THE NORMALIZED HILBERT COEFFICIENTS IN C-M MODULES

PARK, CHAN-BONG AND SEO JAE-HOON

Dept. of Mathematics,
Wonkwang University, Iksan, Chonbuk 570-749, Korea.

1. Introduction

Let R be a commutative Noetherian ring with identity. M an R-module of finite type, and \mathfrak{a} an ideal of R such that the R-module $M/\mathfrak{a}M$ has finite length (or simply, $\mathfrak{L}(M/\mathfrak{a}M) < \infty$).

For $n \gg 0$, $\mathfrak{L}(M/\mathfrak{a}^n M)$ is given by $P_{\mathfrak{a}}(M,n)$, where $P_{\mathfrak{a}}(M,X)$ is a polynomial in X with a rational coefficients and is known as the *Hilbert -Samuel polynomial* of \mathfrak{a} and M. The polynomial $P_{\mathfrak{a}}(M,X+1)$ may be written

$$e_0\binom{X+d}{d} - e_1\binom{X+d-1}{d-1} + \cdots + (-1)^{d-1}e_{d-1}\binom{X+1}{1} + (-1)^d e_d$$

where d is its degree and the coefficients $e_i = e_i(\mathfrak{a}, M)$ are called the normalized Hilbert coefficients of \mathfrak{a} and M.

Under the assumption that R is a Cohen-Macaulay (C-M for short) local ring, that M is the ring R itself, Northcott([5]), Narita([4]) and Malay([3]) developed lots of theory about the coefficients e_i . Fillmore([1]) gave the formula extracting the value of the coefficients e_i in a C-M module of dimension $d \geq 1$. The purpose of this paper is to find the formula on the value of the normalized Hilbert coefficients under the restricted condition of a regular sequence in a grade Module \bar{M} .

Received July 2, 1999.

¹⁹⁹¹ AMS Subject Classification: 13D40, 13C14.

Key words and phrases: Hilbert-Samuel polynomials, C-M modules, Complete intersection.

This paper was supported by Wonkwang University in 1999.

2. The basic theorems on e_i

Throughout this paper all rings are commutative Noetherian ring with identity. All modules are unitary and of finite type (there fore Noetherian). The Krull dimension of a ring R (denoted by dim(R)) is the least upper bound on the length of chains of prime ideals in R.

If $M \neq (0)$ is an R-module, the dimension of M (denoted by dim(M)) is the dimension of the ring R/Ann(M) where $Ann(M) = \{a \in R \mid aM = (0)\}$ is the annihilator of M. If M = (0), we define $dim(M) = -\infty$.

Let (R, \mathfrak{m}) be a local ring and M an R-module, and \mathfrak{q} a proper ideal of R. Then $\mathfrak{L}(M/\mathfrak{q}M) < \infty$ if and only if $\mathfrak{q} + Ann(M)$ is a defining ideal (i.e. an \mathfrak{m} -primary ideal) of R (in case $M \neq (0)$) or equals R (in case M = (0)) ([6], Proposition 7,p 194). Therefore there exists the Hilbert-Samuel polynomial of \mathfrak{a} and M, $P_{\mathfrak{q}}(M,X)([9], \text{Theorem 3.3}).$

The well-known theorem of Krull-Chevalley-Samuel states that for an R-module $M \neq 0$ the following integers are equal([9],Theorem 3.7):

- (i) dim(M),
- (ii) the degree of the polynomial $P_{\mathfrak{q}}(M,X)$ for any proper ideal \mathfrak{q} such that $\mathfrak{L}(M/\mathfrak{q}M) < \infty$,
- (iii) the least integer n such that there exist n elements x_1, x_2, \ldots, x_n in m for which $\mathfrak{L}(M/(x_1M + x_2M + \cdots + x_nM)) < \infty$.

Note that if the zero polynomial is assigned the degree $-\infty$, (i) and (ii) are equivalent when M = (0).

