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Abstract For a k-connected inverse system (X,#*) = ((Xx,*),pyxn/,A) of
pointed topological spaces and pointed preserving weak fibrations, inducing
epimorphic chain maps, over a directed set, we show that the homotopy group
mi(lim X, #) of the inverse limit is isomorphic to the integral homology group
Hp(lim X;Z). Using the result of S. Mardesi¢, we prove that the group of
pure extension Pext(colimH™(X), A) is isomorphic to the group of extension
Ext(A(A), Hom(H"(X), A)).

1. Introduction

It appears, in algebraic topology, very often that a certain coho-
mology expression can be descrived as a derived functor lim" (-),
n > 0 defined by J. E. Roos and G. N6beling independently and
simultaneously. The first derived limit is an important algebraic
tool in the computation of phantom maps. C. A. McGibbon [9]
wrote a good book on the derived limits and phantom maps.
C. A. McGibbon and R. Steiner [10] introduced some questions
about the first derived limits of the inverse limits and phantom
maps. Strong homology groups were defined by J. T. Lisica and S.
Mardesi¢ [3] in 1985. S. Mardesi¢ [4,5] have proved that the strong
homology group does not have compact supports and that there

Received May 10, 1999.

1991 AMS Subject Classification : 55N05, 55P55, 18A30.

Key words and phrases : derived limit, pure extension, shape group, Cech
homology group, k-connectivity.

The authors were supported by the Chonbuk National University scholar-
ship program, 1999.

157



158 H. J. Lee, 8. J. Kim, Y. H. Han, W. H. Lee and D. W. Lee

exists a paracompact space whose n-th derived limit is not triv-
ial. Recently 5. Mardesi¢ and A. V. Prasolov 7] have constructed
a structure theorem which shows a lot of information about the
derived limits and strong homology groups of some inverse sys-
tems. Using the Noveling-Roos cohomology (derived limit in this
paper), T. Watanabe [14] gave an elementary and concrete proof
of the properties of derived functors on two categories.

Let X = (X, pax, A) be an inverse system of topological spaces
X and continuous maps pyx : Xy — Xy, A < X over a di-
rected set A and let Z be the set of all integers. In this paper,
we show that if (X,%) = ((X»,*),par,A) is a k-connected in-
verse system of pointed topological spaces and pointed preserv-
ing weak fibrations, inducing epimorphic chain maps, over the
directed set, then the homotopy group m(lim X, x) of the inverse
limit is isomorphic to the integral homology group Hy(lim X;Z)
(Theorem 2.5). Using the S. Marde$i¢’s results about an exten-
sion functor and a derived functor, we give more detailed and con-
crete proof than his one. We also show that if the direct system
H*(X) = (H*(Xx; Z),p5\i, A) (induced by X) consists of finitely
generated cohomology groups, then the group of pure extension
Pext(colimH™ (%), A) of A by the colimit of H"(X) is isomorphic
to the group of extension Ext(A()A), Hom(H"(X), A)) (Theorem
3.5), where A()) = (Ay,tdyy, A) is an inverse system defined by
Ay = 7Z and idyy is an identity map on Z.

2. Applications of the derived limit and the Hurewicz
homomorphism

Let A = (Ax,axx,A) be an inverse system of abelian groups
A and group homomorphisms ayy : Ax: — Ax, A < ) over the
directed set A. Let A", n > 0 be the set of all increasing sequences
A= (2, A 5 ) Ao <AL < --- < Ay A € A, The sequence
Xj = (Ao, A1, s Aj=1, Aj+1, < + » An) € A" is obtained from A
by deleting the j-th factor A;, 0 < j < n.

We define n-cochain groups C™ () of A by

cr@) =[] 4s, n=0,
AEAn
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where A5 = A,,.
Let pr5 : C™(A) — Aj; be a projection. If z is an element of
C™ (), then we denote the element z5 of Ay by

x5 = pry(z).

The coboundary operators " : C"~}() — C"(A),n > 1 are
defined by

(672)5 = aron (23,) + D _ (1) z5,,
j=1

where x € C" (). For n = 0, we put 6° = 0: 0 — C°(A). Then
we have a cochain complex

(C*(),6): 0 R C(2) AN cHA) — -
— @) D Cn )
The n-th derived limst [11] lim" 2 of 2 is defined by
lim" A = ker(§"*1)/im(6™).

We can see that lim° 2 is equal to the inverse limit lim 2 of the
inverse system 2.

Let ® = (Dy,dxx, A) and € = (E,, e,.,,I') be inverse systems
in any category €. We say that s = {¢,s, : vy €T} : D - &
is a rigid system map from D to € if ¢ : I' — A is an increasing
function, sy : Dy(4y — E,,7 € I' is a morphism in the category €
and for any v < 4’ in I the following diagram

o(ryelr)
Dy(yy ¢ Dy
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is commutative. We can make a category inv-€ of inverse systems
in € and rigid system maps. The rigid system map is called a
level system map provided I' = A and ¢ is an identity map on A.
It is easy to see that the category €A of the inverse systems and
the level system maps is not full subcategory but subcategory of
inv-C.

