Kangweon-Kyungki Math. Jour. 6 (1998), No. 2, pp. 331-339

SUBSERIES CONVERGENCE AND SEQUENCE-EVALUATION CONVERGENCE

MIN-HYUNG CHO, HONG TAEK HWANG AND WON SOK YOO

ABSTRACT. We show a series of improved subseries convergence results, e.g., in a sequentially complete locally convex space X every weakly c_0 -Cauchy series on X must be c_0 -convergent. Thus, if X contains no copy of c_0 , then every weakly c_0 -Cauchy series on X must be subseries convergent.

Let X be a locally convex space. A series $\sum x_j$ on X is said to be weakly c-convergent if for every $\{t_j\} \in c$ the series $\sum_{j=1}^{\infty} t_j x_j$ converges in (X, weak), i.e., for every $\{t_j\} \in c$ there is an $x_0 \in X$ such that

$$\sum_{j=1}^{\infty} t_j f(x_j) = \lim_{n \to \infty} f(\sum_{j=1}^n t_j x_j) = f(x_0)$$

for each $f \in X'$, the dual of X(= the family of continuous linear functionals on X). In this case, x_0 is the weak sum of the series $\sum t_j x_j$ and we write $x_0 = w - \sum_{j=1}^{\infty} t_j x_j$. Similarly a series $\sum x_j$ on X is said to be *c*-convergent if for every $\{t_j\} \in c$ the series $\sum_{j=1}^{\infty} t_j x_j$ converges in X.

Since $c_0 \subseteq c$, if $\sum x_j$ is weakly *c*-convergent then $\sum x_j$ is weakly c_0 -convergent and, by the Orlicz-Pettis theorem, $\sum x_j$ is c_0 -convergent. Therefore we have

PROPOSITION 1. If $\sum x_j$ is weakly *c*-convergent, then for all $f \in X'$

$$(*) \qquad \qquad \sum_{j=1}^{\infty} |f(x_j)| < +\infty.$$

Received June 29, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 46A45.

Key words and phrases: subseries convergence.

This research was supported by Dong-Il Scholarship and Cultural Foundation, 1997

Proof. See [1], Theorem 2.

Of course, if $\sum x_j$ is (weakly) c_0 -convergent, then (*) holds and the converse is true if X is sequentially complete.

Note that with the norm $||\{t_j\}||_{\infty} = sup_j|t_j|$, c_0 , c and l^{∞} are Banach spaces. For a locally convex space X, let $\sigma(X, X')$, $\tau(X, X')$ and $\beta(X, X')$ denote the weak topology, the Mackey topology and the strong topology, respectively. $\tau(X, X')$ is just the topology of uniform convergence on weak* ($\sigma(X', X)$) compact balanced convex sets in X'and $\beta(X, X')$ is just the topology of uniform convergence on weak* bounded sets in X'. If $(X, \|\cdot\|)$ is a Banach space, then $\tau(X, X') =$ $\beta(X, X') = \|\cdot\|$ by the Banach-Alaoglu theorem (see [2]).

For a locally convex space X (with the locally convex topology μ) and an operator $T : c \to X$ we say that T is continuous means T is $\|\cdot\| - \mu$ continuous. But $\mu \leq \tau(X, X') \leq \beta(X, X')$ so $\|\cdot\| - \beta(X, X')$ continuity is stronger than continuity (= $\|\cdot\|_{\infty} - \mu$ continuity). However, by the Hellinger-Toeplitz theorem, if $(Y, \|\cdot\|)$ is a Banach space and $T : Y \to X$ is continuous, i.e., $\|\cdot\| - \mu$ continuous, then T is $\|\cdot\| - \beta(X, X')$ continuous because $\beta(Y, Y') = \|\cdot\|$. Thus, for $T : c \to X$, the continuity of T is equivalent to the $\|\cdot\|_{\infty} - \beta(X, X')$ continuity.

It is well known that if $\sum x_j$ is a (weakly) c_0 -convergent series on a locally convex space X, then letting $T\{t_j\} = \sum_{j=1}^{\infty} t_j x_j$ for each $\{t_j\} \in c_0, T$ is $\|\cdot\|_{\infty} - \beta(X, X')$ continuous linear operator and, hence, T is $\|\cdot\|_{\infty} - \beta(X, X')$ continuous. Note that in this case the series $\sum_{j=1}^{\infty} t_j x_j$ converges with respect to the original topology on X and the more strong $\tau(X, X')$, the Mackey topology. But in the case of c-convergence, a weakly c-convergent series need not be c-convergent. The following result shows that weakly c-convergent series also gives $\|\cdot\|_{\infty} - \beta(X, X')$ continuous operators.

