Microbiological Quality and Change in Vitamin C Contents of Vegetables Prepared at Industrial Foodservice Institutions in Kumi

Kim, Gum-Ran · Jang, Myung-Sook

Department of Food Science and Nutrition, Dankook University

ABSTRACT

This study was investigated to see the microbiological results (total plate counts, coliforms) and vitamin C contents in cooking five kinds of raw and cooked vegetables, contributing to a data base for making better environment for foodservice, dividing cooking methods into two ways which was generally used at industrial foodservice institutions.

Namul and Saengchae, especially Radish Saengchae, seasoned with red pepper powder after seasoning showed higher level of total plate counts and coliforms than guide line. After holding, just before serving, most Namul and Saengchae, except Bean sprout Muchim, showed higher microbiological level than guide line. Saengchae seasoned with red pepper powder had higher level of total plate counts and coliforms than guide line.

Namul and Saengchae seasoned with soybean, salt, and red pepper paste showed higher remaining rate of vitamin C than those of other seasoned Namul and Saengchae, After holding, Cucumber Saengchae seasoned with red pepper paste and Radish Saengchae seasoned with salt and vinegar showed high level of vitamin C remaining rate.

By the result of this study, better sanitary treatment and scientific cooking method is demanded when Namuls or Saengchae are prepared with served in industrial foodservice institutions

Key words : microbiological quality, vitamin c contents, industrial foodservice institutions, sanitary treatment, scientific cooking method
에 비해 법적 규제가 많지 않기 때문에 운영방법이 기업간의 격차가 심해 표준화된 급식 통제수준이 마련되어 있지 않은 실정이다. 운영형태로는 조리와 배식이 한 곳에서 이루어지는 전통적인 급식제도가 대부분이며, 이러한 대급식에 있어 가장 중요한 것은 피급식자의 영양소량과 기호를 착각한 식단자재이고 그 다음으로 식단작성시 위생면과 조리과정이 고려된다. 또한 각 급식소에서는 영양적으로 균형있고 위생적이며 맛있는 식사를 만들어 낼 수 있는 적당한 분위기에서 급식할 수 있도록 급식을 준비해야 한다.

한편 단체급식소에서의 기호도 조리와 식품선택에 관한 연구를 보면, 우리나라도 식생활에서는 체소류가 비타민 C의 급원으로서 중요 식품으로 자리하고 있다. 우리나라의 전통적인 체소류 조리법으로는 다양한 조리 방식과 함께 조리원의 손이 많이 사용되어 풍부하 고 급식 직전 재가열되지 않으므로 미생물적 오염이 발생할 수 있고 또한 여러 단계를 거치면서 영양소 파괴가 높은, 그 중 수분성이 열에 약한 비타민 C의 손실이 가장 크다. 단체급식에 있어서는 음식의 질적 문제도 중요하지만 위생관리가 소홀해 진다면 식증독 발생과 집단한 연관성을 가지게 된다. 그나마도 다량급식된 음식의 위생과 안전성은 조리에서 배식단계까지 각 단계마다 확보되어야만 한다.

하지만 지금까지의 우리나라 단체급식에 관한 연구를 보면 급식실태 조사나 영양보고서가 대부분이고, 다량조리의 위생상태 기준이 될 수 있는 미생물의 검사에 대한 연구이나 생·숙채류의 조리과정과 보관 후의 영양소 함량에 관한 연구는 많이 이루어져 있지 않다.

따라서 본 연구에서는 사업체 급식소가 밀집되어 있는 경북 구미지역의 급식소 중 6개 급식소를 선정하여 자주 급식되고 있는 생·숙채류 5중류를 선택하여 그들 조리방법 중 주로 적용되는 양념방법을 두 군으로 나누어 조리과정과 보관 후 급식 직전의 표준화된군수, 대장균군수 등의 미생물 검사를 하고 비타민 C 함량 변화를 보아 위생적이며 영양가 손실을 최소화 할 수 있는 기초자료로 이용되도록 하고자 하였다.

연구 내용 및 방법

1. 식단 조사

경북 구미지역의 52개 급식소를 1996년 1월 20일에서
2월 20일까지 직접 방문하여 1년분 식단을 수집하였으며 이중 3~8월분 식단을 분석하여 음식 종류별로 분류하였다.

2. 시료의 선택 및 조리방법

실현에 사용한 생·숙채류의 선택은 구미지역 사업체 급식소 식단 조사 결과 급식횟수가 높고, 급식 직전 재가열이 되지 않아서 위생관리가 요구되며 조리과정과 보관 후 비타민 C의 변화가 있을 것으로 보이는 생·숙채류 5종류(시금치나물, 봉나물무침, 무생채, 양배추생채, 오이생채)로 하였다. 이 5종류 음식의 각 사업체 급식소의 양념방법을 두 군으로 분류하였는데, Table 1에 나타낸 바와 같다.

