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SUBSERIES CONVERGENCE AND
SEQUENCE-EVALUATION CONVERGENCE

Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo

Abstract. We show a series of improved subseries convergence
results, e.g., in a sequentially complete locally convex space X every

weakly c0-Cauchy series on X must be c0-convergent. Thus, if X

contains no copy of c0, then every weakly c0-Cauchy series on X
must be subseries convergent.

Let X be a locally convex space. A series
∑

xj on X is said to be
weakly c-convergent if for every {tj} ∈ c the series

∑∞
j=1 tjxj converges

in (X, weak), i.e., for every {tj} ∈ c there is an x0 ∈ X such that

∞∑
j=1

tjf(xj) = lim
n→∞

f(
n∑

j=1

tjxj) = f(x0)

for each f ∈ X ′, the dual of X(= the family of continuous linear
functionals on X). In this case, x0 is the weak sum of the series

∑
tjxj

and we write x0 = w−
∑∞

j=1 tjxj . Similarly a series
∑

xj on X is said
to be c-convergent if for every {tj} ∈ c the series

∑∞
j=1 tjxj converges

in X.
Since c0 ⊆ c, if

∑
xj is weakly c-convergent then

∑
xj is weakly c0-

convergent and, by the Orlicz-Pettis theorem,
∑

xj is c0-convergent.
Therefore we have

Proposition 1. If
∑

xj is weakly c-convergent, then for all f ∈ X ′

(∗)
∞∑

j=1

|f(xj)| < +∞.
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Proof. See [1], Theorem 2. �

Of course, if
∑

xj is (weakly) c0-convergent, then (∗) holds and the
converse is true if X is sequentially complete.

Note that with the norm ‖{tj}‖∞ = supj |tj |, c0, c and l∞ are
Banach spaces. For a locally convex space X, let σ(X, X ′), τ(X, X ′)
and β(X, X ′) denote the weak topology, the Mackey topology and the
strong topology, respectively. τ(X, X ′) is just the topology of uniform
convergence on weak* (σ(X ′, X)) compact balanced convex sets in X ′

and β(X, X ′) is just the topology of uniform convergence on weak*
bounded sets in X ′. If (X, ‖ · ‖) is a Banach space, then τ(X, X ′) =
β(X, X ′) = ‖ · ‖ by the Banach-Alaoglu theorem (see [2]).

For a locally convex space X (with the locally convex topology µ)
and an operator T : c → X we say that T is continuous means T
is ‖ · ‖ − µ continuous. But µ ≤ τ(X, X ′) ≤ β(X, X ′) so ‖ · ‖ −
β(X, X ′) continuity is stronger than continuity (= ‖·‖∞−µ continuity).
However, by the Hellinger-Toeplitz theorem, if (Y, ‖ · ‖) is a Banach
space and T : Y → X is continuous, i.e., ‖ · ‖ − µ continuous, then
T is ‖ · ‖ − β(X, X ′) continuous because β(Y, Y ′) = ‖ · ‖. Thus, for
T : c → X, the continuity of T is equivalent to the ‖ · ‖∞ − β(X, X ′)
continuity.

It is well known that if
∑

xj is a (weakly) c0-convergent series on
a locally convex space X, then letting T{tj} =

∑∞
j=1 tjxj for each

{tj} ∈ c0, T is ‖ ·‖∞−β(X, X ′) continuous linear operator and, hence,
T is ‖ · ‖∞ − β(X, X ′) continuous. Note that in this case the series∑∞

j=1 tjxj converges with respect to the original topology on X and
the more strong τ(X, X ′), the Mackey topology. But in the case of
c-convergence, a weakly c-convergent series need not be c-convergent.
The following result shows that weakly c-convergent series also gives
‖ · ‖∞ − β(X, X ′) continuous operators.