DEFINITION 2.1([2]). If (R, \mathfrak{m}) is a local ring, an R-module M is called a C-M module if M=(0) or if $M\neq (0)$ and depth(M)=dim(M). In the general case M is a C-M module if $M_{\mathfrak{m}}$ (considered as an R_m module) is C-M for all $\mathfrak{m}\in Max(R)$. R is called a C-M ring if as an R-module R is C-M.

Fillmore ([1]) used the superficial elements to get the value of e_i . His construction is as follows: let M be an C-M R-module of dimension $d \ge 1$ and \mathfrak{q} a proper ideal of R such that $\mathfrak{L}(M/\mathfrak{q}M) < \infty$. Then there is an M-regular sequence $(x_j)_{1 \le j \le d}$ of elements of

q such that for $j=1,2,\ldots,d,$ x_j is $(M/\sum_{i=1}^{j-1}x_iM)$ -superficial of order 1 for q. Define integers

$$\begin{split} A_n &= \mathfrak{L}(M/\sum_{i=1}^d x_i M) - \mathfrak{L}(M/\mathfrak{q}^{n+1} M + \sum_{i=1}^d x_i M), \\ B_{jn} &= \mathfrak{L}(\mathfrak{q}^{n+1}(M/\sum_{i=1}^{j-1} x_i M) : Rx_j/\mathfrak{q}^n(M/\sum_{i=1}^{j-1} x_i M)). \end{split}$$

Then these integers are finite and non-negative for $j=0,1,\ldots,d$ and $n=0,1,\ldots$ For $r\geq 1$, let

$$A_n^{(r)} = \sum_{k=0}^n \binom{n-k+r-1}{r-1} A_k.$$

PROPOSITION 2.2 ([1]). Under the same assumption and notations as above, we have

$$e_0(\mathfrak{q}, M) = \mathfrak{L}(M/(x_1M + x_2M + \cdots + x_dM))$$

and

$$e_{i}(\mathfrak{q}, M) = \sum_{k=i-1}^{\infty} {k \choose i-1} A_{k} + \sum_{j=d-i+1}^{d} \sum_{k=i-1+j-d}^{\infty} (-1)^{d-j} {k \choose i-1+j-d} B_{jk}$$
for $i=1,2,\ldots,d$.

In following Corollary, we got the relation between e_1 and e_2 .

COROLLARY 2.3. Let (R, \mathfrak{m}) be a local ring and let M be a C-M R-module of dimension $d \geq 2$. If \mathfrak{a} is a proper ideal of R such that $\mathfrak{L}(M/\mathfrak{a}M) < \infty$, Then $e_2(\mathfrak{a}, M) \leq \frac{1}{2}e_1(\mathfrak{a}, M)(e_1(\mathfrak{a}, M) - 1)$.

Proof. In virtue of [[1],Lemma 4.1], it suffices to prove the theorem in the case that d=2. By Proposition 2.2, $e_1(\mathfrak{a},M)=0$

$$\sum_{k=0}^{\infty} (A_k + B_{2k})$$
 and

$$e_2(\mathfrak{a}, M) = \sum_{k=1}^{\infty} kA_k + \sum_{k=1}^{\infty} kB_{2k} - \sum_{k=0}^{\infty} B_{1k} \le \sum_{k=1}^{\infty} k(A_k + B_{2k})$$

Let l be the least non-negative integer such that $A_n + B_{2n} = 0$ for all n > l. If $A_m + B_{2m} = 0$ for some $m \ge 0$, then $A_n + B_{2n} = 0$ for all $n \ge m$. Thus $A_n + B_{2n} \ge 1$ whenever $0 \le n \le l$ and so if $1 \le k \le l + 1$, then

$$e_1(\mathfrak{a},M)-k=\sum_{n=0}^{k-1}(A_n+B_{2n}-1)+\sum_{n=k}^l(A_n+B_{2n})\geq \sum_{n=k}^l(A_n+B_{2n})$$