<table>
<thead>
<tr>
<th>Table 1. Seasoning methods of vegetables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
</tr>
<tr>
<td>Spinach Namul (cooked spinach)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bean sprout Muchim (cooked bean sprouts)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Radish Saengchae (radish salad)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cabbage Saengchae (cabbage salad)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cucumber Saengchae (cucumber salad)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3. 실험방법

1996년 4월 8일부터 5월 14일까지 6개 사업체 급식소에서 시행되고 있는 조리과정과 보관 후 급식 직전에 직접 체취하였고, 각 시료의 부위는 두 번에 걸쳐 균등
구미지역의 사업체 균식소에서 조리된 채소류의 미생물 품질 및 비타민 C 함량 변화

한 비율에 의해 채취되어 2회 반복 실험이었다.

1) 미생물 검사
 ① 시료 채취
 채취품(무, 당배추, 오이)은 다듬어 씻어 적당한 크기로 섞은 직후와 양념 직후, 그리고 급식 직전에 채취하였고 숙제류(콩나물, 시금치)는 배치서 섞은 직후와 양념 직후, 그리고 급식 직전에 채취하였다.
 ② 실험방법
 각 시료의 표준평판균수와 대장균균수를 검사하였고, 무균대에서 1시간 이내에 표준방법에 의해 처리되었 다.

2) 비타민 C 함량 측정
 가 시료의 총 비타민 C 함량은 2,4-DNP법에 따라 측정하였고, 생숙제류 5종류는 시간이 경과하면서 수분 함량에 변화가 있어 건조 후 증발율을 고려하였다.

결과 및 고찰

경북 구미의 52개 사업체 균식소 1995년 3월 8월의 총 25,116회 부식 중 생숙제류가 6,614회로 나타났다.
생숙제류는 식품 중 규격비도가 높고 급식 직전 재 가열되지 않아 위생관리가 요구되며 조리과정 중 영양소 변화가 예상되는 음식류로 조사 결과 급식횟수는 오이생채 48회, 콩나물무침 433회, 시금치나물 259회, 당배추생채 184회, 무생채 176회로 나타났다. 이 5종류의 양념방법을 조사하여 각각의 시료에 두 가지로 적용하였다.

이에, 양념방법에 따른 결과 (Fig. 1)와 양념 전에 대한 각 시험의 변화율(Table 2)을 보면 양념 전에는 무와 오이, 간장 양념에 사용한 시금치가 높은 값이 집산되었고, 소금 양념에 사용한 시금치의 콩나물은 낮은 균수를 나타내었다. 양념 후 고추가루 양념의 콩나물무침과 소금 양념의 시금치와 콩나물의 균수 증가가 있었습니다. 이를 제외한 시료들은 거의 변화가 없었습니다. 이 때문에 양념 전단계부터 높은 균수를 보인 소금과 식초로 양념한 무생채와 양념 후 균수가 증가한 고추가루 양념의 양배추 생채와 콩나물무침의 급식 전 음식의 안전수준인 5logcfu/g보다 높은 결과였다. 이는 조리과정 중 음식 취급시 미생물적 감염에 특히 유의해야 하고 급식 종사자 개인의 비타원관리가 요구됨으로써 악화된 결과였다. 보건 후에는 양념 후에 비해 고추가루 양념의 양배추생채가 시료 중 가장 크게 증가하여 안전수준 이상의 군이 검출되었고, 소금과 식초 양념의 무생채는 감소하여 3,99 logcfu/g로 이상적인 범위 내에 있었다. 보건 후 안전수준의 초과한 고추가루 양념의 양배추생채와 콩나물무침은 양념 전에서부터 계속적인 증가를 보인 시료로 위생관리가 더욱 요구되었다.

전반적인 양념방법에 따른 각 시료의 대장균균수 결과는 Fig. 2에 나타났고 양념 전에 대한 변화율은 Table 2에 있다. 양념 전단계에서 시금치가 4,36 logcfu/g으로 가장 높았고 양배추와 오이도 3,27 logcfu/g, 3,41 logcfu/g로 높은 오염을 보였다. 반면 콩나물은 대장균 군수를 발전할 수 없었다.
양념한 후에는 양념 전에 비해 소금 양념의 시금치나물, 고추가루 양념의 콩나물무침과 무생채, 소금 양념의 콩나물무침이 증가하였다. 양념 후 안전수준인 2 logcfu/g 이상의 군이 검출된 시료는 무과 고추가루로 양념되었는데, 이들은 고추가루에 의한 오염 이행도 있지만 양념 전단계에서 높은 균수를 나타내는 시료도 있었었다. 대규모 균식소의 위생상태가 양호하지 못할 때와 부적절한 식품관리 과정에서 위험도가 높아지므로 급식 되기까지의 전 과정에서 보다 위생적인 관리가 필요함을 알 수 있었다. 또한 영양의 시금치나물이 높은 군이 검출되었는데, 이 시료도 양념 전단계에서 높은 수의 균이 나타난 것 때문이었다. 보건 후에는 양념 후 보다 콩나물무침과 소금과 식초로 양념한 무생채가 증가율이 높았고, 간장 양념의 시금치나물과 고추가루 양념의 양배추생채가 감소하였다. 그리고 콩나물무침을 제외한 다른 시료들은 안전수준보다 높은 균수를 나타내었는데, 숙제류인 시금치나물과 콩나물무침은 생채류에 비해 간장 양념의 시금치를 제외하고는 낮은 대장균 군수를 보였고, 생채류에 있어서는 양념에 고추가루를 사용한 방법이 높은 오염을 나타내었다.
2. 비타민 C 함량