For a given pointed inverse system (X, x) = ((Xy, *),pax, A),
we obtain the following inverse systems

(1) me(X, *) = (me(Xx, %), Pan, A);
(2) Hk(x'l Z) = (Hk(X)uZ)ap/\/\', A)
induced by (X, *).

The well known Hurewicz homomorphism hy : mp (X, %) —
Hp(X»;Z), A € A induces a morphism (level system map) h :
7k (X, *) — Hi(X;Z) in the category Gr? of inverse systems of
groups and level system maps over A.

DEFINITION 2.1. A level system map h : (X, %) — Hy(X;Z)
in Gr? is called the Hurewicz level system map of (X, %).

A pointed inverse system (X, *) is called k-connected if the in-
duced inverse system 7, (X, *) is trivial for 0 < n < k.

PROPOSITION 2.2. (Hurewicz isomorphism theorem) Let (X, )
be a pointed k-connected inverse system. If k > 1, then we have
the following facts:

(1) Ho(%;Z) =0, 1<n<k+1
(2) h:mee1(X, %) > Hii1(X;Z) is an isomorphism of inverse
systems induced by (X, *).

Proof. See Theorem 2, section 4.1 of the second chapter in [8].

A pointed preserving map ¢ : (X, x) — (Y, %) is called a pointed
preserving weak fibration provided t has the homotopy lifting prop-
erty with respect to the collection of cubes {I,}.>0.

PROPOSITION 2.3. Let (X, *) = ((Xx, *),pax’, A) be an inverse
system of pointed topological spaces and pointed preserving weak
fibrations, Then the sequence

0 — lim'mey1 (%, %) = m(im X, *) — lim (X, %) — 0
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is exact for any k > 0.
Proof. See Theorem 1, section 7.1 of the second chapter in [8].

LEMMA 2.4. Let X = (X,),pan,A) be an inverse system of
topological spaces and continuous maps inducing epimorphic chain
maps paayg : Cy(Xa; Z) = Cy(Xx;Z), A < XN. Then the sequence

0 — lim'"Hy 1 (%;2) — Hy(lim%;Z) — lim Hy(%;Z) — 0

is also exact.
Proof. See Lemma 1 of [6] and Theorem 2 of [7].

THEOREM 2.5. Let (X, ) = ((Xx, *), par, A) be a k-connected
inverse system of pointed topological spaces. If the bonding mor-
phisms are weak fibrations inducing epimorphic chain maps pyy
Cy(Xy; Z) — Cﬂ(X,\; Z),A < X, then

mr(lim X, ) & Hy(im X; Z).

Proof. Considering an exact sequence of derived limits of homo-
topy groups and the Hurewicz isomorphism theorem, by Propo-
sition 2.3 and Lemma 2.4 we obtain the following commutative
diagram

0 — lm'wpy (X, %) —— 7 (lim X, %) —— Hmmp(X, *) —— 0
0 —— lim! Hy11(%;Z) —— Hi(lim%;Z) —— lim Hg(X;Z) — 0.

Since the inverse system (X, %) is k-connected, by Proposition 2.2
we have

Te+1(X, %) = Hyy (X, Z)

and
H,(%Z)=0

for 1 < n < k. Therefore we have
Te(lim X, *) = lim 1 (X, %) (me(X, %) is trivial)

> lim' Hy41(%; Z) (Hurewicz isomorphism theorem)
= Hip(im X, Z).
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An inverse system 2 = (A, axn,A) has the Mittag-Leffler
property if every A € A admits a A’ € A, A > ) such that
a)\A'(AA/) = GA,\I/(A,\N)
for any A > X.

PROPOSITION 2.6. If the inverse system % = (Ay,axx, A) has
the Mittag-Leffler property, then

lim'2A = 0.

Proof. See Theorem 10, section 6.2 of the second chapter in [8].

COROLLARY 2.7. Let (X,*) = ((Xx, *),pax, A) be a k-connect
ed inverse system of pointed topological spaces. If the bonding
morphisms are weak fibrations inducing epimorphic chain maps
DAy Cﬂ(X)\I;Z) — Cﬁ(X,\;Z),/\ < X and if mg41(X, %) has the
Mittag-LefHler property, then

Hk(lim x; Z) = 0.

Proof. By Proposition 2.3, Theorem 2.5 and Proposition 2.6,
we have
Hi(limX;Z) & m(Im X, )
~ lim 741 (X, %)
= 0.

