A REMARK ON FORMALITY

Doobeum Lee

ABSTRACT. In this paper we prove two independent theorems concerning formality of a nilmanifold and a differential graded algebra using the well-known theorem of Deligne-Griffiths-Morgan-Sullivan. We first give a rational homotopy theoretic proof to the statement that a nilmanifold is formal if and only if it is a torus. And then we study some conditions with which formality of one dga implies formality of the other in an extension of dga's.

1. Minimal models and KS-extensions

We recall here the basic facts and notation we shall need from Sullivan's theory of minimal models, for which the basic references are [3, 4, 8]. We assume the reader to be familiar with the basics of differential graded algebras [2] over a field k of characteristic 0.

DEFINITION. A dga (M, d) is called *minimal*, if :

- i) $M = \Lambda V$ is freely generated for some graded k-vector space V;
- ii) d is decomposable in the following sense: there exists an ordering in the set $\{x_a, a \in I\}$ of all free generators of M such that $x_\beta < x_a \Longrightarrow \deg(x_\beta) < \deg(x_a)$ and such that $dx_a \in \Lambda(V_{\leq a})$, $V_{\leq a}$ denoting the span of the $x_\beta < x_a$.

NOTATION. If $\{x_1, x_2, ...\}$ is a basis for V, then we write $V = \langle x_1, x_2, ... \rangle$ and $\Lambda V = \Lambda(x_1, x_2, ...)$.

Received July 24, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 55p62.

Key words and phrases: Minimal model, formality.

This work was supported by a research fund of the Catholic University of Korea, 1998.

Remark. When $A = \Lambda V$ is connected, that is $A^0 = k$, ii) is equivalent to $d: V \to \Lambda^{\geq 2} V$. $\Lambda^{\geq m} V$ denotes the differential ideal of ΛV having additive basis the monomials $x_{i_1} \cdots x_{i_k}$ with $k \geq m$.

DEFINITION. i) A minimal model for a dga A is a minimal dga M_A and a dga map $\rho_A: M_A \to A$ such that the induced homomorphism on cohomology ρ_A^* is an isomorphism.

ii) A minimal model for a space X is a minimal model of the dga $A^*(X)$, the rational polynomial forms on X.

EXAMPLE 1. i)
$$\Lambda(CP(n)) = \Lambda(x_2, y_{2n+1}), dy = x^{n+1}.$$
 ii) $\Lambda(T^n) = \Lambda(x_1^1, x_1^2, \dots, x_1^n), d = 0.$

The aim of the second part of this section is to describe the *algebraic* fibrations, which serve as models for fibrations [9]. Only augmented algebras are considered, that is, (A, d_A) is always endowed with a homomorphism $\varepsilon: A \to k$ such that $\operatorname{Ker} \varepsilon = \bigoplus_{k>0} A^k$.

Definition. A KS-extension is a sequence of augmentation preserving dga morphisms

$$(A, d_A) \xrightarrow{\imath} (A \otimes \Lambda V, d) \xrightarrow{\rho} (\Lambda V, d)$$

with the following conditions:

- i) $\iota(a) = a \otimes 1$, $\rho = \varepsilon_A \otimes id_{\Lambda V}$, where ε_A is the augmentation of A.
- ii) there exists an ordered homogeneous basis $\{x_a : a \in I\}$ for V indexed by a well ordered set I such that $d(1 \otimes x_a) \in A \otimes \Lambda(V_{\leq a})$.

We will also call simply $(A, d_A) \xrightarrow{\imath} (A \otimes \Lambda V, d)$ a KS-extension.

2. Minimal model of a nilmanifold

DEFINITION. A nilmanifold M is a compact homogeneous space of the form N/π where N is a simply connected Lie group and π is a lattice, that is, a discrete co-compact subgroup of N.

It is well known that N is diffeomorphic to some \mathbb{R}^n and therefore, M is $K(\pi,1)$. Furthermore, this entails the fact that π is a finitely generated torsion free nilpotent group.