생·숙채류의 양념에 따른 비타민 C 함량 분포는 간
정⁵⁷, 소금⁵⁸, 고추장⁵⁹으로 양념한 조리법에서 잔존율이
높게 나타났다(Table 3). 이 중 소금으로 양념한 무생채
에서 가장 높은 잔존율을 나타내 103%인 9.97mg%를
보였는데, 이는 소금으로 양념한 생·숙채류에 비타민
C 보호 효과⁶⁰가 나타난 것으로 생각된다.

보관 후에서 가장 많은 양의 비타민 C가 잔존하는
것은 고추장으로 양념한 오이생채로 82.17%의 잔존율을
가진 7.42mg%의 함량을 나타내었다. 이는 고추장동의
조미료 청가시 조미료 상호작용으로 비타민 C 상승치
를 보여준 원⁶¹의 결과와 유사하였고, 고추장 양념시 비
타민 C가 낮게 분포하는 김⁶²과 서⁶³의 결과와는 다르게
나타났다. 다음으로 소금으로 양념한 무생채로 74.69%
의 잔존율로 7.23mg% 함량의 결과를 보였다.

결론 및 제언

본 연구에서는 사업체 급식소에서 급식횟수가 높고,
Table 2. Comparison of microbiological results\(^\text{11}\) of Namuls or Saengchaes

<table>
<thead>
<tr>
<th>Samples</th>
<th>Seasoning methods</th>
<th>Total plate counts</th>
<th>Coliform counts</th>
<th>sample</th>
<th>sampling</th>
<th>bacterial sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before seasoning</td>
<td>After seasoning</td>
<td>After holding</td>
<td>Before seasoning</td>
<td>After seasoning</td>
</tr>
<tr>
<td>Spinach Namul</td>
<td>soybean sauce</td>
<td>(0) (5.11)</td>
<td>(4.78) (6.14)</td>
<td>(4.36) (3.67)</td>
<td>(3.67) (10.8)</td>
<td>(10.8) (10.8)</td>
</tr>
<tr>
<td></td>
<td>salt</td>
<td>(0) (3.56)</td>
<td>(4.84) (4.56)</td>
<td>(0.43) (2.26)</td>
<td>(2.26) (2.26)</td>
<td>(2.26) (2.26)</td>
</tr>
<tr>
<td>Bean sprout Muchim</td>
<td>salt</td>
<td>(0) (3.78)</td>
<td>(4.06) (3.99)</td>
<td>(0) (1.1)</td>
<td>(1.1) (1.1)</td>
<td>(1.1) (1.1)</td>
</tr>
<tr>
<td></td>
<td>salt and red pepper powder</td>
<td>(0) (4.08)</td>
<td>(5.16) (5.22)</td>
<td>(0.33) (1.13)</td>
<td>(1.13) (1.13)</td>
<td>(1.13) (1.13)</td>
</tr>
<tr>
<td>Radish Saengchaes</td>
<td>salt and vinegar</td>
<td>(0) (5.88)</td>
<td>(5.73) (5.07)</td>
<td>(1.61) (2.55)</td>
<td>(2.55) (2.55)</td>
<td>(2.55) (2.55)</td>
</tr>
<tr>
<td></td>
<td>red pepper powder and salt</td>
<td>(0) (4.31)</td>
<td>(4.93) (4.97)</td>
<td>(0.91) (2.89)</td>
<td>(2.89) (2.89)</td>
<td>(2.89) (2.89)</td>
</tr>
<tr>
<td>Cabbage Saengchaes</td>
<td>red pepper powder</td>
<td>(0) (4.86)</td>
<td>(5.23) (5.64)</td>
<td>(3.27) (3.83)</td>
<td>(3.83) (3.83)</td>
<td>(3.83) (3.83)</td>
</tr>
<tr>
<td></td>
<td>red pepper paste</td>
<td>(0) (3.94)</td>
<td>(4.69) (4.77)</td>
<td>(1.53) (2.11)</td>
<td>(2.11) (2.11)</td>
<td>(2.11) (2.11)</td>
</tr>
<tr>
<td>Cucumber Saengchaes</td>
<td>red pepper powder</td>
<td>(0) (5.09)</td>
<td>(5.09) (5.09)</td>
<td>(3.41) (2.6)</td>
<td>(2.6) (2.6)</td>
<td>(2.6) (2.6)</td>
</tr>
<tr>
<td></td>
<td>red pepper paste</td>
<td>(0) (4.58)</td>
<td>(4.72) (4.47)</td>
<td>(1.84) (2.08)</td>
<td>(2.08) (2.08)</td>
<td>(2.08) (2.08)</td>
</tr>
</tbody>
</table>