Therefore

$$e_2(\mathfrak{a}, M) = \sum_{n=1}^{l} n(A_n + B_{2n}) = \sum_{k=1}^{l} \sum_{n=k}^{l} (A_n + B_{2n})$$

$$\leq \sum_{k=1}^{l} (e_1(\mathfrak{a}, M) - k)$$

But
$$e_1(\mathfrak{a}, M) = \sum_{n=0}^{l} (A_n + B_{2n}) \ge l + 1$$
. Therefore

$$e_2(\mathfrak{a},M) \leq \sum_{k=1}^{e_1(\mathfrak{a},M)-1} (e_1(\mathfrak{a},M)-k) = \frac{1}{2}e_1(\mathfrak{a},M)(e_1(\mathfrak{a},M)-1).$$

We shall say that \mathfrak{a} is M-parametric if there exists a system of parameters for M which generate an ideal \mathfrak{a}_1 such that $\mathfrak{a}M = \mathfrak{a}_1 M$.

COROLLARY 2.4. Let (R, \mathfrak{m}) be a local ring, M a C-M R-module of dimension $d \geq 2$ and \mathfrak{q} a proper ideal such that $\mathfrak{L}(M/\mathfrak{q}M) < \infty$. If \mathfrak{a} is M-parametric and $\mathfrak{q}^2M = \mathfrak{q}\mathfrak{a}M$, then $e_i(\mathfrak{q}, M) = 0$ for each $2 \leq i \leq d$.

Proof. Let x_1, x_2, \ldots, x_d be a system of parameters for M such that

$$\mathfrak{a}M=(x_1,x_2,\ldots,x_d)M. \text{ Since}$$

$$\mathfrak{q}^2(M/\sum_{i=1}^{j-1}x_iM)=\mathfrak{q}(x_1,\cdots,x_d)(M/\sum_{i=1}^{j-1}x_iM), [[1](\text{Lemma 5.8})]$$
implies that $B_{jn}=0$ for all $n\geq 1$ and $1\leq j\leq d$.

Further $\mathfrak{q}^{n+1}M = \mathfrak{q}^n(Rx_1 + Rx_2 + \cdots + Rx_d)M \subseteq (Rx_1 + Rx_2 + \cdots + Rx_d)M$ for all $n \ge 1$. Therefore $A_n = 0$ for all $n \ge 1$. Therefore by Proposition 2.2, $e_i(\mathfrak{q}, M) = 0$ for all $1 \le i \le d$. This completes the proof.

3. Main Theorem

Let (R, m) be a local ring, M an R-module, and \mathfrak{q} an ideal of R. Let us consider the direct sum

$$ar{R} = \sum_{n=0}^{\infty} \mathfrak{q}^n/\mathfrak{q}^{n+1}, \ \ ar{M} = \sum_{n=0}^{\infty} \mathfrak{q}^n M/\mathfrak{q}^{n+1} M,$$

where $\bar{R}_n = \mathfrak{q}^n/\mathfrak{q}^{n+1}$ or $\bar{M}_n = \mathfrak{q}^n M/\mathfrak{q}^{n+1} M$ is considered as homogeneous elements of degree n. Then \bar{R} is a grade ring and \bar{M} is a graded \bar{R} -module under the usual operations ([8], II,p,248). The leading form \bar{M} of an element m of M is defined to be $m \mod \mathfrak{q}^{n+1} M$ if $m \in \mathfrak{q}^n M - \mathfrak{q}^{n+1} M$ and 0 if m = 0. The leading submodule \bar{N} of a submodule N of M is defined by

$$\bar{N} = \sum_{n=0}^{\infty} \bar{N}_n$$

where

$$\bar{N}_n = (N + \mathfrak{q}^{n+1}M) \cap \mathfrak{q}^n M)/\mathfrak{q}^{n+1}M = ((N \cap \mathfrak{q}^n M) + \mathfrak{q}^{n+1}M)/\mathfrak{q}^{n+1}M$$

The purpose of this section is to establish Theorem 3.1.