Let HPol and HPol, be homotopy category and pointed homo-
topy category of polyhedra respectively. And let p: X — ¥ be an
HPol-expansion. The Cech homology group Hi(X; A) of X with
coefficients in an abelian group A is defined by

H,(X; A) = im[Hy (%; A)].

where | ] means the equivalence class of inverse systems.
Let p: (X, *) = (%, ) be an HPol,-expansion. The k-th shape
group 7y (X, %) is defined by

7 (X, *) = lim[me (X, *)].
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COROLLARY 2.8. Let (¥, %) = ((Xx, *),par, A) be a k-connect
ed inverse system of pointed topological spaces and p : (X, *) —
(X, *) an HPol.-expansion of (X, x), then

Tea1(X, %) = He1 (X5 Z).

Proof. By the Hurewicz isomorphism theorem, we have
’;"fk.’_l (X, *) = liln[?rk+1 (I, *)]
= lim[Hg+1(X;Z))
= ﬁk+1 (X, Z).

3. An isomorphism between a pure extension and an
extension functor

Let A(A\) = (A, idax, A) be an inverse system defined by Ay =

Z and idy - is an identity map on Z. Consider a free abelian group

Pﬂ:@z

A< <An

whose basis is formed by elements < Ag,- -, A, > corresponding
to Ag £ -+ < A, in A. One can define P’ as the subgroup of P"

by
PR= P z
ALAo<<An

and iy : PJ — PP, A < X as the natural inclusion. Then
P* = (P, iax, A) is a clearly inverse system of free groups and
inclusions over A.

B. L. Osofsky {12] and S. Mardegi¢ [5] have considered the mor-
phisms e : P — A()) and d"~! : P" — P! defined as follows:
For each A\g and Mg < --- < A, in A,

ero <Ag> =1

n
d:\wl </\0,... ,)\n> = Z(~1)j<’\0"”’/\j’”' s An >,
—0

where ey, = €|po , d*"! = d"}{pr and ); means the deletion of
0 P,\O A A ¥)
Aj.
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PROPOSITION 3.1. The inverse systems A()),P" and the mor-
phisms e,d",n > 0 form a standard projective resolution

n--1

€ d° d
0 AN Poe— Pl o = Pl —— P

of A(A).
Proof. See Lemma 7 of [5].

For any inverse system 2 of abelian groups, let L() be a
cochain complex

0 —» Hom(*B°, ) — Hom(P*,A) — - --
— Hom(P"~ 1, %) — Hom(P",A) — - -

induced by the standard projective resolution of A(A). A map
@3 : Hom(P", A) — C™ () is defined as follows: If f € Hom(p", )
is given by the homomorphisms fy : P} — Ax, A € A, then ®%(f)
is the n-cochain

r = ( ,12()\0,,..),\"),"')
:( )f)\o(< )‘0)"' aAn >)»"")7

where z(y, ... x,) € Ay, and < Ag,--+, A, >, A < Ag is a basis of
P That ®f is an epimorphism was proved by S. Mardesié¢ [5].
We will prove a full detail of the fact that ®y is a cochain map and
that the extension functor Ext”(A()), —) is naturally equivalent
to the derived functor im"(-).

LEMMA 3.2. For every inverse system A = (Ax,axa,A) of
abelian groups and for each n > 0, there exists a natural isomor-
phism

n o Ext™ (AN, %) — lim™L.

Proof. 1t is easy to check that ®§ is a monomorphism. Thus, in
order to complete the proof of this Lemma, it remains to show that
®y is a cochain map and Ext"(A(A), —) is naturally equivalent to
lm"(-).
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For each A = (Ao, *+,A,) € A™ and f € Hom(p"~*,2A), we
have

(60®5 ()
= axon (B ()3, + i(“l)j(‘pg—l(f))ij
= axga, (fa, (< Apy -+ - ,]):>)
+Z 17 fag(< A0y s Ajm1, Aj1s o 5 An >)
= aonl(fA1(< ALy A >)

+on(Z('—1)J(< A0$"' aAj-—la/\j-'}-l"" >An >))

Jj=1
= ft\o(i)mAl (< Al,' . )An >)
+fAO(Z(-1)J(< ’\0)' t ’)‘j—-hAj-I-ls"' 1>‘n >))
Jj=1

(f is a level system map)
= f)\o(< Alv" ' 1)\11 >)

n

+ fAO(Z(”l)J(< ’\07 Y Aj»‘la )\j+17 e )Aﬁ >))
j=1
(2ax, is an inclusion map)

= on(Z('.l)J < )\07"' vj\jv"' :)\n >)

§=0
= f)\o(d'r):—l < )\07"' a)‘n >)
= (f o] dn-.l)A(< Ao, M ,An >)
= (@5 o Hom(d" ™%, 1) (f))x
which shows that ®g is a cochain map. Thus it induces a homo-
morphism @3, : Ext"(A()), ) — lim" % induced by ®F.