Theorem 2. Let X be a locally convex space and
∑

xj a weakly c-
convergent series on X. Define T : c → X by T{tj} = w −

∑∞
j=1 tjxj ,

{tj} ∈ c. Then T is a continuous linear operator and, hence, T is
‖ · ‖∞ − β(X, X ′) continuous.
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Proof. If {tj} ∈ c, then

∞∑
j=1

tjf(xj) = lim
n

n∑
j=1

tjf(xj) = lim
n

f(
n∑

j=1

tjxj) = f(w −
∞∑

j=1

tjxj)

for all f ∈ X ′. Suppose that limα{tαj} = {tj} in (c,weak). It is well
known that f ∈ c′ if and only if there exists a γ ∈ C and a

{γj} ∈ l1 = {{δj} :
∞∑

j=1

|δj | < +∞}

such that

f{sj} = γ lim
j

sj +
∞∑

j=1

γjsj

for {sj} ∈ c. Therefore,

lim
α

[γ lim
j

tαj ] + lim
α

∞∑
j=1

tαjγj = γ lim
j

tj +
∞∑

j=1

tjγj

for every γ ∈ C and {γj} ∈ c. Letting γ = 0, we then have
limα

∑∞
j=1 tαjγj =

∑∞
j=1 tjγj for all {γj} ∈ l1.

Now let f ∈ X ′ be arbitrary. By Proposition 1, {f(xj)} ∈ l1.
Therefore,

lim
α

f(T{tαj}) = lim
α

f(w −
∞∑

j=1

tαjxj) = lim
α

∞∑
j=1

tαjf(xj) =
∞∑

j=1

tjf(xj)

= f(w −
∞∑

j=1

tjxj) = f(T{tj}).

This shows that T is weak-weak continuous. By the Hellinger-Toeplitz
theorem ([2], P. 169, Corollary. 6), T is β(c, c′)−β(X, X ′) continuous.
But β(c, c′) = ‖ · ‖∞ so T is ‖ · ‖∞ − β(X, X ′) continuous. �
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A series
∑

xj on a locally convex space X is said to be weakly c-
Cauchy if for every {tj} ∈ c, {

∑n
j=1 tjxj}∞n=1 is a Cauchy sequence in

(X, weak), i.e., for each f ∈ X ′,

{
n∑

j=1

tjf(xj)}∞n=1 = {f(
n∑

j=1

tjxj)}∞n=1

is a Cauchy sequence in C. Clearly,
∑

xj is weakly c-Cauchy if and
only if for every {tj} ∈ c and f ∈ X ′ the series

∑∞
j=1 tjf(xj) converges.

The following result shows that a weakly c-Cauchy series on a sequen-
tially complete locally convex space must be c0-convergent. Note that
Banach spaces are sequentially complete locally convex spaces.

Theorem 3. Let X be a sequentially complete locally convex space.
If a series

∑
xj on X is weakly c-Cauchy, then

∑
xj is c0-convergent,

i.e., for each {tj} ∈ c0 the series
∑n

j=1 tjxj converges.

Proof. Suppose
∑∞

j=1 |f(xj)| = +∞ for some f ∈ X ′. There is an
integer n1 > 1 such that

∑n1
j=1 |f(xj)| > 1. There is an integer n2 > n1

such that
∑n2

j=1 |f(xj)| >
∑n1

j=1 |f(xj)|+ 2. There is an n3 > n2 such
that

∑n3
j=1 |f(xj)| >

∑n2
j=1 |f(xj)|+3. Continuing this construction we

have an integer sequence 1 = n0 < n1 < n2 < n3 < · · · such that

nk+1∑
j=nk+1

|f(xj)| > k + 1, k = 0, 1, 2, 3, · · · .

Let t1 = 0, tj = 1
k+1sgn f(xj), nk < j ≤ nk+1, k = 0, 1, 2, 3, · · · . Then

tj → 0 so {tj} ∈ c0 ⊆ c. But

N∑
j=1

tjf(xj) =
∞∑

j=2

tjf(xj) =
N∑

k=0

nk+1∑
j=nk+1

1
k + 1

(sgn f(xj))f(xj)

=
N∑

k=0

1
k + 1

nk+1∑
j=nk+1

|f(xj)| >
N∑

k=0

1 = N + 1,
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for all N ∈ N, i.e.,
∑∞

j=1 tjf(xj) diverges. This contradicts that
∑

xj

is weakly c-Cauchy. So
∑∞

j=1 |f(xj)| < +∞, foa all f ∈ X ′. Let

A =


n∑

j=1

αjxj : n ∈ N, |α| ≤ 1, 1 ≤ j ≤ n

 .

