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ON CONFORMALLY FLAT UNIT VECTOR BUNDLES

Keumseong Bang

Abstract. We study the conformally flat unit vector bundle E1

of constant scalar curvature for the bundle π : E n+2 → Mn over
an Einstein manifold M .

1. Introduction

It is well known that there is a naturally induced metric, called the
Sasaki metric, on the tangent bundle of a differentiable manifold Mn.
The geometry of this metric structure has been extensively studied and
many results were obtained. The question of locally symmetric tangent
bundles was answered by O. Kowalski.([3]) Locally symmetric tangent
sphere bundle was studied by D. Blair.([1]) He and T. Koufogiorgos
have also answered concerning the case of the conformally flat tangent
sphere bundle.([2])

On the other hand, the Sasaki metric on the normal bundle of a
submanifold was studied by A. Borisenko and A. Yampol’skii.([4])

In this line of study, it is natural to study the geometry of the
Sasaki metric on general vector bundle of a manifold. We shall study
the geometry of the conformally flat unit vector bundle and prove the
following theorem.

Theorem. Let π : En+2 → Mn, n ≥ 3 be a vector bundle over
an Einstein manifold with fiber metric g⊥ and a metric connection ∇.
Suppose that the unit vector bundle E1 is conformally flat and is of
constant curvature. Then, either the connection ∇ is flat, or (M,G)
admits an almost Hermitian structure.
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2. Preliminaries

Let π : En+k → Mn be a vector bundle equipped with fiber met-
ric g⊥ and a metric connection ∇ where (Mn, G) is a Riemannian
manifold. Let D be the Riemannian connection and R the curva-
ture tensor of M . If (x1, x2, . . . , xn) are local coordinates on M , set
qi = xi ◦ π ; then, (q1, q2, . . . , qn) together with the fiber coordi-
nates (u1, u2, . . . , uk) form local coordinates on E. For a vector field
X = Xi ∂

∂xi on M , we define

XH = Xi ∂

∂qi
−Xiµα

βiu
β ∂

∂uα

where ∇ ∂

∂xi
eβ = µα

βieα and for a section U = Uαeα, define

UV = Uα ∂

∂eα
.

The connection map K : TE → E is defined by

KXH = 0 and KUV = U.

Then, there is a metric g on E, called the Sasaki metric, defined by

g(X̃, Ỹ ) = G(π∗X̃, π∗Ỹ ) + g⊥(KX̃,KỸ )

at (x, U) ∈ E

Observe that any vector X̃ tangent to E, X̃ = (π∗X̃)H + (KX̃)V ;
so it is enough to have such combinations of horizontal and vertical
vectors in the following lemmas.

Now, we define the adjoint operator R̂UV X by the equality

(1) G(R̂UV X, Y ) = g⊥(RXY U, V ).

Then, we have

Lemma 2.1. Let X and Y be tangent vector fields on M , and U
and V sections of the bundle E. Then, at each point (x,W ),

∇̃UV V V = 0 , ∇̃XH V V = (∇XV )V +
1
2
(R̂WV X)H ,

∇̃UV Y H =
1
2
(R̂WUY )H , ∇̃XH Y H = (DXY )H − 1

2
(RXY W )V .
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Lemma 2.2. Let X and Y be tangent vector fields on M , and U
and V sections of the bundle E. Then, at each point (x,W ),

R̃XHY H ZH = [RXY Z +
1
4
R̂WRZY W X +

1
4
R̂WRXZW Y

+
1
2
R̂WRXY W Z ]H +

1
2
[ (∇ZR)XY W ]V

R̃XHUV V V = − [
1
2
R̂UV X +

1
4
R̂WU R̂WV X ]H

etc.

The proofs of these lemmas are very routine computations and we
omit them here. Also, in Lemma 2.2, the cases mentioned are all we
need for the rest of this paper.

