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ON M-CONTINUITY

Won Keun Min and Hong Soon Chang

Abstract. In this paper, we introduce a new class of sets, called

m-sets, and the notion of m-continuity. In particular, m-sets and
m-continuity are used to extend known results for α-continuity and

semi-continuity and precontinuity.

1. Introduction

Let X, Y and Z be topological spaces on which no separation ax-
ioms are assumed unless explicity stated. Let S be a subset of X. The
closure (resp. interior, boundary) of S will be denoted by S− (resp.
S0, b(S)). A subset S of X is called semi-open set[1] (resp. preopen
set[2], α-set[3]) if S ⊂ S0− (resp. S ⊂ S−0, S ⊂ S0−0). The comple-
ment of a semi-open set (resp. preopen set, α-set) is called semi-closed
set (resp. preclosed set, α-closed set). The family of all semi-open sets
(resp. preopen sets, α-sets) in X will be denoted by SO(X) ( resp.
PO(X), α(X)). A function f : X → Y is called semi-continuous[1]
(resp. precontinuous[2], α-continuous [4]) if f−1(V ) ∈ SO(X) (resp.
f−1(V ) ∈ PO(X), f−1(V ) ∈ α(X) for each open set V of Y ).

A subclass τ∗ ⊂ P (X) is called a supratopology on X if X ∈ τ∗

and τ∗ is closed under arbitrary union. (X, τ∗) is called a supratopo-
logical space. The members of τ∗ are called supraopen sets[5]. Let
(X, τ) be a topological space and τ∗ be a supratopology on X. We
call τ∗ a supratopology associated with τ if τ ⊂ τ∗. Let (X, τ∗) be a
supratopological space and (Y, µ) be a topological space. A function
f : X → Y is an S-continuous function if the inverse image of each
open set in Y is a supraopen set in X[5]. Let (X, τ∗) and (Y, µ∗) be
supratopological spaces. A function f : X → Y is an S∗-continuous
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function if the inverse image of each supraopen set in Y is a supraopen
set in X[5].

2. m-sets induced by a supratopology

Definition 2.1. Let (X, τ∗) be a supratopological space. A subset
A of X is called an m-set with τ∗ if A ∩ T ∈ τ∗ for all T ∈ τ∗.

The class of all m-sets with τ∗ will be denoted by τm.

Example 2.2. Let X = {a, b, c, d} and τ∗ = {∅, X, {a}, {b, c}, {b, d},
{a, b, c}, {b, c, d}, {a, b, d}}. Then τm = {∅, X, {a}, {b, c, d}}.

Remark. Let (X, τ) be a topological space. Since SO(X) is closed
with repect to arbitrary union, SO(X) is a supratopology on X. For
any α-set A in X, A ∩ B ∈ SO(X) for all B ∈ SO(X). Thus A is an
m-set with SO(X). That is, α(X) is τm with SO(X).

Lemma 2.3. Let (X, τ∗) be a supratopological space. Then the
class τm of all m-sets with τ∗ is contained τ∗.

Proof. Let A be an m-subset with τ∗. And X is an element of τ∗.
Now we take that X ∩A = A belongs to the supratopology τ∗, by the
definition of m-sets. �

Theorem 2.4. Let (X, τ∗) be a supratopological space. Then the
class τm of all m-sets with τ∗ is a supratopology.

Proof. Let {Aα} be a class of members of τm. By definitions of the
m-set and the supratopology, (∪Aα) ∩ T = ∪(Aα ∩ T ) ∈ τ∗ for all
T ∈ τ∗. Thus the union ∪Aα also belongs to τm. �

Theorem 2.5. Let (X, τ∗) be a supratopological space with ∅ ∈ τ∗.
If a subset A of X is a singleton set and A ∈ τ∗, then A is an m-set.

Proof. Since A ∈ τ∗ is a singleton set, A ∩ B = ∅ or A for B ∈ τ∗.
Thus A is an m-set. �

We obtain the following, by definition of m-set.
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Theorem 2.6. Let (X, τ∗) be a supratopological space. If T is any
supraopen set of τ∗ in X and A is an m-set with τ∗, then T ∩A is also
a supraopen set.