The general theory of nilmanifolds is contained in [6]. We only need a minimal model of a nilmanifold. Following [7] we decompose $M = K(\pi, 1)$ into a tower S^1 -bundles

$$S^1 \to M_{i-1} \xrightarrow{\tau_i} \mathbb{C}P(\infty), \quad i = 2, \dots, n$$

which is, in fact, the Postnikov decomposition of M with k-invariants the τ_i . Note that $[M_{i-1}, \mathbb{C}P(\infty)] = [M_{i-1}, K(\mathbb{Z}, 2)] = H^2(M_{i-1}; \mathbb{Z})$.

Lemma 1. [7] The minimal model of a nilmanifold M^n of dimension n has the form

$$\Lambda(M^n) = (\Lambda(x_1, \dots, x_n), d), \deg(x_i) = 1$$

with $dx_i = \tau_i$, where τ_i is a cocycle representing the class $\tau_i \in H^2(M_{i-1}; \mathbb{Z})$.

3. Formality of a dga and the theorem of Deligne-Griffiths-Morgan-Sullivan

The basic reference for this section is [1]. Let M be a minimal dga and $H^*(M)$ the cohomology of M viewed as a dga with the differential 0.

DEFINITION. i) M is formal if there is a dga map $\Psi: M \to H^*(M)$ inducing the identity on cohomology.

- ii) A dga (A, d_A) is a formal consequence of its cohomology algebra if its minimal model is formal.
- iii) A smooth manifold M is formal if the de Rham algebra $\Omega^*(M)$ is a formal consequence of its cohomology algebra.

EXAMPLE 2. Consider the 3-dimensional Heisenberg group $U_3(\mathbb{R})$ and mod out by $U_3(\mathbb{Z})$. The resulting manifold M is a 3-manifold obtained as a principle bundle,

$$S^1 \to M \to T^2$$
.

The minimal model of M is given by

$$\Lambda(M) = \Lambda(x, y, z), \ \deg(x) = \deg(y) = \deg(z) = 1$$

with dx = 0 = dy and dz = xy. Thus xz, for example, is closed but not exact. But since $x \cdot H^1(M) = 0$, there can be no map of $M \to H^*(M)$ inducing the identity in cohomology. Hence M is not formal.

We will use the following criterion for formality.

LEMMA 2. (Deligne-Griffiths-Morgan-Sullivan) [1] A minimal dga $(\Lambda V, d)$ is formal if and only if V decomposes as a direct sum $V = C \oplus N$ with d(C) = 0 and d injective on N such that every closed element in the ideal generated by N is exact.

Nonexact cocycles in the ideal (N) are called *Massey products*.

4. Main theorems

We now present our main theorems.

THEOREM 1. A nilmanifold M^n is formal if and only if it is a torus.

Proof. Since the minimal model of a torus is given by the dga $(\Lambda(x_1,\ldots,x_n),\ 0)$ where each x_i has degree one and the differential is 0 (See Example 1), it is clearly formal. Conversely, let M have a minimal model of the form $(\Lambda(x_1,\ldots,x_n),d)$ where $\deg(x_i)=1,\ i=1,\ldots,n$ and $d \neq 0$. Then there exists k such that $dx_1 = \cdots = dx_{k-1} = 0$, $dx_k \neq 0$. By the minimality condition dx_k can be written as $dx_k =$ $\sum_{i < j < k} x_i x_j$. Let $\{x_{i_1}, x_{i_2}, \dots, x_{i_l}\}, i_1 < i_2 < \dots < i_l$, be the set of different $x_i's$ appearing in the summation of dx_k . We may assume that l > 2 (See Example 2). Consider the element $a = \sum x_{i_1}, \cdots \hat{x}_{i_s} \cdots x_{i_l}$ ranging all the permutations of $\{i_1,\ldots,i_l\}$. Suppose that ΛV is for-Then V has a decomposition $V = C \oplus N$ as in Lemma 2. Then clearly $ax_k \in (N)$. Note that $d(ax_k) = (da)x_k \pm adx_k =$ $\pm(\sum x_{i_1}\cdots\hat{x}_{i_s}\cdots x_{i_l})(\sum x_ix_j)=0$ since each term reduces to 0. But it is not hard to see that ax_k is not a coboundary, which is a contradiction. Hence d=0, and M has the rational homotopy type of a torus. We now follow the argument in [7] P.204 to conclude that M has the homotopy type of a torus.