Now, we consider a hypersurface E1 of E defined by

E1 = {U ∈ E : |U | = 1}

called the unit vector bundle. The metric on E1 induced from the
Sasaki metric on E is denoted by g′, the Riemannian connection of g′

by ∇′, and its Riemannian curvature tensor by R′
X̃Ỹ

Z̃.
Notice that the vector field W = Uα(eα)V is a unit normal and the

position vector of a point W in E1. Then, we consider the Weingarten
map A, defined by AX̃ = −∇̃X̃W , of the immersion ι : E1 → E.

For a vertical vector field V tangent to E1, we have using Lemma 2.1

∇̃ι∗V W = (ι∗V uα)(eα)V + uα∇̃ι∗V (eα)V = ι∗V,

and for XH = (Xi, Xn+α) tangent to E1,

∇̃XH W = ∇̃XH uα(eα)V

= (XHuα)
∂

∂uα
+ uα∇̃XH (eα)V

=− µα
βiu

βXi ∂

∂uα
+ uα((∇Xeα)V +

1
2
(RWeαXH)

=− µα
βiu

βXi ∂

∂uα
+ uαXi(0 + µβ

αi)
∂

∂uβ
+

1
2
(RWW X)H

= 0
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Hence, A = −Id on vertical vectors and A = 0 on horizontal vec-
tors. From this and the well-known identity for the second fundamental
form σ

g(σ(X̃, Ỹ ), Ṽ ) = g(AṼ X̃, Ỹ ),

we have that

(2) σ(X̃, Ỹ ) = 0

if at least one of X̃ and Ỹ is horizontal.
In this paper, we consider the vector bundle π : En+k → Mn only

with k = 2. Since each fiber has dimension 2, we can choose orthonor-
mal sections {U, V }. Then, we can write

∇XU = k(X)V and ∇XV = −k(X)U,

where k is a 1-form. Thus,

RXY U = ∇Xk(X)V −∇Y k(X)Y − k([X, Y ])V

= 2dk(X, Y )V.

We define a linear operator L by

G(LX, Y ) = 2dk(X, Y ).

Then, we have

(3) G(LX, Y ) = 2dk(X, Y ) = g⊥(RXY U, V ) = G(R̂UV X, Y )

and

G(L2X, Y ) = G(R̂UV R̂UV X, Y )

= −G(R̂UV X, R̂UV Y ) = −G(LX,LY ).(4)

Thus, from (3), we can write L = R̂UV .
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3. Proof of the main theorem

We now prove our main theorem:

We take an orthonormal basis {XH
i , V }, i = 1, · · · , n, tangent to E1

so that {Xi} form an orthonormal basis of M . Then, using the Gauss
equation for E1 in E and (2), we have

g′(Q′XH , Y H) =
n∑

i=1

g′(R′
XHXH

i
XH

i , Y H) + g′(R′
XHV V, Y H)

=
n∑

i=1

(
g(R̃XHXH

i
XH

i , Y H)

+ g(σ(XH , Y H), σ(XH
i , XH

i ))

− g(σ(XH
i , Y H), σ(XH

i , XH))
)

+ g(R̃XHV V, Y H)

+ g(σ(XH , Y H), σ(V, V ))− g(σ(V, Y H), σ(V,XH))

=
n∑

i=1

g(R̃XHXH
i

XH
i , Y H) + g(R̃XHV V, Y H)

Continuing this computation using Lemma 2.2, we have at U

g′(Q′XH , Y H) =
n∑

i=1

g([RXXi
Xi +

3
4
R̂URXXi

UXi]H , Y H)

+ g(−1
4
[R̂UV R̂UV X]H , Y H)

= G(QX, Y )

− 3
4

n∑
i=1

g⊥(RXXiU,RY XiU) +
1
4
G(R̂UV X, R̂UV Y )(5)
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and

g′(Q′V, V ) =
n∑

i=1

g′(R′
V XH

i
XH

i , V )

=
n∑

i=1

g(R̃XH
i V V,XH

i )

=
n∑

i=1

g(−1
4
[R̂UV R̂UV Xi]H , XH

i )

=
1
4

n∑
i=1

G(R̂UV Xi, R̂UV Xi)(6)

Using (5) and (6), we also have

R′ =
n∑

i=1

g′(Q′XH
i , XH

i ) + g′(Q′V, V )