Colorally 2.7. Let (X, τ) be a topological space and τ∗ = PO(X).
If A ∈ α(X) and B ∈ PO(X), then A ∩B ∈ PO(X).

Proof. Since α(X) ⊂ SO(X)∩PO(X), α(X) is a subclass of m-sets
with PO(X), and it obtained by Theorem 2.6. �

Theorem 2.8. Let (X, τ∗) be a supratopological space with ∅ ∈ τ∗.
Then the class τm of all m-subsets of X is a topology on X.

Proof. Since ∅ ∩ T = ∅ ∈ τ∗ and X ∩ T = T ∈ τ∗ for all T ∈ τ∗, ∅
and X ∈ τm.

Suppose A,B ∈ τm. By definition of m-set, we obtain B ∩ T ∈ τ∗

and A ∩ (B ∩ T ) ∈ τ∗ for all T ∈ τ∗. Thus (A ∩B) ∈ τm.
And by Theorem 2.4., the proof is completed. �

Now the class τm is called an m-topology with τ∗ and the members
of τm are called m-open sets. A subset B of X is called an m-closed
set if the complement of B is an m-open set. Thus the intersection of
any family of m-closed sets is a m-closed set and the union of finitely
many m-closed sets is an m-closed set.

In case τm is an m-topology with τ∗ on X, the topological space
(X, τm) with τ∗ will be denoted by (X, τm, τ∗).

Remark. In a space (X, τ), if τ∗ is an associated supratopology
with τ , an m-set need not be an open set, and vice versa.

Example 2.9.

Let X = {a, b, c, d}. Consider τ = {∅, X, {a, b}} and τ∗ = {∅, X,
{a, b}, {b, d}, {a, b, d}}. Then τ∗ is a supratopoogy associated with τ
and {a, b, d} is an m-set but it is not an open set. And {a, b} is an
open set but it is not an m-set.
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Definition 2.10. Let (X, τm, τ∗) be an m-topological space.
(1) The m-interior of A is defined as the union of all m-open sets

contained in A. The m-interior of A is denoted by mintA.
(2) The m-closure of A is defined as the intersection of all m-closed

sets containing A. The m-closure of A is denoted by mclA.

By the above definitions, we obtain the following properties.

Theorem 2.11. Let (X, τm, τ∗) be an m-topological space and A
be a subset of X.

(1) A is m-open if and only if A = mintA.
(2) A is m-closed if and only if A = mclA.
(3) mcl(mclA) = mclA and mint(mintA) = mintA.
(4) A ⊂ B implies mclA ⊂ mclB.
(5) mclA ∪mclB = mcl(A ∪B).

3. m-continuity

Definition 3.1. Let (X, τm, τ∗) be an m-topological space and
(Y, µ) be a topological space. A mapping f : X → Y is called an
m-continuous if the inverse image of each open set of Y is an m-open
set in X.

Remark. In general, there is no relation between the continuity
and the m-continuity.

Example 3.2. Let X = {a, b, c, d}, τ = {∅, X, {a, b}} and µ =
{∅, X, {a, b, d}}. Now we take a supratopology τ∗ = {∅, X, {a, b}, {b, d},
{a, b, d}} for τ . Then τm = {∅, X, {a, b, d}}. Let f : (X, τ, τ∗) →
(X, τ) be the identity function. Then f is continuous but it is not
m-continuous. And if f : (X, τ, τ∗) → (X, µ) be the identity function.
Then f is m-continuous but it is not continuous.

Theorem 3.3. Let (X, τm, τ∗) be an m-topological spaces and (Y, µ)
be a topological spaces. If f : (X, τm, τ∗) → (Y, µ) is a mapping, then
the following statements are equivalent:

(1) f is an m-continuous.
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(2) The inverse image of each closed set in Y is m-closed.
(3) For each x ∈ X, and each open set V ⊂ Y containing f(x),

there exists W ∈ τm such that x ∈ W , f(W ) ⊂ V .
(4) f(mclA) ⊂ clf(A) for every A ⊂ X.
(5) mcl(f−1(B)) ⊂ f−1(cl(B)) for every B ⊂ Y .

Proof. (1)⇒(2). Let B be closed in Y . Since Y − B is open in Y
and X − f−1(B) is m-open, thus f−1(B) is m-closed.

