ON M-CONTINUITY

Won Keun Min and Hong Soon Chang

ABSTRACT. In this paper, we introduce a new class of sets, called m-sets, and the notion of m-continuity. In particular, m-sets and m-continuity are used to extend known results for α -continuity and semi-continuity and precontinuity.

1. Introduction

Let X, Y and Z be topological spaces on which no separation axioms are assumed unless explicity stated. Let S be a subset of X. The closure (resp. interior, boundary) of S will be denoted by S^- (resp. $S^0, b(S)$). A subset S of X is called semi-open set[1] (resp. preopen set[2], α -set[3]) if $S \subset S^{0-}$ (resp. $S \subset S^{-0}, S \subset S^{0-0}$). The complement of a semi-open set (resp. preopen set, α -set) is called semi-closed set (resp. preclosed set, α -closed set). The family of all semi-open sets (resp. preopen sets, α -sets) in X will be denoted by SO(X) (resp. $PO(X), \alpha(X)$). A function $f: X \to Y$ is called semi-continuous[1] (resp. precontinuous[2], α -continuous [4]) if $f^{-1}(V) \in SO(X)$ (resp. $f^{-1}(V) \in PO(X), f^{-1}(V) \in \alpha(X)$ for each open set V of Y).

A subclass $\tau^* \subset P(X)$ is called a supratopology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union. (X,τ^*) is called a supratopological space. The members of τ^* are called supraopen sets[5]. Let (X,τ) be a topological space and τ^* be a supratopology on X. We call τ^* a supratopology associated with τ if $\tau \subset \tau^*$. Let (X,τ^*) be a supratopological space and (Y,μ) be a topological space. A function $f:X\to Y$ is an S-continuous function if the inverse image of each open set in Y is a supraopen set in X[5]. Let (X,τ^*) and (Y,μ^*) be supratopological spaces. A function $f:X\to Y$ is an S^* -continuous

Received June 24, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 54C08, 54A10.

Key words and phrases: m-sets, τ_m , m-topology, m-continuous.

function if the inverse image of each supraopen set in Y is a supraopen set in X[5].

2. m-sets induced by a supratopology

DEFINITION 2.1. Let (X, τ^*) be a supratopological space. A subset A of X is called an m-set with τ^* if $A \cap T \in \tau^*$ for all $T \in \tau^*$.

The class of all m-sets with τ^* will be denoted by τ_m .

EXAMPLE 2.2. Let $X = \{a, b, c, d\}$ and $\tau^* = \{\emptyset, X, \{a\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}\}$. Then $\tau_m = \{\emptyset, X, \{a\}, \{b, c, d\}\}$.

REMARK. Let (X, τ) be a topological space. Since SO(X) is closed with repect to arbitrary union, SO(X) is a supratopology on X. For any α -set A in X, $A \cap B \in SO(X)$ for all $B \in SO(X)$. Thus A is an m-set with SO(X). That is, $\alpha(X)$ is τ_m with SO(X).

LEMMA 2.3. Let (X, τ^*) be a supratopological space. Then the class τ_m of all m-sets with τ^* is contained τ^* .

Proof. Let A be an m-subset with τ^* . And X is an element of τ^* . Now we take that $X \cap A = A$ belongs to the supratopology τ^* , by the definition of m-sets.

THEOREM 2.4. Let (X, τ^*) be a supratopological space. Then the class τ_m of all m-sets with τ^* is a supratopology.

Proof. Let $\{A_{\alpha}\}$ be a class of members of τ_m . By definitions of the m-set and the supratopology, $(\cup A_{\alpha}) \cap T = \cup (A_{\alpha} \cap T) \in \tau^*$ for all $T \in \tau^*$. Thus the union $\cup A_{\alpha}$ also belongs to τ_m .

THEOREM 2.5. Let (X, τ^*) be a supratopological space with $\emptyset \in \tau^*$. If a subset A of X is a singleton set and $A \in \tau^*$, then A is an m-set.

Proof. Since $A \in \tau^*$ is a singleton set, $A \cap B = \emptyset$ or A for $B \in \tau^*$. Thus A is an m-set.

We obtain the following, by definition of m-set.

THEOREM 2.6. Let (X, τ^*) be a supratopological space. If T is any supraopen set of τ^* in X and A is an m-set with τ^* , then $T \cap A$ is also a supraopen set.

COLORALLY 2.7. Let (X, τ) be a topological space and $\tau^* = PO(X)$. If $A \in \alpha(X)$ and $B \in PO(X)$, then $A \cap B \in PO(X)$.

Proof. Since $\alpha(X) \subset SO(X) \cap PO(X)$, $\alpha(X)$ is a subclass of *m*-sets with PO(X), and it obtained by Theorem 2.6.

THEOREM 2.8. Let (X, τ^*) be a supratopological space with $\emptyset \in \tau^*$. Then the class τ_m of all m-subsets of X is a topology on X.