For every f ∈ X ′,∣∣∣∣∣∣f(
n∑

j=1

αjxj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

αjf(xj)

∣∣∣∣∣∣ ≤
n∑

j=1

|αj ||f(xj)|

≤
n∑

j=1

|f(xj)| ≤
∞∑

j=1

|f(xj)| < +∞,

for all
∑n

j=1 αjxj ∈ A. This shows that A is weakly bounded and,
hence, bounded by the Mackey theorem ([2], p.114, Theorem 1).

Now suppose that {tj} ∈ c0, i.e., tj → 0. Without loss of generality,
we assume that for all j0 there exists j > j0 such that tj 6= 0. Let U
be a neighborhood of 0 ∈ X. Letting αk = supj≥k|tj |, αk → 0. Since
A is bounded, there is a δ > 0 such that αA ⊆ U for all |α| ≤ δ. Since
αk → 0, there is a k0 ∈ N such that if k ≥ k0, then |αk| ≤ δ. Therefore,
if m > k ≥ k0, then

m∑
j=k

tjxj = αk

m∑
j=k

tj
αk

xj

= αk

0x1 + 0x2 + · · ·+ 0xk−1 +
m∑

j=k

tj
αk

xj


∈ αkA ⊆ U.

This shows that {
∑n

j=1 tjxj}∞n=1 is Cauchy and, hence, the series∑∞
j=1 tjxj converges because X is sequentially complete. �
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Theorem 4. Let X be a sequentially complete locally convex space.
For a series

∑
xj on X, the following conditions are equivalent.

(1)
∑

xj is a weakly unconditional Cauchy series, i.e., for all f ∈
X ′,

∑∞
j=1 |f(xj)| < +∞.

(2) For every {tj} ∈ l∞, {
∑

j∈∆ tjxj : ∆ ⊆ N finite} is bounded.

(3)
∑

xj is c0-convergent, i.e., for every {tj} ∈ c0, the series∑∞
j=1 tjxj converges.

(4)
∑

xj is weakly c0-Cauchy, i.e., the series
∑∞

j=1 tjf(xj) con-

verges for every {tj} ∈ c0 and f ∈ X ′.
(5)

∑
xj is weakly c-Cauchy, i.e., the series

∑∞
j=1 tjf(xj) converges

for every {tj} ∈ c and f ∈ X ′.
(6) {

∑n
j=1 tjxj : n ∈ N, |tj | ≤ 1, 1 ≤ j ≤ n} is bounded.

Proof. By Theorem 2 of [1], (1)=(2)=(3) since X is sequentially
complete. Since c0 ⊆ c, (5)⇒(4). As in the proof of Theorem
3, (4) ⇒ (1) ⇒ (6) ⇒ (3) ⇒ (4). So (1)=(2)=(3)=(4)=(6) and
(5)⇒(4). Suppose (4) holds. Then (1) holds because (1)=(4), i.e.,∑∞

j=1 |f(xj)| < +∞, for all f ∈ X ′. Since {tj} ∈ c ⇒ {tj} is bounded,

∞∑
j=1

|tjf(xj)| =
∞∑

j=1

|tj ||f(xj)| ≤ supj |tj |
∞∑

j=1

|f(xj)| < +∞.

This shows that
∑∞

j=1 tjf(xj) converges for all {tj} ∈ c. �

Corollary 5. If X is a sequentially complete locally convex space,
then (1)=(2)=(3)=(4)=(5)=(6)=(7)=(8)=(9)=(10).
(7)

∑∞
j=1 |tjf(xj)| < +∞, for all {tj} ∈ c0, f ∈ X ′.

(8)
∑∞

j=1 |tjf(xj)| < +∞, for all {tj} ∈ c, f ∈ X ′.

(9)
∑∞

j=1 |tjf(xj)| < +∞, for all {tj} ∈ l∞, f ∈ X ′.

(10)
∑∞

j=1 tjf(xj) converges for every {tj} ∈ l∞, and f ∈ X ′.