(2)⇒(1). Let V be open in Y . Since Y − V is closed in Y and
X − f−1(V ) is m-closed, f−1(V ) is m-open.

(1)⇒(3). For each x ∈ X, and each open set V containing f(x). Set
W = f−1(V ). Then W is m-open, x ∈ W , and f(W ) ⊂ V .

(3)⇒(4). We will show that for each b ∈ mclA, f(b) ∈ cl(f(A)). Let
V be an open neighborhood of f(b), then there exists W ∈ τm such
that b ∈ W and f(W ) ⊂ V . Since b ∈ mclA, W ∩A 6= ∅. f(W ∩A) 6= ∅
and f(W ) ∩ f(A) 6= ∅. Thus V (f(b)) ∩ f(A) 6= ∅ and f(b) ∈ cl(f(A)).

(4)⇒(5). Let A = f−1(B) for B ⊂ Y . Then f(mcl(A)) ⊂ cl(f(A))
⊂ cl(B), and mcl(f−1(B)) ⊂ f−1(cl(B)).

(5)⇒(2). Let B ⊂ Y be closed. Then mcl(f−1(B)) ⊂ f−1(cl(B)) =
f−1(B), and f−1(B) is an m-closed set. �

Remark. If f : (X, τm, τ∗) → (Y, µ) is an m-continuous function
and g : (Y, µ) → (Z, ν) is a continuous function, then g ◦ f is m-
continuous.

Lemma 3.4. Let f : (X, τ) → (Y, µ) be an α-continuous function.
Then

(1) For each subset A of X, f(clα(A)) ⊂ (f(A))− if and only if
f(A−0−) ⊂ (f(A))−.

(2) For each subset B of Y , clα(f−1(B)) ⊂ f−1(B−) if and only if
(f−1(B))−0− ⊂ f−1(B−).

Proof. Since clα(A) = A ∪ cl(int(cl(A))), the properties are proved
obviously. �

By Theorem 3.3 and Lemma 3.4, easily we get the following prop-
erties.
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Corollary 3.5. Let f : (X, τm, SO(X)) → (Y, µ) is a function,
the followings are equivalent:

(1) f is α-continuous.
(2) The inverse image of each closed set in Y is m-closed set.
(3) For each x ∈ X, and each open set V ⊂ Y containing f(x),

there exists W ∈ τm such that x ∈ W , f(W ) ⊂ V .
(4) f(A−0−) ⊂ cl(f(A)) for every A ⊂ X.
(5) (f−1(B))−0− ⊂ f−1(cl(B)) for every B ⊂ Y .

Definition 3.6. A function f : (X, τm, τ∗) → (Y, µm, µ∗) is an
mS-continuous function if the inverse image of each m-set in Y is a
supraopen set in X.

The following theorem is a straightforward result of Mashhour( The-
orem 2.1.[5]).

Theorem 3.7. Let f : (X, τ, τ∗) → (Y, µ, µ∗) be a function. Then
the followings are equivalent :

(1) f is an mS-continuous.
(2) The inverse image of each m-closed set in Y is a supraclosed

set.
(3) (f−1(V ))sc ⊂ f−1(mcl(V )), for every V ⊂ Y .
(4) f(Usc) ⊂ mcl(f(U)), for every U ⊂ X.
(5) For any point x ∈ X and any m-open set V of Y containing

f(x), there exists U ∈ τ∗ such that x ∈ U and f(U) ⊂ V .

Remark. Let f : (X, τ, τ∗) → (Y, µ, µ∗) be a function. Then we
can get the following diagrams :

(1) m-continuity =⇒ S-continuity
(2) S∗-continuity =⇒ mS-continuity
(3) In τ ⊂ τm,

continuity =⇒ m-continuity =⇒ S-continuity

(4) In τ ⊂ τm and µ ⊂ µm,

m-continuity =⇒ S-continuity ⇐= mS-continuity ⇐= S∗-continuity
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(5) In τ∗ = SO(X),

continuity =⇒ m-continuity(=α-continuity) =⇒ semi-continuity

(6) In τ∗ = PO(X),

continuity =⇒ α-continuity =⇒ m-continuity =⇒ precontinuity
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