\(^{11}\) increased or decreased(-) rate

() : microbiological result of Namuls or Saengchaes (unit: cfu/g)

Table 3. Comparison of vitamin C contents of Namuls or Saengchaes

<table>
<thead>
<tr>
<th>Samples</th>
<th>Seasoning methods</th>
<th>Raw</th>
<th>Before seasoning</th>
<th>After seasoning</th>
<th>After holding</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinach Namul</td>
<td>soybean sauce</td>
<td>38.78</td>
<td>18.03</td>
<td>18.15</td>
<td>12.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>salt</td>
<td>43.37</td>
<td>(46.15)</td>
<td>(46.82)</td>
<td>(40.60)</td>
<td></td>
</tr>
<tr>
<td>Bean sprout Muchim</td>
<td>salt</td>
<td>2.83</td>
<td>1.67</td>
<td>0.55</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>salt and red pepper powder</td>
<td>4.03</td>
<td>0.58</td>
<td>0.62</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Radish Saengchaes</td>
<td>salt and vinegar</td>
<td>9.68</td>
<td>5.87</td>
<td>9.97</td>
<td>7.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>red pepper powder</td>
<td>8.32</td>
<td>4.90</td>
<td>6.06</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>Cabbage Saengchaes</td>
<td>red pepper powder</td>
<td>24.49</td>
<td>16.92</td>
<td>17.04</td>
<td>15.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>red pepper paste</td>
<td>21.95</td>
<td>17.50</td>
<td>18.82</td>
<td>15.40</td>
<td></td>
</tr>
<tr>
<td>Cucumber Saengchaes</td>
<td>red pepper powder</td>
<td>8.69</td>
<td>4.59</td>
<td>7.55</td>
<td>6.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>red pepper paste</td>
<td>9.03</td>
<td>6.36</td>
<td>8.53</td>
<td>7.42</td>
<td></td>
</tr>
</tbody>
</table>

\(\) : Remaining rate of vitamin C of the treated vegetables to raw vegetables. (unit:%)
급식 작전 제가열이 되지 않아 위생적인 관리가 요구되며 영양소의 변화가 있는 것은, 음식품의 5종류(식지치나물, 콩나물무침, 무생채, 양배추생채, 오이생채)의 조리과정과 보관 후의 미생물(표준균관류수, 대장균수) 품질검사와 비타민 C 함량 변화 결과를 나타내었다.

미생물 품질검사 결과에서 표준균관류수와 대장균수는 고추가루를 이용한 양념에서 두 종류의 균 모두 높은 경향을 나타냈는데 특히 무생채와 안전수준 이상의 균이 집중되었다. 보관 후 급식작전에는 콩나물무침을 제외한 다른 식재료는 안전수준 이상의 균이 검출되었고 생채류가 숙취류보다 많은 수의 균이 집중되었으며 고추가루로 양념한 방법이 오염도 높았다.

양념에 따른 비타민 C 함량은 보관 후 간장, 소금, 고추장으로 양념한 것이 비교적 안전준물이 높았고, 보관 후에는 고추장으로 양념한 오이생채와 소금과 식초로 양념한 무생채가 비타민 C의 높은 안전준물을 나타내었다.

이상의 결과로 볼 때 본 실험의 대상인 사업체 급식소에서 급식되고 있는 생·숙채류에는 조리과정 및 보관 후 표준균관류수, 대장균수의 검사 결과 안전수준 보다 높은 경향을 나타내어 보다 위생적인 관리가 요구되었다. 그리고 조리과정 중 비타민 C의 함량 변화도 커서 과학적이고 표준화된 조리방법이 필요함을 알 수 있었다. 그러므로 단체급식소에서 제공되는 음식의 조리에 따른 영양학적인 변화와 위생측면에 관한 연구가 계속적으로 이루어져야 하며, 이에 대한 중요성을 인식해야 한다.

참고 문헌

10. 국민영양조사 보고, 한국영양학회지, 3(1), 1970.