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A REMARK ON FORMALITY

Doobeum Lee

Abstract. In this paper we prove two independent theorems con-
cerning formality of a nilmanifold and a differential graded algebra

using the well-known theorem of Deligne-Griffiths-Morgan-Sullivan.
We first give a rational homotopy theoretic proof to the statement

that a nilmanifold is formal if and only if it is a torus. And then

we study some conditions with which formality of one dga implies
formality of the other in an extension of dga’s.

1. Minimal models and KS-extensions

We recall here the basic facts and notation we shall need from Sulli-
van’s theory of minimal models, for which the basic references are [3, 4,
8]. We assume the reader to be familiar with the basics of differential
graded algebras [2] over a field k of characteristic 0.

Definition. A dga (M,d) is called minimal, if :
i) M = ΛV is freely generated for some graded k-vector space V ;
ii) d is decomposable in the following sense : there exists an ordering

in the set {xa, a ∈ I} of all free generators of M such that xβ < xa =⇒
deg(xβ) < deg(xa) and such that dxa ∈ Λ(V<a), V<a denoting the span
of the xβ < xa.

Notation. If {x1, x2, . . . } is a basis for V , then we write V =
〈x1, x2, . . .〉 and ΛV = Λ(x1, x2, . . . ).
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Remark. When A = ΛV is connected, that is A0 = k, ii) is equiv-
alent to d : V → Λ≥2V . Λ≥mV denotes the differential ideal of ΛV
having additive basis the monomials xi1 · · ·xik

with k ≥ m.

Definition. i) A minimal model for a dga A is a minimal dga MA

and a dga map ρA : MA → A such that the induced homomorphism
on cohomology ρ∗A is an isomorphism.

ii) A minimal model for a space X is a minimal model of the dga
A∗(X), the rational polynomial forms on X.

Example 1. i) Λ(CP (n)) = Λ(x2, y2n+1), dy = xn+1.
ii) Λ(Tn) = Λ(x1

1, x
2
1, . . . , x

n
1 ), d = 0.

The aim of the second part of this section is to describe the algebraic
fibrations, which serve as models for fibrations [9]. Only augmented
algebras are considered, that is, (A, dA) is always endowed with a ho-
momorphism ε : A → k such that Ker ε = ⊕k>0A

k.

Definition. A KS-extension is a sequence of augmentation pre-
serving dga morphisms

(A, dA) ı−→ (A⊗ ΛV, d)
ρ−→ (ΛV, d)

with the following conditions:
i) ı(a) = a⊗ 1, ρ = εA ⊗ idΛV , where εA is the augmentation of A.
ii) there exists an ordered homogeneous basis {xa : a ∈ I} for V

indexed by a well ordered set I such that d(1⊗ xa) ∈ A⊗ Λ(V<a).

We will also call simply (A, dA) ı−→ (A⊗ ΛV, d) a KS-extension.

2. Minimal model of a nilmanifold

Definition. A nilmanifold M is a compact homogeneous space of
the form N/π where N is a simply connected Lie group and π is a
lattice, that is, a discrete co-compact subgroup of N .

It is well known that N is diffeomorphic to some Rn and therefore,
M is K(π, 1). Furthermore, this entails the fact that π is a finitely
generated torsion free nilpotent group.
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The general theory of nilmanifolds is contained in [6]. We only
need a minimal model of a nilmanifold. Following [7] we decompose
M = K(π, 1) into a tower S1-bundles

S1 → Mi−1
τi−→ CP (∞), i = 2, . . . , n

which is, in fact, the Postnikov decomposition of M with k-invariants
the τi. Note that [Mi−1, CP (∞)] = [Mi−1,K(Z, 2)] = H2(Mi−1; Z).

Lemma 1. [7] The minimal model of a nilmanifold Mn of dimension
n has the form

Λ(Mn) = (Λ(x1, . . . , xn), d), deg(xi) = 1

with dxi = τi, where τi is a cocycle representing the class τi ∈
H2(Mi−1; Z).

3. Formality of a dga and the theorem of Deligne-Griffiths-
Morgan-Sullivan

The basic reference for this section is [1]. Let M be a minimal dga
and H∗(M) the cohomology of M viewed as a dga with the differential
0.

Definition. i) M is formal if there is a dga map Ψ : M → H∗(M)
inducing the identity on cohomology.

ii) A dga (A, dA) is a formal consequence of its cohomology algebra
if its minimal model is formal.

iii) A smooth manifold M is formal if the de Rham algebra Ω∗(M)
is a formal consequence of its cohomology algebra.

Example 2. Consider the 3-dimensional Heisenberg group U3(R)
and mod out by U3(Z). The resulting manifold M is a 3-manifold
obtained as a principle bundle,

S1 → M → T 2.