THEOREM 2. Let X be a locally convex space and $\sum x_j$ a weakly cconvergent series on X. Define $T: c \to X$ by $T\{t_j\} = w - \sum_{j=1}^{\infty} t_j x_j$, $\{t_j\} \in c$. Then T is a continuous linear operator and, hence, T is $\|\cdot\|_{\infty} - \beta(X, X')$ continuous.

Proof. If $\{t_j\} \in c$, then

$$\sum_{j=1}^{\infty} t_j f(x_j) = \lim_n \sum_{j=1}^n t_j f(x_j) = \lim_n f(\sum_{j=1}^n t_j x_j) = f(w - \sum_{j=1}^{\infty} t_j x_j)$$

for all $f \in X'$. Suppose that $\lim_{\alpha} \{t_{\alpha j}\} = \{t_j\}$ in (c, weak). It is well known that $f \in c'$ if and only if there exists a $\gamma \in \mathbb{C}$ and a

$$\{\gamma_j\} \in l^1 = \{\{\delta_j\} : \sum_{j=1}^{\infty} |\delta_j| < +\infty\}$$

such that

$$f\{s_j\} = \gamma \lim_j s_j + \sum_{j=1}^{\infty} \gamma_j s_j$$

for $\{s_j\} \in c$. Therefore,

$$\lim_{\alpha} [\gamma \lim_{j} t_{\alpha j}] + \lim_{\alpha} \sum_{j=1}^{\infty} t_{\alpha j} \gamma_j = \gamma \lim_{j} t_j + \sum_{j=1}^{\infty} t_j \gamma_j$$

for every $\gamma \in \mathbb{C}$ and $\{\gamma_j\} \in c$. Letting $\gamma = 0$, we then have $\lim_{\alpha} \sum_{j=1}^{\infty} t_{\alpha j} \gamma_j = \sum_{j=1}^{\infty} t_j \gamma_j$ for all $\{\gamma_j\} \in l^1$. Now let $f \in X'$ be arbitrary. By Proposition 1, $\{f(x_j)\} \in l^1$.

Therefore,

$$\lim_{\alpha} f(T\{t_{\alpha j}\}) = \lim_{\alpha} f(w - \sum_{j=1}^{\infty} t_{\alpha j} x_j) = \lim_{\alpha} \sum_{j=1}^{\infty} t_{\alpha j} f(x_j) = \sum_{j=1}^{\infty} t_j f(x_j)$$
$$= f(w - \sum_{j=1}^{\infty} t_j x_j) = f(T\{t_j\}).$$

This shows that T is weak-weak continuous. By the Hellinger-Toeplitz theorem ([2], P. 169, Corollary. 6), T is $\beta(c, c') - \beta(X, X')$ continuous. But $\beta(c, c') = \|\cdot\|_{\infty}$ so T is $\|\cdot\|_{\infty} - \beta(X, X')$ continuous.

Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo

A series $\sum x_j$ on a locally convex space X is said to be weakly c-Cauchy if for every $\{t_j\} \in c, \{\sum_{j=1}^n t_j x_j\}_{n=1}^\infty$ is a Cauchy sequence in (X, weak), i.e., for each $f \in X'$,

$$\{\sum_{j=1}^{n} t_j f(x_j)\}_{n=1}^{\infty} = \{f(\sum_{j=1}^{n} t_j x_j)\}_{n=1}^{\infty}$$

is a Cauchy sequence in \mathbb{C} . Clearly, $\sum x_j$ is weakly *c*-Cauchy if and only if for every $\{t_j\} \in c$ and $f \in X'$ the series $\sum_{j=1}^{\infty} t_j f(x_j)$ converges. The following result shows that a weakly *c*-Cauchy series on a sequentially complete locally convex space must be c_0 -convergent. Note that Banach spaces are sequentially complete locally convex spaces.

THEOREM 3. Let X be a sequentially complete locally convex space. If a series $\sum x_j$ on X is weakly c-Cauchy, then $\sum x_j$ is c_0 -convergent, i.e., for each $\{t_j\} \in c_0$ the series $\sum_{j=1}^n t_j x_j$ converges.