Let [ : A — B = (Bj,bxa, A) be a level system map. Con-
sidering the definition of the cochain map ®%, for any [f] €
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Ext™(A()),2) we have

Hm™ (1) o @, ([f]) = Em" (1) 0 @5, ([(- -+ , fagr-+*)])
=Hm™(O)([(- -, fag < Aoy s An >0 )])
=[( sl 0 fag < Aoy An >,
= B ([, D 0 fagr o)D)
= O, 0 Ext(1a0), D([( s frer )]
= @y, 0 Ext(1acn), H([f])

which shows the required proof of the natural equivalence between
Ext(A(A), —) and lim"(-).
A subgroup S of T is called a pure subgroup if
SNnT =nS

for every integer n. An exact sequence

05U SV SW =0

is said to be pure ezact [1] if im(u) is a pure subgroup of V.
For abelian groups U and W, let Pext(W, U) denote the group of
pure extension, i.e., the subgroup of Ext(W,U) whose elements
correspond to the classes of pure exact sequences.

Let & = (G, gxr,A) be a direct system of abelian groups Gy
and group homomorphisms gy : Gy — G/, A < X over A. Then
we obtain the following inverse systems

(1) Hom(®, A) = (Hom(Gx, A),Gar, A)

(2) Pext(®, A) = (Pext(Gx, A), Gan, A)
induced by &. We denote a colimit colim® of & by the direct
limit of &.

LEMMA 3.3. For any abelian group A and a direct system & =
(G, gan, A) of abelian groups, there exists an exact sequence

0 — lim’ Hom(®, A) — Pext(colim®, A) —» lim Pext(®, A)
— lim?*Hom(®, A) — 0.

Proof. See Proposition 1.4 of {2] or Proposition 26 of [7].
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LEMMA 3.4. Let ® = (G, gar, A) be a direct system of finitely
generated abelian groups over A. Then, for any abelian group A,

(1) lim® Hom(®, A) =0 for allp > 2;
(2) lim” Ext(®,A) =0 forallp > 1.
Proof. See Corollary 1.5 of [2].

THEOREM 3.5. Let H*(X) = (H*(Xx;Z),p3,, A) be a direct
system, induced by the inverse system X = (X, paar, A), of finitely
generated cohomology groups H*(X;Z), A € A. Then we have

(1) lim'H,(%; A) = lim' Hom(H"™(X), A)

(2) im”H,, (X; A) =0 for all p > 2

(3) Pext(colimH™(X), A) =2 Ext(A()\), Hom(H"(X), A))
for any abelian group A.

Proof. From the given inverse system X = (X,,pan,A), we
have the following induced inverse systems
(1) Ext(H"(X), A) = (Ext(H"(Xx; Z), A), Prx, A);
(2) Hn(X;A) = (Ha(Xx; A), Pansy A);
(3) Hom(H"(X),A) = (Hom(H"™(Xx;Z), A), Paxr, A).
Applying the universal coefficient theorem for cohomology [13],
we have an exact sequence

0 — Ext(H"*!(X), A) — Hn(X; A) — Hom(H™(X), A) — 0
of inverse systems which induces a long exact sequence
(*)
0 — limExt(H"*!(X),A) — lim H,(¥; A) — lim Hom(H™ (%), A)
— im'Ext(H"(X), A) — lim'H,,(X; A)
— lim'Hom(H™ (%), A) —
— im"Ext(H" (%), A) — lim" H,(%; A)
— lim"Hom(H"(X), A) —

of derived limits. Since the direct system H*(X) = (H*(X;2),p%,,A)
induced by X consists of finitely generated cohomology groups, by
Lemma 3.4 we have

limPExt(H"*(X),A) =0 for all p > 1
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and
lim"Hom(H"(X), A) = 0 for all p > 2.

Thus we have
lim' H,,(X; A) = im"Hom(H"(X), A)
and
lim?H,(%; A) =0 for all p > 2.

Since every finitely generated abelian group is pure projective, we
have

lim Pext(H™ (%), A) = 0.

Thus, by Lemma 3.2 and 3.3, we obtain
Pext(colimH"(%¥), A) = lim'Hom(H" (%), A)

which is isomorphic to Ext(A(A), Hom(H"(X), A)).

COROLLARY 3.6. In addition to the assumption of Theorem
3.5, if A is an injective Z-module and p : X — X is an HPol-
expansion, then

H,(X;A) = lim Hom(H™ (%), A).

Proof. By the long exact sequence (%) in the proof of Theorem
3.5, the sequence

0 — lim Ext(H"t!(X%), A) — lim H,(X%; A)
— limHom(H"(X),A) — 0
is exact. Since the first term is trivial and the second term, by

definition, is Cech homology group H,(X;A), we obtain the re-
sult.
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