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Abstract We find the properties of the defects and textures in an ordered
medium. Especially, the space X, e.g., the residually solvable space or space
satisfying the conditions (T**) with respect to the defect and texture.

1. Introduction

The study of the defects and textures in an ordered medium
was proceeded partially during twenty years. Concretely, N. S.
Mermin [9], V. Peonaru and G. Toulouse have been studied an
order medium from the nematic liquid crystal state or three di-
mensional spin state or Klein bottle respectively. By use of the
homotopical method they classified the defects and textures in an
ordered medium.

We work in the category of the topological spaces having the
homotopy type of connected CW-complexes with a base point if
the topological space is concerned.

2. Some properties of the defects and textures in an
ordered medium

We say that a space X (€ T') satisfies the condition (T*) [4] i
for all g,¢ € m(X) either glg, 1(X)] = t[t, m1(X)] or glg, m(X)
ﬂ t{tiﬂ'l(X)] = ¢.
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We defined the following condition (7**) and controlled the
locally nilpotent space effectively as follows [5, 6].

For X € T, we say that X satisfies the condition (T**) if for
all g(# 1) € my(X), then g ¢ [g, 1 (X)].

We will study more deeply how homotopy theory has been used
to classify defects and textures in an ordered medium. Before we
start to check the concept of the ordered medium, first of all we
consider the case in the two dimensional space.

In this case the ordered medium is a region of R? with the

property that at any point there is a spin vector TS? The vector

3} has a fixed length, is free to a point in any direction in R?
and is a continuous function of 7 € R?, except possibly for a set
¥ (C R?) which is called a defect set (could, of course, be empty).
For example, we can write, for ¥ € R? - &

T (7) = dicosd(T) + dsing(7),

where 4, 0 are a fixed pair of orthonormal vectors and ¢ : R? —
R is a continuous map.

The ordered medium will be said to be in a uniform state if

?(73) is independent of 7. The defect set £ for the planar
spin system need not be empty. In fact, topologically stable point
defects are possible for this system. From the two dimensional
case above, we can derive the following definitions of a defect and
an ordered medium.

DEFINITION 2.1. Ordered medium is a kind of topological space
V called the one parameter space.

DEFINITION 2.2. In X, there is a subset ¥ C X which will be
called the set of defects. Outside ¥ a continuous map ¢ is called
the order parameter vector field. We call the subset 3. the set of
defectof Xing: X -X - V.

The physical space M3 will be taken to be a smooth 3-dimension
al manifold and M? is assumed to be connected, orientable and
compact with boundary OM3.

Now let’s turn to the concept of the texture. We think the
texture only in a 3-dimensional case. Consider a 3-dimensional
ordered medium with order parameter V and suppose that the
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order medium is uniform at points far from the origin. A configu-
ration of this ordered medium can be regarded as a mapping from
a 3-dimensional cubical box I® into a single point in V. But such
a map corresponds to an element of w3(V). If m3(V) = 0 then
any two configurations of the ordered medium are topologically
identitical as can be shown using essentially the arguments [9].

DEFINITION 2.3. If m3(V) # 0 then we have the interesting
possibility of topologically inequivalent nonsingular configuration
in an ordered medium. These are called textures.

We recall the following [8].

DEFINITION 2.4. A fibration F — F — B is said to be quasi-
nilpotent if the action of my(B) on H,(F) is nilpotent, n > 0 .
Furthermore the fibration F — E — B is strong quasi-nilpotent
if it is quasi-nilpotent and if, in addition, 71(B) is nilpotent.

We recall that a group G has the property x residually if to
every element g(# 1) € G, there is a normal subgroup N of G
such that ¢ ¢ N and G/N has the property x [10].

Let’s say that a group action G on H is solvable if there exists
a finite chain; H=H, D>DH; DH3 D> ---DH; D--- D H, = {e}

such that for each j

(1) Hj is closed under the action of G,
(2) Hj4yis normal in H; and H;/H,;, is abelian.

DEFINITION 2.5. We define that a space X (€ T') is (residually)
solvable if
(1) m(X) is (residually) solvable, and
(2) there is a (residually) solvable action 71(X) x 7,(X) —
7n(X) for all n > 2.

And the category of (residually) solvable spaces and continuous
maps is denoted by (Trs), Ts respectively. The category Ts has
a finite product property from the definition of T';

THEOREM 2.6. For a set {X,|a € M : finite}, X, € Ts for
any « if and only if [, cp Xa € Ts.

Similarly, the category Trs also has a finite product property:
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THEOREM 2.7. For a set {X,|o € M : finite}, X, € Tgs for
any a if and only if [],cpr Xo € Trs-

Proof. First, we only prove the following: for any X,, Xz €
{Xala € M : finite} such that X,, X3 € Tgrs, then X, x X €
Trs.

Since X, and Xz are residually solvable spaces, for any element
9a(# 1) € m(Xa),98(# 1) € m1(Xg), there exist the nontrivial
normal subgroups (go ¢)Hqa and (gg €)Hp in m1(X,) and 71(Xp),
such that my(X)/Hq and m1(Xg)/Hg are solvable groups respec-
tively. Thus to any element (gq, g3)(# 1) as above we have a non-
trivial normal subgroup ((ga,93) €)Ha @ Hg in m(X,) & m1(Xs)
such that 71 (X4)/Ha ® m1(Xp)/Hg is solvable.