THEOREM 3.1. Let (R, \mathfrak{m}) be a local ring, M a C-M R-module of dimension $r \geq 0$, and \mathfrak{q} a proper ideal of R such that $\mathfrak{L}(M/\mathfrak{q}M)$ $< \infty$ and \mathfrak{q} M-parametric. Let $(x_j)_{1 \leq j \leq s}, s \leq r$, be a sequence of elements from \mathfrak{m} such that the sequence of leading forms $(\bar{x}_j)_{1 \leq j \leq s}$ is \bar{M} -regular. Then

- (i) The sequence $(x_j)_{1 \le j \le s}$ is M-regular.
- (ii) For $0 \leq i \leq r s$,

$$e_i(\mathfrak{q}, M/(x_1M+x_2M+\cdots+x_sM)) = \mathfrak{L}(M/\mathfrak{q}M) \sum {l_1 \choose \lambda_1+1} \cdots {l_s \choose \lambda_s+1}$$

if
$$0 \le i \le \sum_{j=1}^{s} (l_j - 1)$$

and

$$e_i(\mathfrak{q}, M/(x_1M + x_2M + \cdots + x_sM)) = 0$$
 otherwise.

where l_j is the degree of \bar{x}_j in \bar{M} and the sum is taken over $\lambda_1, \lambda_2, \ldots, \lambda_s$ for which $\lambda_1 + \lambda_2 + \cdots + \lambda_s = i$ and $0 \le \lambda_j \le l_j - 1$ for $j = 1, 2, \ldots, s$.

Proof. We note that the cases r=0 and r=s are trivial. So we can assume r>0 and s< r. Suppose that l_i is the degree of \bar{x}_i and $(\bar{x}_i)_{1\leq i\leq s}$ is a \bar{M} -regular sequence. Since x_1 is not a zero-divisor for \bar{M} , we have R-isomorphisms

$$(\bar{x}\bar{M})_n = \left\{ egin{array}{ll} ar{M}_{n-l_1} & , & n \geq l_1 \ (0) & , & n < l_1. \end{array}
ight.$$

Therefore we have

$$\mathfrak{L}(\bar{M}_n) - \mathfrak{L}(\bar{M}_n/(\bar{x}\bar{M})_n) = \left\{ \begin{array}{ll} \mathfrak{L}(\bar{M}_{n-l_1}) & , & n \geq l_1 \\ 0 & , & n < l_1. \end{array} \right.$$

If t denotes an indeterminant, then

$$\sum_{n=0}^{\infty} \mathfrak{L}(\bar{M}_n/(\bar{x}\bar{M})_n)t^n = (1-t^{l_1})\sum_{n=0}^{\infty} \mathfrak{L}(\bar{M}_n)t^n.$$

By induction we have

$$\sum_{n=0}^{\infty} \mathcal{L}(\bar{M}_n/(\bar{x}_1\bar{M}+\cdots+\bar{x}_s\bar{M})_n)t^n = (1-t^{l_1})(1-t^{l_2})\cdots(1-t^{l_s})\sum_{n=0}^{\infty} \mathcal{L}(\bar{M}_n)t^n$$

Put $a = Rx_1 + Rx_2 + \cdots + Rx_s$. Since $(\bar{x}_i)_{1 \leq i \leq s}$ is \bar{M} -regular, $\bar{x}_1\bar{M} + \bar{x}_2\bar{M} + \cdots + \bar{x}_s\bar{M} = \bar{a}\bar{M}$. From the R-isomorphisms

$$\bar{M}_n/\overline{(\mathfrak{a}M)}_n = (\mathfrak{q}^n M/((\mathfrak{a}M + \mathfrak{q}^{n+1}M) \cap \mathfrak{q}^n M)
= (\mathfrak{a}M + \mathfrak{q}^n M)/(\mathfrak{a}M + \mathfrak{q}^{n+1}M).$$

We obtain

$$(3.1) \sum_{n=0}^{\infty} \mathfrak{L}(\mathfrak{a}M + \mathfrak{q}^n M/\mathfrak{a}M + \mathfrak{q}^{n+1}M)t^n$$

$$= (1 - t^{l_1})(1 - t^{l_2}) \cdots (1 - t^{l_s}) \sum_{n=0}^{\infty} \mathfrak{L}(\mathfrak{q}^n M/\mathfrak{q}^{n+1}M)t^n.$$