=
n∑

i=1

G(QXi, Xi)−
3
4

n∑
i,j=1

g⊥(RXiXj
U,RXiXj

U)

+
1
2

n∑
i=1

G(R̂UV Xi, R̂UV Xi)

= R +
1
2

n∑
i=1

|R̂UV Xi|2 −
3
4

n∑
i,j=1

|RXiXj
U |2(7)

But, due to (4), we also have

trL2 =
n∑

i=1

G(L2Xi, Xi)

=−
n∑

i=1

G(R̂UV Xi, R̂UV Xi)(8)

Thus, from (7) and (8), we get

(9) R′ = R− 1
2
trL2 − 3

4

n∑
i,j=1

|RXiXj U |2
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Now, since E1 is conformally flat and since dim E1 = n+1 is at least
3, we have, in view of the famous Weyl conformal curvature tensor,

g′(R′
X̃Ỹ

Z̃, W̃ ) =
1

n− 1
(
(g′(Ỹ , Z̃)g′(Q′X̃, W̃ )− g′(Z̃, X̃)g′(Q′Ỹ , W̃ )

+ g′(Q′Ỹ , Z̃)g′(X̃, W̃ )− g′(Q′X̃, W̃ )g′(Ỹ , W̃ )
)

− R′

n(n− 1)
(
g′(Ỹ , Z̃)g′(X̃, W̃ )− g′(X̃, Z̃)g′(Ỹ , W̃ )

)
From this together with (5), we have at U , for X and Y orthogonal,

g′(R′
XHV V, Y H) =

1
n− 1

g′(Q′XH , Y H)

=
1

n− 1
(
G(QX, Y )

− 3
4

n∑
i=1

g⊥(RXXi
U,RY Xi

U) +
1
4
G(LX,LY )

)
(10)

On the other hand, again using the Gauss equation and Lemma 2.2
successively, we have

g′(R′
XHV V, Y H) = g(R̃XHV V, Y H)

=− 1
4
G(R̂UV R̂UV X, Y )

=
1
4
G(LX,LY )(11)

So, comparing (10) and (11), we get
1
4
(1− 1

n− 1
)G(LX,LY ) =

1
n− 1

(
G(QX, Y )

− 3
4

n∑
i=1

g⊥(RXXi
U,RY Xi

U)
)

(12)

But, from (3), we see that
n∑

i=1

g⊥(RXXiU,RY XiU) = 4
n∑

i=1

g⊥(dk(X, Xi)V, dk(X, Xi)V )

=
n∑

i=1

G(LX,Xi)G(LY,Xi)

= G(LX,LY )(13)
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where we have the last equality since {Xi} is an orthonormal basis.
Therefore, we have, using (4) and (12)

G(L2X, Y ) = − 4
n + 1

G(QX, Y )

and hence,

(14) L2 +
4

n + 1
Q = αI

where α is a function and I is the identity transformation.
Now, from (4) and (13), we have

n∑
i,j=1

|RXiXj
U |2 = −trL2

Therefore, (9) gives

R′ = R +
1
4
trL2.

Now, the trace of (14) yields

nα = trL2 +
4

n + 1
R = 4R′ − 4n

n + 1
R .

Thus, since R′ is a constant and M is Einstein with dim M ≥ 3, α is a
constant.

Again, since M is Einstein, i.e., Q = R
n I, we have, from (14),

(15) L2 = −βI

where β = 4R
n(n+1) − α is a constant. Now, taking X = Y in (4), we

easily see that β ≥ 0.

Case 1: β = 0
In this case, L2 = 0. Taking X = Y in (4) again, we have that

|LX|2 = 0 for any X, that is, L = 0. Hence, by the definition (1) of
R̂, we have

RXY W = 0
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for any X, Y, and W , i.e., the connection is flat.

Case 2: β > 0
We define a tensor field J by J = 1√

β
L. From the definition of J , it

is clear that J is an almost complex structure on M . Moreover, using
(4) and (15),

G(LX,LY ) =
1
β

G(LX,LY )

=− 1
β

G(L2X, Y )

=G(X, Y )

This completes the proof. �
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