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ON NONVANISHING SUM OF
INTEGRAL SQUARES OF Q(

√
5)

Byeong Moon Kim

Abstract. In this paper, we will determine all the totally positive

integers which cannot be represented by the sum of k nonvanishing

integral squares when k ≥ 4.

1. Introduction

In 1770, Lagrange proved every positive integer is represented by the
sum of four squares. In 1911, Dubouis[1] determined all the positive
integers which cannot be represented by the sum of k nonvanishing
squares when k ≥ 4. If k = 4, they are 1, 3, 5, 9, 11, 17, 29, 41, 2 · 4n,
6 · 4n, 10 · 4n and 14 · 4n where n ∈ Z+ ∪{0}. If k = 5, they are 1, 2, 3,
4, 6, 7, 9, 10, 12, 15, 18 and 33. If k ≥ 6, they are 1, 2, . . . , k−1, k+1,
k + 2, k + 4, k + 5, k + 7, k + 10 and k + 13. In 1941, Maass[3] proved
every totally positive integers of Q(

√
5) is represented by the sum of

three squares. Four years later, Siegel[4] proved Q and Q(
√

5) are the
only totally real number fields all of whose totally positive integers
are represented by the sum of (arbitrary number of) squares. In this
paper, we will determine all the totally positive integers which cannot
be represented by the sum of nonvanishing k squares when k ≥ 4.

2. Main result

Two algebraic integers a, b of number field K is said to be equivalent
if a = bu2 for some unit u of K.
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Lemma 1. Every totally positive integer of Q(
√

5) is equivalent to

a + bε2 for some a, b ∈ Z+ ∪ {0} where ε = 1+
√

5
2 .

proof. Let S = {alε
2l+al+1ε

2l+2+. . .+akε2k | l, k ∈ Z, l ≤ k and al,
al+1,. . . ,ak ∈ Z+ ∪ {0}}. Then, trivially 1∈ S. Suppose α = a + b

√
5

be a totally positive integer of Q(
√

5) with minimal trace among the
totally positive integers of Q(

√
5) which do not belong to S. If α − 1

is totally positive, trivially α ∈ S. If α − 1 is not totally positive,
a > 1 and b > 0. So b ≥ 1

2 and a < b
√

5 + 1 ≤ b(
√

5 + 2) ≤ 5b.

So tr(αε−2)=tr( 3a−5b+(a+3b)
√

5
2 ) = 3a − 5b < 2a=tr(α). So αε−2 ∈ S

and thus α ∈ S, which is a contradiction. So every totally positive
integer belongs to S. Let α ∈ S. We choose a representation α =
alε

2l + al+1ε
2l+2 + . . . + akε2k such that k − l is minimal. If k − l ≥ 2

and al ≥ ak, then

α = (al − ak)ε2l + (al+1 + 2ak)ε2l+2 + (al+2 + ak)ε2l+4

+ . . . + (ak−2 + ak)ε2k−4 + (ak−1 + 2ak)ε2k−2

because

ε2k = 2ε2k−2 + ε2k−4 + ε2k−6 + . . . + ε2l+4 + 2ε2l+2 − ε2l.

This is a contradiction. A similar contradiction can be deduced if
k − l ≥ 2 and al ≤ ak, contradiction holds again. So k − l ≤ 1. This
proves the Lemma. �

Remark. The author[2] proved that if D = n2−1 and D is square-
free, every totally positive integer of Q(

√
D) is equivalent to a + bε for

some a, b ∈ Z∪ {0} where ε = n +
√

D. His method of proof is similar
to the above.

Theorem 1. Let k ≥ 4, and α be a totally positive integer of
Q(
√

5). Then, α cannot be represented by the sum of nonvanishing k
squares if and only if α is equivalent to a+bε2 for some a, b ∈ Z+∪{0}
with a+ b < k or α is equivalent to one of 1+5ε2 and 5+ ε2 and k = 4.
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Proof. Let Sk be the set of all elements which is represented by the
sum of nonvanishing k squares. We will prove that if α = p + q

√
5(p,

q ∈ Q) is totally positive, α /∈ Sk for all k ≥ p− q + 1. Let β = r+s
√

5
be a totally positive integer of Q(

√
5) such that r−s is minimal among

the integers of Q(
√

5) such that β ∈ Sk for some k ≥ r − s + 1. Let

α = α2
1 + α2

2 + . . . + α2
k

where α1α2 . . . αk 6= 0. If α2
1 = t + u

√
5, t − u ≥ 1. So β − α2

1 =
(r− t)+ (s−u)

√
5 and r− t− (s−u) = r− s− (t−u) ≤ r− s−1. But

β − α2
1 ∈ Sk−1 and k − 1 ≥ r − s− 1, which is a contradiction. So we

proved our assertion. Thus if a + b < k, as a + bε2 = (a + 3b
2 ) + b

2

√
5,

a+bε2 /∈ Sk. We can easily see that 1+5ε2 and 5+ε2 are not represented
by the sum of nonvanishing k squares.

Conversely if α = a + bε2 ∈ S4 and a ≥ 9, by Maass’ Theorem
α−9 = (a−9)+bε2 is represented by the sum of three integral squares
of Q(

√
5). If α−9 = 0, α = 9 = ε2 +(ε−1)2 +(

√
5)2 +12. If α−9 = α2

1

for α1 6= 0, α = α2
1 + 9 = α2

1 + 22 + 22 + 12. If α − 9 = α2
1 + α2

2 for
α1α2 6= 0, α = α2

1+α2
2+9 = α2

1+α2
2+22+(

√
5)2. If α−9 = α2

1+α2
2+α2

3

for α1α2α3 6= 0, α = α2
1 + α2

2 + α2
3 + 9 = α2

1 + α2
2 + α2

3 + 32. So α ∈ S4.
Similarly we can prove if α = a + bε2 ∈ S4 and b ≥ 9, α ∈ S4. And
by brute force computation, we can show that if α = a + bε2, a, b < 9,
a + b ≥ 4, α 6= 1 + 5ε2 and α 6= 5 + ε2, α ∈ S4. So the Theorem is true
for k = 4. Let α = p + qε2 /∈ Sl for some 4 < l ≤ p + q. Then, at least
one of α − 1 and α − ε2 is totally positive and different from 1 + 5ε2

and 5+ ε2. So α− 1 ∈ Sl−1 or α− ε2 ∈ Sl−1 , which is a contradiction.
This proves the Theorem. �
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