Next, there is a solvable 71(X,)/H,- action on 7,(X,) for
n > 2, and a solvable 7, (Xz)/Hpg- action on m,(Xg) for n > 2
respectively.

Now we get the componentwise solvable action 71(X,)/Hy D
71(Xg)/Hp on mp(Xo) ® mn(Xpg). Thus the finite product space
HaeM Xa € Ths.

Conversely, if X, x Xz is a residually sovable space, for any ele-
ment (g4, 93)(# 1) € m1(Xo)®m1(X ) there are nontrivial normal
subgroups H, @ Hg in 7,(Xa) ® m1(Xg) such that m(X,)/Ha @
71(Xg)/Hpg is solvable. Thus we have nontrivial normal subgroups
(9o €)Ho and (g ¢)Hp in m1(X,) and m1(Xp) respectively such
that 7y (Xo)/H, and m1(Xg)/Hp are solvable. Thus m1(X,) and
71(Xg) are solvable.

Next, from the componentwise 71(Xo) @ m(Xp)-action on
n(Xa) ® ma(Xp), and by the projection onto the each factor,
we get the solvable m; (X, )-action on 7,(X4,). Thus we have X,
as a residually nilpotent space for any o.

And Ts is also a full subcategory of Trs naturally.

We know the following [9]: for the ordered medium V, there
are no topologically stable

point defects if m2(V) =0---(1)

line defects if 74(V)=0---(2)

wall defects if mo(V) =0---(3)

For the proof of (2) above we may replace the possible line
defect 3; by a cylinder region C of cross-section D. The order
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parameter ¢ is now well defined on the boundary of D with ¥,
inside C. For a closed loop + on the boundary of C' we have ¢(7) :
S — V and so we get [¢(7)] € 71 (V). If 71 (V) = 0 then [¢(7)] =
[c] where ¢ is a constant map. Thus ¢(7y) is homotopic to the
constant map and the order parameter function can extended over
D, where D is the unit ball in R?, which means that a topologically
stable line defect is impossible.

We can prove (1) above by the similar procedure as in the
case of (2), namely replacing a possible point defect ¥ at P by
a spherical region containing ¥ at P. For the order parameter
map ¢ : 52 — V then we get [¢] € m (V). If 73(V) = 0 then
¢ is homotopic to a constant map. Thus there exists an order
parameter function ¢ which can be extended over D?, where D?
is the unit ball in R3, which means that a topologically stable
point defect is impossible.

Finally for the case (3), from the fact that mo(V) = 0 we know
the space V' is path-connected. Thus a path from a point p, say on
one side of the wall to a point g, say on the other side along which ¢
is well defined, must exist. This path effectively represents a hole
in the wall which can then be made to disappear by continuity.
Thus when 7(V') = 0, wall defects are topologically unstable.

3. Main Theorems

Let’s focus on the order parameter space X as a kind of topo-
logical space with respect to the defects and textures. We know
the Klein bottle is an order parameter space [9].

THEOREM 3.1. Let K be the Klein bottle. If f : X - K
is a quasi-nilpotent homology equivalence and X is one of the
followings;

(1) X(E TRS))
(2) X is the space satisfying condition (T*) or (T**) with
71(X) finite,

then X also has the same state with the Klein bottle with
respect to defects.

Proof. By the classical homotopy exact sequence of fibration:

f
F; - X — K, m1(f) is an epimorphism. And from the quasi-
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nilpotent homology equivalence of f we get Hy(F ¢) is trivial, i.e.,
m1(Fy) is a perfect group. Thus m(K) = m;(X)/Pn1(X) where
Pri(X) means a perfect normal subgroup of n1(X). Now let’s
check the each case.

For the case (1): since X € Tgg, by the definition of the resid-
ual solvability of the space X we have

P(m(X)/N) = (P(m(X)/N))™ < (my(X)/N)

and the last term must be trivial and finally P(m(X)/N) is
trivial. Thus Pmy(X) = 0.

For the case (2): from the fact that X satisfies the conditon
(T**) with m1(X) finite we get the space 71 (X)) is trivial [4, Lemma
3.1].

Next, if X satisfies the condition (T*) then we know that X also
satisfies the condition (T**) [5,6]. Thus our proof is completed via
a homotopy equivalence of f and the Whitehead theorem.

COROLLARY 3.2. If f : X — K is an acyclic map and the
space X is one of the cases (1) ~ (2) of Theorem 3.1, then X
also has the same state with the Klein bottle with respect to the
defects.

THEOREM 3.3. If f : X — Y is an acyclic map, where X and
Y are 3-dimensional ordered parameters V, and V; respectively.
Furthermore X satisfies one of the conditions (1) ~ (2) of Theo-
rem 3.1 then X and Y have the same defects.

Proof. By the Theorem 3.1 and the property of the homotopy
equivalence, our proof is completed.
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