Proof. Since $\emptyset \cap T = \emptyset \in \tau^*$ and $X \cap T = T \in \tau^*$ for all $T \in \tau^*$, \emptyset and $X \in \tau_m$.

Suppose $A, B \in \tau_m$. By definition of m-set, we obtain $B \cap T \in \tau^*$ and $A \cap (B \cap T) \in \tau^*$ for all $T \in \tau^*$. Thus $(A \cap B) \in \tau_m$.

And by Theorem 2.4., the proof is completed. \Box

Now the class τ_m is called an m-topology with τ^* and the members of τ_m are called m-open sets. A subset B of X is called an m-closed set if the complement of B is an m-open set. Thus the intersection of any family of m-closed sets is a m-closed set and the union of finitely many m-closed sets is an m-closed set.

In case τ_m is an m-topology with τ^* on X, the topological space (X, τ_m) with τ^* will be denoted by (X, τ_m, τ^*) .

REMARK. In a space (X, τ) , if τ^* is an associated supratopology with τ , an m-set need not be an open set, and vice versa.

Example 2.9.

Let $X = \{a, b, c, d\}$. Consider $\tau = \{\emptyset, X, \{a, b\}\}$ and $\tau^* = \{\emptyset, X, \{a, b\}, \{b, d\}, \{a, b, d\}\}$. Then τ^* is a supratopoogy associated with τ and $\{a, b, d\}$ is an m-set but it is not an open set. And $\{a, b\}$ is an open set but it is not an m-set.

DEFINITION 2.10. Let (X, τ_m, τ^*) be an m-topological space.

- (1) The m-interior of A is defined as the union of all m-open sets contained in A. The m-interior of A is denoted by mint A.
- (2) The m-closure of A is defined as the intersection of all m-closed sets containing A. The m-closure of A is denoted by mclA.

By the above definitions, we obtain the following properties.

THEOREM 2.11. Let (X, τ_m, τ^*) be an m-topological space and A be a subset of X.

- (1) A is m-open if and only if A = mint A.
- (2) A is m-closed if and only if A = mclA.
- (3) mcl(mclA) = mclA and mint(mintA) = mintA.
- (4) $A \subset B$ implies $mclA \subset mclB$.
- (5) $mclA \cup mclB = mcl(A \cup B)$.

3. m-continuity

DEFINITION 3.1. Let (X, τ_m, τ^*) be an m-topological space and (Y, μ) be a topological space. A mapping $f: X \to Y$ is called an m-continuous if the inverse image of each open set of Y is an m-open set in X.

Remark. In general, there is no relation between the continuity and the m-continuity.

EXAMPLE 3.2. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}\}$ and $\mu = \{\emptyset, X, \{a, b, d\}\}$. Now we take a supratopology $\tau^* = \{\emptyset, X, \{a, b\}, \{b, d\}, \{a, b, d\}\}$ for τ . Then $\tau_m = \{\emptyset, X, \{a, b, d\}\}$. Let $f : (X, \tau, \tau^*) \to (X, \tau)$ be the identity function. Then f is continuous but it is not m-continuous. And if $f : (X, \tau, \tau^*) \to (X, \mu)$ be the identity function. Then f is m-continuous but it is not continuous.

THEOREM 3.3. Let (X, τ_m, τ^*) be an m-topological spaces and (Y, μ) be a topological spaces. If $f: (X, \tau_m, \tau^*) \to (Y, \mu)$ is a mapping, then the following statements are equivalent:

(1) f is an m-continuous.

- (2) The inverse image of each closed set in Y is m-closed.
- (3) For each $x \in X$, and each open set $V \subset Y$ containing f(x), there exists $W \in \tau_m$ such that $x \in W$, $f(W) \subset V$.
- (4) $f(mclA) \subset clf(A)$ for every $A \subset X$.
- (5) $mcl(f^{-1}(B)) \subset f^{-1}(cl(B))$ for every $B \subset Y$.

Proof. (1) \Rightarrow (2). Let B be closed in Y. Since Y - B is open in Y and $X - f^{-1}(B)$ is m-open, thus $f^{-1}(B)$ is m-closed.

- $(2)\Rightarrow(1)$. Let V be open in Y. Since Y-V is closed in Y and $X-f^{-1}(V)$ is m-closed, $f^{-1}(V)$ is m-open.
- $(1)\Rightarrow(3)$. For each $x\in X$, and each open set V containing f(x). Set $W=f^{-1}(V)$. Then W is m-open, $x\in W$, and $f(W)\subset V$.
- $(3)\Rightarrow (4)$. We will show that for each $b \in mclA$, $f(b) \in cl(f(A))$. Let V be an open neighborhood of f(b), then there exists $W \in \tau_m$ such that $b \in W$ and $f(W) \subset V$. Since $b \in mclA$, $W \cap A \neq \emptyset$. $f(W \cap A) \neq \emptyset$ and $f(W) \cap f(A) \neq \emptyset$. Thus $V(f(b)) \cap f(A) \neq \emptyset$ and $f(b) \in cl(f(A))$.
- $(4)\Rightarrow(5)$. Let $A=f^{-1}(B)$ for $B\subset Y$. Then $f(mcl(A))\subset cl(f(A))\subset cl(B)$, and $mcl(f^{-1}(B))\subset f^{-1}(cl(B))$.
- $(5)\Rightarrow(2)$. Let $B\subset Y$ be closed. Then $mcl(f^{-1}(B))\subset f^{-1}(cl(B))=f^{-1}(B)$, and $f^{-1}(B)$ is an m-closed set.