Put $M' = M/\mathfrak{a}M$. Then

$$\begin{split} &\sum_{n=0}^{\infty} \mathfrak{L}(\mathfrak{a}M + \mathfrak{q}^n M/\mathfrak{a}M + \mathfrak{q}^{n+1}M)t^n \\ &= \sum_{n=0}^{\infty} (\mathfrak{L}(M'/\mathfrak{q}^{n+1}M') - \mathfrak{L}(M'/\mathfrak{q}^n M'))t^n \\ &= (1-t)\sum_{n=0}^{\infty} \mathfrak{L}(M'/\mathfrak{q}^{n+1}M')t^n. \end{split}$$

Similarly, $\sum_{n=0}^{\infty} \mathfrak{L}(\mathfrak{q}^n M/\mathfrak{q}^{n+1} M) t^n = (1-t) \sum_{n=0}^{\infty} \mathfrak{L}(M/\mathfrak{q}^{n+1} M) t^n.$ From (3.1),

$$\sum_{n=0}^{\infty} \mathfrak{L}(M'/\mathfrak{q}^{n+1}M')t^n = (1-t^{l_1})(1-t^{l_2})\cdots (1-t^{l_s})\sum_{n=0}^{\infty} \mathfrak{L}(M/\mathfrak{q}^{n+1}M)t^n.$$

Since M is a C-M module of dimension r > 0 and \mathfrak{q} is M-parametric, by [[1] Theorem 2.14],

$$\sum_{n=0}^{\infty}\mathfrak{L}(M/\mathfrak{q}^{n+1}M)t^n=\mathfrak{L}(M/\mathfrak{q}M)\sum_{n=0}^{\infty}\binom{n+r}{r}t^n=\mathfrak{L}(M/\mathfrak{q}M)(1-t)^{-r-1}.$$

Hence

$$\sum_{n=0}^{\infty} \mathfrak{L}(M'/\mathfrak{q}^{n+1}M')t^n = \mathfrak{L}(M/\mathfrak{q}M)(1-t^{l_1})(1-t^{l_2})\cdots(1-t^{l_s})(1-t)^{-r-1}.$$

If
$$P_{\mathfrak{q}}(M', X+1) = e_0\binom{X+d}{d} - e_1\binom{X+d-1}{d-1} + \cdots + (-1)^d e_d$$
, then

$$\sum_{n=0}^{\infty} P_{\mathfrak{q}}(M', n+1)t^n = \frac{e_0}{(1-t)^{d+1}} - \frac{e_1}{(1-t)^d} + \dots + (-1)^d \frac{e_d}{(1-t)}.$$

Therefore we have

$$\frac{e_0}{(1-t)^{d+1}} - \frac{e_1}{(1-t)^d} + \dots + (-1)^{d-1} \frac{e_{d-1}}{(1-t)^2} + (-1)^d \frac{e_d}{(1-t)}.$$

$$= \mathcal{L}(M/\mathfrak{q}M)(1-t^{l_1})(1-t^{l_2}) \dots (1-t^{l_s})(1-t)^{-r-1} + Q(t)$$

where d = dim(M'), $e_i = e_i(\mathfrak{q}, M')$, and Q(t) is a polynomial in t with integral coefficients. Multiplying (3.2) by $(1-t)^{r+1}$ we find that $r-d \geq s$ since each $l_i \geq 1$ implies the right hand side is divisible by $(1-t)^s$. But $d \geq r-s$ holds in general, so we have d = r-s. Thus $(x_j)_{1 \leq j \leq s}$ is an M-regular sequence. Thus (i) is proved. If we divide out this factor $(1-t)^s$, we obtain (3.3)

$$e_0 - (1-t)e_1 + \dots + (-1)^{d-1}(1-t)^{d-1}e_{d-1} + (-1)^d(1-t)^d e_d$$

$$= \mathfrak{L}(M/\mathfrak{q}M) \frac{(1-t^{l_1})}{1-t} \frac{(1-t^{l_2})}{1-t} \dots \frac{(1-t^{l_s})}{1-t} + (1-t)^{d+1}Q(t)$$