Proof. {tj} ∈ l∞ ⇒ {tj sgn f(xj)} ∈ l∞, so (9)=(10).
(1)⇒(9)⇒(8)⇒(7)⇒(4)⇒(1). �

Now we give the main result of this paper.
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Theorem 6. Let X be a sequentially complete locally convex space.
The following conditions are equivalent.

(a) X contains no copy of c0.
(b) Each weakly c0-Cauchy series on X is c-convergent, i.e., if∑∞

j=1 tjf(xj) converges for every {tj} ∈ c0 and f ∈ X ′, then∑∞
j=1 tjxj converges for each {tj} ∈ c.

(c) Each weakly c-Cauchy series on X is c-convergent, i.e., if∑∞
j=1 tjf(xj) converges for every {tj} ∈ c and f ∈ X ′, then∑∞
j=1 tjxj converges for each {tj} ∈ c.

Proof. (a)⇒(b). Suppose
∑∞

j=1 αjf(xj) converges for every {αj} ∈
c0 and f ∈ X ′. Let {tj} ∈ c. Then αjtj → 0 for each {αj} ∈ c0

so
∑∞

j=1 αjf(tjxj) converges for every {αj} ∈ c0 and f ∈ X ′. By
theorem 4 ((3)=(4)),

∑∞
j=1 αjtjxj converges for each {αj} ∈ c0, i.e.,

{tjxj} ∈ CMC(X) (see [3]). Since X contains no copy of c0, by
Theorem 4 of [3],

∑∞
j=1 tjxj converges, i.e., (b) holds.

(b)⇒(c) : c0 ⊆ c.
(c)⇒(a). Suppose X contains a copy of c0. Say that c0 ⊆ X. Let ej

denotes the sequence that has 1 at the j-th spot and 0 elsewhere, i.e.,
ej = (0, · · · , 0, 1, 0, 0, · · · ). For every {tj} ∈ c and f = {αj} ∈ l1 = c′0,

n∑
j=1

|tjf(ej)| =

∣∣∣∣∣∣
n∑

j=1

f(tjej)

∣∣∣∣∣∣ =

∣∣∣∣∣∣f(
n∑

j=1

tjej)

∣∣∣∣∣∣
= |f(t1, t2, · · · , tn, 0, 0, · · · )| =

∣∣∣∣∣∣
n∑

j=1

tjαj

∣∣∣∣∣∣
≤

n∑
j=1

|tj ||αj | ≤ supj |tj |
n∑

j=1

|αj |

≤ supj |tj |
n∑

j=1

|αj | < +∞,

for all n ∈ N, i.e., for every {tj} ∈ c and f ∈ c′0,
∑∞

j=1 tjf(ej) converges.
However, letting tj = 1 for all j, {tj} = {1} ∈ c but the series

∑∞
j=1 ej
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diverges in c0 :

‖
n∑

j=m

ej‖∞ = ‖(0, · · · , 0, 1, 1, , · · · , 1, 0, 0, · · · )‖∞ = 1

for all 1 ≤ m < n < +∞. If limn

∑n
j=1 ej = x ∈ X\c0, then

lim
m,n→∞

‖
n∑

j=m

ej‖∞ = 0.

So
∑∞

j=1 ej diverges in X. This contradicts (c). �

Corollary 7. If a sequentially complete locally convex space X
contains no copy of c0, then every weakly c-convergent series on X is
c-convergent.

By Theorem 4 of [3], we have

Theorem 8. Let X be a sequentially complete locally convex space.
The followings are equivalent.

(1◦) X contains no copy of c0.
(2◦) Each weakly c0-Cauchy series on X is bounded multiplier con-

vergent, i.e., if
∑∞

j=1 tjf(xj) converges for every {tj} ∈ c0 and

f ∈ X ′, then
∑∞

j=1 tjxj converges for each {tj} ∈ l∞, the fam-
ily of bounded number sequences.

Proof. (1◦)⇒(b). So if
∑∞

j=1 tjf(xj) converges for every {tj} ∈ c0

and f ∈ X ′, then {xk} ∈ CMC(X) but (1◦)⇒ CMC(X) = BMC(X)
by Theorem 4 of [3]. �
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