Proof. Suppose $\sum_{j=1}^{\infty} |f(x_j)| = +\infty$ for some $f \in X'$. There is an integer $n_1 > 1$ such that $\sum_{j=1}^{n_1} |f(x_j)| > 1$. There is an integer $n_2 > n_1$ such that $\sum_{j=1}^{n_2} |f(x_j)| > \sum_{j=1}^{n_1} |f(x_j)| + 2$. There is an $n_3 > n_2$ such that $\sum_{j=1}^{n_3} |f(x_j)| > \sum_{j=1}^{n_2} |f(x_j)| + 3$. Continuing this construction we have an integer sequence $1 = n_0 < n_1 < n_2 < n_3 < \cdots$ such that

$$\sum_{j=n_k+1}^{n_{k+1}} |f(x_j)| > k+1, \quad k = 0, 1, 2, 3, \cdots.$$

Let $t_1 = 0$, $t_j = \frac{1}{k+1} sgn f(x_j)$, $n_k < j \le n_{k+1}$, $k = 0, 1, 2, 3, \cdots$. Then $t_j \to 0$ so $\{t_j\} \in c_0 \subseteq c$. But

$$\sum_{j=1}^{N} t_j f(x_j) = \sum_{j=2}^{\infty} t_j f(x_j) = \sum_{k=0}^{N} \sum_{j=n_k+1}^{n_{k+1}} \frac{1}{k+1} (sgn f(x_j)) f(x_j)$$
$$= \sum_{k=0}^{N} \frac{1}{k+1} \sum_{j=n_k+1}^{n_{k+1}} |f(x_j)| > \sum_{k=0}^{N} 1 = N+1,$$

for all $N \in \mathbb{N}$, i.e., $\sum_{j=1}^{\infty} t_j f(x_j)$ diverges. This contradicts that $\sum x_j$ is weakly *c*-Cauchy. So $\sum_{j=1}^{\infty} |f(x_j)| < +\infty$, foa all $f \in X'$. Let

$$A = \left\{ \sum_{j=1}^{n} \alpha_j x_j : n \in \mathbb{N}, |\alpha| \le 1, 1 \le j \le n \right\}.$$

For every $f \in X'$,

$$\left| f(\sum_{j=1}^{n} \alpha_j x_j) \right| = \left| \sum_{j=1}^{n} \alpha_j f(x_j) \right| \le \sum_{j=1}^{n} |\alpha_j| |f(x_j)|$$
$$\le \sum_{j=1}^{n} |f(x_j)| \le \sum_{j=1}^{\infty} |f(x_j)| < +\infty,$$

for all $\sum_{j=1}^{n} \alpha_j x_j \in A$. This shows that A is weakly bounded and, hence, bounded by the Mackey theorem ([2], p.114, Theorem 1).

Now suppose that $\{t_j\} \in c_0$, i.e., $t_j \to 0$. Without loss of generality, we assume that for all j_0 there exists $j > j_0$ such that $t_j \neq 0$. Let Ube a neighborhood of $0 \in X$. Letting $\alpha_k = \sup_{j \geq k} |t_j|, \alpha_k \to 0$. Since A is bounded, there is a $\delta > 0$ such that $\alpha A \subseteq U$ for all $|\alpha| \leq \delta$. Since $\alpha_k \to 0$, there is a $k_0 \in \mathbb{N}$ such that if $k \geq k_0$, then $|\alpha_k| \leq \delta$. Therefore, if $m > k \geq k_0$, then

$$\sum_{j=k}^{m} t_j x_j = \alpha_k \sum_{j=k}^{m} \frac{t_j}{\alpha_k} x_j$$
$$= \alpha_k \left(0x_1 + 0x_2 + \dots + 0x_{k-1} + \sum_{j=k}^{m} \frac{t_j}{\alpha_k} x_j \right)$$
$$\in \alpha_k A \subseteq U.$$

This shows that $\{\sum_{j=1}^{n} t_j x_j\}_{n=1}^{\infty}$ is Cauchy and, hence, the series $\sum_{j=1}^{\infty} t_j x_j$ converges because X is sequentially complete.

THEOREM 4. Let X be a sequentially complete locally convex space. For a series $\sum x_i$ on X, the following conditions are equivalent.

