(t)|γ′′(t)|
± γ′′′(t)

|γ′′′(t)|

∣∣∣∣2 = 2 ± 2
γ′′(t)

|γ′′(t)|
· γ

′′′(t)

|γ′′′(t)|

≥ 2 − 2

(
1−

∣∣∣∣ γ′′(t)|γ′′(t)|
× γ′′′(t)

|γ′′′(t)|

∣∣∣∣2
) 1

2

,

we obtain

h1 ≥

√
2− 2

√
1− δ2

M4
≥ δ

M2
(8)
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and

h2 ≥

√
2− 2

√
1− δ2

M4
≥ δ

M2
.(9)

Set h = min
(
h1, h2,

π
4

)
. Since∣∣∣∣ ddt γ′′(t)

|γ′′(t)|

∣∣∣∣ ≤ 2M

δ2
;∣∣∣∣ ddt γ′′′(t)

|γ′′′(t)|

∣∣∣∣ ≤ 2M

δ2
;∣∣γ(3)(t)

∣∣ ≤ M ;∣∣γ(4)(t)
∣∣ ≤ M,

we can decompose the interval I into at most N(δ,M) disjoint subin-
tervals, I =

⋃n
k=1, n ≤ N such that for 1 ≤ k ≤ n and t, t′ ∈ Ik, the

following hold : ∣∣∣∣ γ′′(t)|γ′′(t)|
− γ′′(t′)

|γ′′(t′)|

∣∣∣∣ ≤ h

2
;(10) ∣∣∣∣ γ′′′(t)|γ′′′(t)|

− γ′′′(t′)

|γ′′′(t′)|

∣∣∣∣ ≤ h

2
;(11) ∣∣γ′′(t)− γ′′(t′)

∣∣ ≤ δ

4M
;(12) ∣∣γ′′′(t)− γ′′′(t′)

∣∣ ≤ δ

4M
.(13)

For J ⊂ I, let

A1(J) =

{
γ′′(t)

|γ′′(t)|
: t ∈ J

}
,

A2(J) =

{
γ′′′(t)

|γ′′′(t)|
: t ∈ J

}
,

and S1(J), S2(J) be the corresponding sectors. Let νk be the measures
defined by ∫

R3

f dνk =

∫
Ik

f
(
t, γ(t)

)
dt.

We have ν =
∑n

k=1 νk. Thus, it suffices to prove∥∥νk ∗ f
∥∥

L2(R3)
≤ C ‖f‖

L
3
2 (R3)
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for k = 1, · · · , n, with the constant C depending only on δ,M. Let J be
any of Ik, k = 1, · · · , n. Then, we have∣∣∣∣ γ′′(t)|γ′′(t)|

− γ′′′(t′)

|γ′′′(t′)|

∣∣∣∣ ≥
∣∣∣∣ γ′′(t′)|γ′′(t′)|

− γ′′′(t′)

|γ′′′(t′)|

∣∣∣∣
−
∣∣∣∣ γ′′(t)|γ′′(t)|

− γ′′(t)

|γ′′(t)|

∣∣∣∣ ≥ h

2
,∣∣∣∣ γ′′(t)|γ′′(t)|

+
γ′′′(t′)

|γ′′′(t′)|

∣∣∣∣ ≥
∣∣∣∣ γ′′(t′)|γ′′(t′)|

+
γ′′′(t′)

|γ′′′(t′)|

∣∣∣∣
−
∣∣∣∣ γ′′(t)|γ′′(t)|

− γ′′(t)

|γ′′(t)|

∣∣∣∣ ≥ h

2
,

for t, t′ ∈ J. In other words, we have :

d
(
A1(J) ∪ −A1(J), A2(J) ∪ −A2(J)

)
≥ h

2
.(14)

On the other hand we have :

l
(
A1(J)

)
≤ π

4
,(15)

l
(
A2(J)

)
≤ π

4
.(16)

Write J = [a, b]. For 0 ≤ u ≤ b − a, let J(u) = [a, b − u] ; for
a− b ≤ u < 0, let J(u) = [a− u, b]. Let

γ̃1,u(t) =
1

u

(
γ1(t+ u)− γ1(t)

)
,

γ̃2,u(t) =
1

u
(γ2(t+ u)− γ2(t)) ,

and

γ̃u(t) =
(
γ̃1,u(t), γ̃2,u(t)

)
,

for |u| ≤ b− a and t ∈ J(u). We will show that there exists a constant
C which is independent of u such that

‖σu ∗ g‖L3(R2) ≤ C ‖g‖
L

3
2 (R2)

,(17)

for each g ∈ L
3
2 (R2) and |u| ≤ b − a, where σu is the measure on R2

defined ∫
R2

g dσu =

∫
J(u)

g
(
γ̃u(t)

)
dt.
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To prove (17), we use Lemma 2.2. Fix u, |u| ≤ b− a, and let t ∈ J(u).
Then, there exist τ1, τ2 ∈ Ik such that γ̃′u(t) =

(
γ′′1 (τ1), γ

′′
2 (τ2)

)
. Thus,∣∣γ̃′u(t)∣∣ ≥ ∣∣γ′′(τ1)∣∣− ∣∣γ′′2 (τ2)− γ′′2 (τ1)

∣∣ ≥ δ

2
.

So, we obtain ∣∣γ̃′u(t)∣∣ ≥ δ

2
.(18)

Similarly, we obtain ∣∣γ̃′′u(t)
∣∣ ≥ δ

2
.(19)

By mean value theorem, there is τ3 ∈ Ik such that

γ̃′1,u(t) γ
′′
2 (τ3) = γ̃′2,u(t) γ

′′
1 (τ3) .(20)

From (20), we get γ̃′u(t) ∈ A1 (Ik) . Similar argument shows γ̃u
′′(t) ∈

A2 (Ik). Thus, by Lemma 2.2 we see (17) holds uniformly in u.
A well-known T ∗T argument [1] finishes the proof of Lemma 2.1.

Remark 2.3. As is well-known, the type set for T , Tf = µ ∗ f, is the
trapezoid T with vertices at (0, 0), (1, 1),

(
2
3
, 1

2

)
and

(
1
2
, 1

3

)
. According

to duality and Riesz-Thorin convexity [4], for any p, q with
(

1
p
, 1

q

)
∈ T ,

there exists a constant C depending only on δ,M, |I|, p and q.
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