REMARK. If $f:(X,\tau_m,\tau^*)\to (Y,\mu)$ is an m-continuous function and $g:(Y,\mu)\to (Z,\nu)$ is a continuous function, then $g\circ f$ is m-continuous.

LEMMA 3.4. Let $f:(X,\tau)\to (Y,\mu)$ be an α -continuous function. Then

- (1) For each subset A of X, $f(cl_{\alpha}(A)) \subset (f(A))^{-}$ if and only if $f(A^{-0-}) \subset (f(A))^{-}$.
- (2) For each subset B of Y, $cl_{\alpha}(f^{-1}(B)) \subset f^{-1}(B^{-})$ if and only if $(f^{-1}(B))^{-0-} \subset f^{-1}(B^{-})$.

Proof. Since $cl_{\alpha}(A) = A \cup cl(int(cl(A)))$, the properties are proved obviously.

By Theorem 3.3 and Lemma 3.4, easily we get the following properties.

COROLLARY 3.5. Let $f:(X,\tau_m,SO(X))\to (Y,\mu)$ is a function, the followings are equivalent:

- (1) f is α -continuous.
- (2) The inverse image of each closed set in Y is m-closed set.
- (3) For each $x \in X$, and each open set $V \subset Y$ containing f(x), there exists $W \in \tau_m$ such that $x \in W$, $f(W) \subset V$.
- (4) $f(A^{-0-}) \subset cl(f(A))$ for every $A \subset X$.
- (5) $(f^{-1}(B))^{-0-} \subset f^{-1}(cl(B))$ for every $B \subset Y$.

DEFINITION 3.6. A function $f:(X,\tau_m,\tau^*)\to (Y,\mu_m,\mu^*)$ is an mS-continuous function if the inverse image of each m-set in Y is a supraopen set in X.

The following theorem is a straightforward result of Mashhour (Theorem 2.1.[5]).

THEOREM 3.7. Let $f:(X,\tau,\tau^*)\to (Y,\mu,\mu^*)$ be a function. Then the followings are equivalent:

- (1) f is an mS-continuous.
- (2) The inverse image of each m-closed set in Y is a supraclosed set.
- (3) $(f^{-1}(V))^{sc} \subset f^{-1}(mcl(V))$, for every $V \subset Y$.
- (4) $f(U^{sc}) \subset mcl(f(U))$, for every $U \subset X$.
- (5) For any point $x \in X$ and any m-open set V of Y containing f(x), there exists $U \in \tau^*$ such that $x \in U$ and $f(U) \subset V$.

REMARK. Let $f:(X,\tau,\tau^*)\to (Y,\mu,\mu^*)$ be a function. Then we can get the following diagrams :

- (1) m-continuity \Longrightarrow S-continuity
- (2) S^* -continuity $\Longrightarrow mS$ -continuity
- (3) In $\tau \subset \tau_m$,

continuity \implies m-continuity \implies S-continuity

(4) In $\tau \subset \tau_m$ and $\mu \subset \mu_m$,

m-continuity \Longrightarrow S-continuity \longleftarrow mS-continuity \longleftarrow S^* -continuity

(5) In
$$\tau^* = SO(X)$$
,

continuity $\Longrightarrow m$ -continuity (= α -continuity) \Longrightarrow semi-continuity

(6) In
$$\tau^* = PO(X)$$
,

continuity $\Longrightarrow \alpha$ -continuity $\Longrightarrow m$ -continuity \Longrightarrow precontinuity

References

- 1. N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Monthly **70** (1963), 36-41.
- A.S.Mashhour, M.E.Abd El-Monsef and S.N.El.Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 51 (1981a), 47– 53.
- 3. O. Njastad, On some classes of nearly open sets, pacific journal of mathematics **15** (1964), 961–970.
- 4. A.S.Mashhour. I.A.Hasanein and S.N.El-deeb, α -cotinuous and α -open mappings, Acta Math. Hung. **41** (1983), 213-218.
- 5. A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supratopological spaces, Indian J. Pure Appl. Math 14 (1983), 502-510.

Department of Mathematics Kangwon National University Chuncheon, 200-701, Korea

E-mail: wkmin@cc.kangwon.ac.kr