- (1) $\sum_{X_j} x_j$ is a weakly unconditional Cauchy series, i.e., for all $f \in X', \sum_{j=1}^{\infty} |f(x_j)| < +\infty$.
- (2) For every $\{t_j\} \in l^{\infty}$, $\{\sum_{j \in \Delta} t_j x_j : \Delta \subseteq \mathbb{N} \text{ finite}\}$ is bounded. (3) $\sum_{j \in \Delta} x_j$ is c_0 -convergent, i.e., for every $\{t_j\} \in c_0$, the series $\sum_{j=1}^{\infty} t_j x_j$ converges.
- (4) $\sum x_j$ is weakly c_0 -Cauchy, i.e., the series $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for every $\{t_j\} \in c_0$ and $f \in X'$.
- (5) $\sum x_j$ is weakly c-Cauchy, i.e., the series $\sum_{j=1}^{\infty} t_j f(x_j)$ converges
- for every $\{t_j\} \in c$ and $f \in X'$. (6) $\{\sum_{j=1}^n t_j x_j : n \in \mathbb{N}, |t_j| \leq 1, 1 \leq j \leq n\}$ is bounded.

Proof. By Theorem 2 of [1], (1)=(2)=(3) since X is sequentially complete. Since $c_0 \subseteq c$, $(5) \Rightarrow (4)$. As in the proof of Theorem 3, (4) \Rightarrow (1) \Rightarrow (6) \Rightarrow (3) \Rightarrow (4). So (1)=(2)=(3)=(4)=(6) and $(5) \Rightarrow (4)$. Suppose (4) holds. Then (1) holds because (1)=(4), i.e., $\sum_{j=1}^{\infty} |f(x_j)| < +\infty$, for all $f \in X'$. Since $\{t_j\} \in c \Rightarrow \{t_j\}$ is bounded,

$$\sum_{j=1}^{\infty} |t_j f(x_j)| = \sum_{j=1}^{\infty} |t_j| |f(x_j)| \le \sup_{j \ge 1} |t_j| \sum_{j=1}^{\infty} |f(x_j)| < +\infty.$$

This shows that $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for all $\{t_j\} \in c$.

COROLLARY 5. If X is a sequentially complete locally convex space, then (1)=(2)=(3)=(4)=(5)=(6)=(7)=(8)=(9)=(10). $\begin{array}{l} (7) \sum_{j=1}^{\infty} |t_j f(x_j)| < +\infty, \text{ for all } \{t_j\} \in c_0, \ f \in X'. \\ (8) \sum_{j=1}^{\infty} |t_j f(x_j)| < +\infty, \text{ for all } \{t_j\} \in c, \ f \in X'. \\ (9) \sum_{j=1}^{\infty} |t_j f(x_j)| < +\infty, \text{ for all } \{t_j\} \in l^{\infty}, \ f \in X'. \\ (10) \sum_{j=1}^{\infty} t_j f(x_j) \text{ converges for every } \{t_j\} \in l^{\infty}, \text{ and } f \in X'. \end{array}$ Proof. $\{t_j\} \in l^\infty \Rightarrow \{t_j \operatorname{sgn} f(x_j)\} \in l^\infty$, so (9) = (10).

 $(1) \Rightarrow (9) \Rightarrow (8) \Rightarrow (7) \Rightarrow (4) \Rightarrow (1).$

Now we give the main result of this paper.

THEOREM 6. Let X be a sequentially complete locally convex space. The following conditions are equivalent.

- (a) X contains no copy of c_0 .
- (b) Each weakly c_0 -Cauchy series on X is c-convergent, i.e., if $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for every $\{t_j\} \in c_0$ and $f \in X'$, then $\sum_{j=1}^{\infty} t_j x_j$ converges for each $\{t_j\} \in c$.
- (c) Each weakly c-Cauchy series on X is c-convergent, i.e., if $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for every $\{t_j\} \in c$ and $f \in X'$, then $\sum_{j=1}^{\infty} t_j x_j$ converges for each $\{t_j\} \in c$.