The minimal model of M is given by

Λ(M) = Λ(x, y, z), deg(x) = deg(y) = deg(z) = 1



316 Doobeum Lee

with dx = 0 = dy and dz = xy. Thus xz, for example, is closed but not
exact. But since x ·H1(M) = 0, there can be no map of M → H∗(M)
inducing the identity in cohomology. Hence M is not formal.

We will use the following criterion for formality.

Lemma 2. (Deligne-Griffiths-Morgan-Sullivan) [1] A minimal dga
(ΛV, d) is formal if and only if V decomposes as a direct sum V = C⊕N
with d(C) = 0 and d injective on N such that every closed element in
the ideal generated by N is exact.

Nonexact cocycles in the ideal (N) are called Massey products.

4. Main theorems

We now present our main theorems.

Theorem 1. A nilmanifold Mn is formal if and only if it is a torus.

Proof. Since the minimal model of a torus is given by the dga
(Λ(x1, . . . , xn), 0) where each xi has degree one and the differential is 0
(See Example 1), it is clearly formal. Conversely, let M have a minimal
model of the form (Λ(x1, . . . , xn), d) where deg(xi) = 1, i = 1, . . . , n
and d 6= 0. Then there exists k such that dx1,= · · · = dxk−1 = 0,
dxk 6= 0. By the minimality condition dxk can be written as dxk =∑

i<j<k xixj . Let {xi1 , xi2 , . . . , xil
}, i1 < i2 < · · · < il, be the set of

different x′is appearing in the summation of dxk. We may assume that
l > 2 (See Example 2). Consider the element a = Σxi1 , · · · x̂is

· · ·xil

ranging all the permutations of {i1, . . . , il}. Suppose that ΛV is for-
mal. Then V has a decomposition V = C ⊕ N as in Lemma 2.
Then clearly axk ∈ (N). Note that d(axk) = (da)xk ± adxk =
±(Σxi1 · · · x̂is

· · ·xil
)(Σxixj) = 0 since each term reduces to 0. But

it is not hard to see that axk is not a coboundary, which is a contradic-
tion. Hence d = 0, and M has the rational homotopy type of a torus.
We now follow the argument in [7] P.204 to conclude that M has the
homotopy type of a torus. �

Theorem 2. Let i : (ΛV, d) → (ΛV ⊗ ΛW,D) be a KS-extension.
Then we have the followings:
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i) if (ΛV, d) is formal and ı∗ is an epimorphism, then (ΛV ⊗ΛW,D)
is formal and,

ii) if (ΛV ⊗ΛW,D) is formal and ı∗ is a monomorphism, then (ΛV, d)
is formal.

Proof. 1) Since (ΛV, d) is formal, there exists a dga map Φ : ΛV →
H∗(ΛV ) such that Φ∗ = id. We proceed by induction on the number
n of generators of W . When n = 1, that is W = 〈y〉, define a map Ψ :
ΛV ⊗Λ(y) → H∗(ΛV ⊗Λ(y)) by Ψ|ΛV = i∗Φ and Φ(y) = 0. Ψ is indeed
a dga map since dy ∈ Z(ΛV ), the cocycles in ΛV . Since ı∗ is onto, each
element in H∗(ΛV ⊗Λ(y)) has a preimage which maps identically into
itself by Φ∗ = id. Hence, Φ = id. Now assume that the statement is
true when n = k−1 and i∗1 : H∗(ΛV ) → H∗(ΛV⊗Λ(y1, . . . , yk−1, yk)) is
an epimorphism. Note that i∗2 : H∗(ΛV ⊗Λ(y1, . . . , yk−1)) → H∗(ΛV ⊗
Λ(y1, . . . , yk)) is also an epimorphism and dyk ∈ ΛV ⊗Λ(y1, . . . , yk−1).
Repeating the above argument we conclude that ΛV ⊗Λ(y1, . . . , yk) is
formal.

2) Suppose that (ΛV ⊗ ΛW,D) = (Λ(V ⊕ W ), D) is formal. By
Lemma 2 there exists a decomposition V ⊕W = C⊕N with D(C) = 0
and D is injective on N such that every closed element in (N), the
ideal generated by N in ΛV ⊗ΛW , is exact. By taking C ′ = C∩V and
N ′ = N ∩ V we have d(C) = 0 and d is injective on N ′ since D|V = d.
Let a ∈ (N ′), the ideal generated by N ′ in ΛV , and da = 0. Since a ∈
(N ′) ⊂ (N), a = Db for some b ∈ ΛV ⊗ ΛW . Since ı∗([a]) = [Db] = 0
and ı∗ is a monomorphism we have [a] = 0. Hence a = da′ for some
a′ ∈ ΛV , which completes the proof. �

Remark. For any non-formal dga (ΛV, d) we may continuously add
generators to kill the Massey products producing an extension (ΛV ⊗
ΛW,D) which is formal. Clearly ı∗ : H∗(ΛV, d) → H∗(ΛV ⊗ ΛW,D)
is not a monomorphism.
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