THEOREM 2. Let $i: (\Lambda V, d) \to (\Lambda V \otimes \Lambda W, D)$ be a KS-extension. Then we have the followings:

- i) if $(\Lambda V, d)$ is formal and i^* is an epimorphism, then $(\Lambda V \otimes \Lambda W, D)$ is formal and,
- ii) if $(\Lambda V \otimes \Lambda W, D)$ is formal and i^* is a monomorphism, then $(\Lambda V, d)$ is formal.
- Proof. 1) Since $(\Lambda V, d)$ is formal, there exists a dga map $\Phi : \Lambda V \to H^*(\Lambda V)$ such that $\Phi^* = id$. We proceed by induction on the number n of generators of W. When n = 1, that is $W = \langle y \rangle$, define a map $\Psi : \Lambda V \otimes \Lambda(y) \to H^*(\Lambda V \otimes \Lambda(y))$ by $\Psi|_{\Lambda V} = i^*\Phi$ and $\Phi(y) = 0$. Ψ is indeed a dga map since $dy \in Z(\Lambda V)$, the cocycles in ΛV . Since i^* is onto, each element in $H^*(\Lambda V \otimes \Lambda(y))$ has a preimage which maps identically into itself by $\Phi^* = id$. Hence, $\Phi = id$. Now assume that the statement is true when n = k-1 and $i_1^* : H^*(\Lambda V) \to H^*(\Lambda V \otimes \Lambda(y_1, \dots, y_{k-1}, y_k))$ is an epimorphism. Note that $i_2^* : H^*(\Lambda V \otimes \Lambda(y_1, \dots, y_{k-1})) \to H^*(\Lambda V \otimes \Lambda(y_1, \dots, y_k))$ is also an epimorphism and $dy_k \in \Lambda V \otimes \Lambda(y_1, \dots, y_k)$. Repeating the above argument we conclude that $\Lambda V \otimes \Lambda(y_1, \dots, y_k)$ is formal.
- 2) Suppose that $(\Lambda V \otimes \Lambda W, D) = (\Lambda(V \oplus W), D)$ is formal. By Lemma 2 there exists a decomposition $V \oplus W = C \oplus N$ with D(C) = 0 and D is injective on N such that every closed element in (N), the ideal generated by N in $\Lambda V \otimes \Lambda W$, is exact. By taking $C' = C \cap V$ and $N' = N \cap V$ we have d(C) = 0 and d is injective on N' since $D|_V = d$. Let $a \in (N')$, the ideal generated by N' in ΛV , and da = 0. Since $a \in (N') \subset (N)$, a = Db for some $b \in \Lambda V \otimes \Lambda W$. Since $i^*([a]) = [Db] = 0$ and i^* is a monomorphism we have [a] = 0. Hence a = da' for some $a' \in \Lambda V$, which completes the proof.

Remark. For any non-formal dga $(\Lambda V, d)$ we may continuously add generators to kill the Massey products producing an extension $(\Lambda V \otimes \Lambda W, D)$ which is formal. Clearly $i^*: H^*(\Lambda V, d) \to H^*(\Lambda V \otimes \Lambda W, D)$ is not a monomorphism.

References

- 1. P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, inventiones Math. 29 (1975), 245–274.
- 2. V. Greub, S. Halperin, R. Vanstone, Curvature, Connections and Cohomology, vol.3,-Acad. Press, New York, 1976.

- 3. P. Griffiths, J. Morgan, Rational Homotopy Theory and Differential Forms, Birkhäuser, Basel, 1981.
- 4. S. Halperin, Lectures on Minimal Models, Hermann, Paris, 1982.
- 5. G. Lupton, J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193–207.
- 6. A. Malcev, On a class of homogeneous spaces Izv. Akad. Nauk. SSSR Ser. Math. 13 (1949), 201–212.
- 7. J. Oprea, The category of nilmanifolds, Enseign. Math. 38 (1992), 27–40.
- 8. D. Sullivan, *Infinitesimal computations in topology*, Publ. Math. IHES **47** (1978), 269–331.
- 9. J. C. Thomas, *Rational homotopy of Serre fibrations*, Annales Inst. Fourier Grenoble **31** (1981), 71–90.

Department of Mathematics
The Catholic University of Korea
Yokkok-Dong Wonmi-Gu
Bucheon, Kyunggi-Do
KOREA 420–743