Proof. (a) \Rightarrow (b). Suppose $\sum_{j=1}^{\infty} \alpha_j f(x_j)$ converges for every $\{\alpha_j\} \in c_0$ and $f \in X'$. Let $\{t_j\} \in c$. Then $\alpha_j t_j \to 0$ for each $\{\alpha_j\} \in c_0$ so $\sum_{j=1}^{\infty} \alpha_j f(t_j x_j)$ converges for every $\{\alpha_j\} \in c_0$ and $f \in X'$. By theorem 4 ((3)=(4)), $\sum_{j=1}^{\infty} \alpha_j t_j x_j$ converges for each $\{\alpha_j\} \in c_0$, i.e., $\{t_j x_j\} \in CMC(X)$ (see [3]). Since X contains no copy of c_0 , by Theorem 4 of [3], $\sum_{j=1}^{\infty} t_j x_j$ converges, i.e., (b) holds. (b) \Rightarrow (c) : $c_0 \subseteq c$.

(c) \Rightarrow (a). Suppose X contains a copy of c_0 . Say that $c_0 \subseteq X$. Let e_j denotes the sequence that has 1 at the *j*-th spot and 0 elsewhere, i.e., $e_j = (0, \dots, 0, 1, 0, 0, \dots)$. For every $\{t_j\} \in c$ and $f = \{\alpha_j\} \in l^1 = c'_0$,

$$\sum_{j=1}^{n} |t_j f(e_j)| = \left| \sum_{j=1}^{n} f(t_j e_j) \right| = \left| f(\sum_{j=1}^{n} t_j e_j) \right|$$
$$= |f(t_1, t_2, \cdots, t_n, 0, 0, \cdots)| = \left| \sum_{j=1}^{n} t_j \alpha_j \right|$$
$$\leq \sum_{j=1}^{n} |t_j| |\alpha_j| \leq \sup_j |t_j| \sum_{j=1}^{n} |\alpha_j|$$
$$\leq \sup_j |t_j| \sum_{j=1}^{n} |\alpha_j| < +\infty,$$

for all $n \in \mathbb{N}$, i.e., for every $\{t_j\} \in c$ and $f \in c'_0$, $\sum_{j=1}^{\infty} t_j f(e_j)$ converges. However, letting $t_j = 1$ for all j, $\{t_j\} = \{1\} \in c$ but the series $\sum_{j=1}^{\infty} e_j$ Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo

diverges in c_0 :

$$\|\sum_{j=m}^{n} e_{j}\|_{\infty} = \|(0, \cdots, 0, 1, 1, \dots, 1, 0, 0, \dots)\|_{\infty} = 1$$

for all $1 \le m < n < +\infty$. If $\lim_{n \to \infty} \sum_{j=1}^{n} e_j = x \in X \setminus c_0$, then

$$\lim_{m,n\to\infty} \|\sum_{j=m}^n e_j\|_{\infty} = 0.$$

So $\sum_{j=1}^{\infty} e_j$ diverges in X. This contradicts (c).

COROLLARY 7. If a sequentially complete locally convex space X contains no copy of c_0 , then every weakly c-convergent series on X is c-convergent.

By Theorem 4 of [3], we have

THEOREM 8. Let X be a sequentially complete locally convex space. The followings are equivalent.

- (1°) X contains no copy of c_0 .
- (2°) Each weakly c_0 -Cauchy series on X is bounded multiplier convergent, i.e., if $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for every $\{t_j\} \in c_0$ and $f \in X'$, then $\sum_{j=1}^{\infty} t_j x_j$ converges for each $\{t_j\} \in l^{\infty}$, the family of bounded number sequences.

Proof. $(1^{\circ}) \Rightarrow (b)$. So if $\sum_{j=1}^{\infty} t_j f(x_j)$ converges for every $\{t_j\} \in c_0$ and $f \in X'$, then $\{x_k\} \in CMC(X)$ but $(1^{\circ}) \Rightarrow CMC(X) = BMC(X)$ by Theorem 4 of [3].

References

- Li Ronglu and Min-Hyung Cho, Weakly Unconditional Cauchy Series on Locally Convex Spaces, Northeast Math. J., 11(2) (1995), 187-190.
- A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York (1978).

338

 Li and Bu, Locally Convex Spaces Containing No Copy of c₀, J. Math. Anal. Appl., 172(1) (1993), 205-211.

Department of Applied Mathematics Kum-Oh National University of Technology Kumi 730-701, Korea *E-mail*: mignon@knut.kumoh.ac.kr hthwang@knut.kumoh.ac.kr wsyoo@knut.kumoh.ac.kr