From

$$t^{l_j} = (1 - (1 - t))^{l_j} = \sum_{\lambda_j = 0}^{l_j} {l_j \choose \lambda_j} (-1)^{\lambda_j} (1 - t)^{\lambda_j}$$
$$= 1 - \sum_{\lambda_j = 0}^{l_{j-1}} {l_j \choose \lambda_j + 1} (-1)^{\lambda_j} (1 - t)^{\lambda_j + 1},$$

we have

(3.4)
$$\frac{1-t^{l_j}}{1-t} = \sum_{\lambda_j=0}^{l_j-1} {l_j \choose \lambda_j+1} (-1)^{\lambda_j} (1-t)^{\lambda_j}.$$

Substitute (3.4) for j = 1, 2, ..., s into (3.3) and compare coefficients of the powers of 1 - t to obtain the e_i . Then (ii) is proved.

A local ring (R, \mathfrak{m}) is called a *complete intersection* if it can be written as $A/(Ax_1 + Ax_2 + \cdots + Ax_s)$ where A is a regular local ring, the x_j are elements of the maximal ideal \mathfrak{n} of A, and s = dim(A) - dim(R). It follows that $(x_j)_{1 \leq j \leq s}$ is part of a system of parameters for A and that a complete intersection is a C-M local ring.

COROLLARY 3,2. Let (A, n) be a regular local ring and $R = A/Ax_1 + Ax_2 + \cdots + Ax_s$ and s = dim(A) - dim(R). If the sequence $(\bar{x}_j)_{1 \leq j \leq d}$ of leading forms in the form ring \bar{R} of A with respect to n is \bar{R} -regular, then for $0 \leq i \leq dim(R)$,

$$e_i(\mathfrak{m},R) = \sum \binom{l_1}{\lambda_1+1} \cdots \binom{l_s}{\lambda_s+1}$$
 if $0 \le i \le \sum_{j=1}^s (l_j-1)$

and

$$e_i(\mathfrak{m}, R) = 0$$
 otherwise

where m is the maximal ideal of R, l_j is the degree of \bar{x}_j in \bar{R} , and the sum is as described in the theorem 3.1.

Proof. From isomorphisms $A/\mathfrak{n}^n \cong (A/Ax_1 + Ax_2 + \cdots + Ax_s)/((\mathfrak{n}^n + Ax_1 + Ax_2 + \cdots + Ax_s)/(Ax_1 + Ax_2 + \cdots + Ax_s)) \cong R/\mathfrak{m}^n$, $e_i(\mathfrak{m}, R) = e_i(\mathfrak{n}, A)$ for $0 \leq i \leq dim(R)$. Furthermore, $\mathfrak{L}(A/\mathfrak{n}) = 1$. Therefore our assertion follows from Theorem 3.1.

EXAMPLE 3.3. Let $A = K[X_1.X_2, X_3]_{(X_1, X_2, X_3)}$ where K is a field. Then A is a regular local ring of dimension 3 with the maximal ideal $\mathfrak{n} = AX_1 + AX_2 + AX_3$. Since $\bar{R} = \sum_{n=0}^{\infty} \mathfrak{n}^n/\mathfrak{n}^{n+1} \cong$

 $(A/\mathfrak{n})[X,Y,Z]$, the sequence $\{X,Y,Z\}$ is a \bar{R} -regular. Therefore by Corollary 3.2, for $0 \le j \le 3$, and for $0 \le i \le 3-j$

$$e_0(\mathfrak{m}_j, R_j) = 1$$

 $e_i(\mathfrak{m}_j, R_j) = 0$, otherwise

where $R_j = A/AX_1 + \cdots + AX_j$ and m_j is the maximal ideal of R_j .

References

- 1. Jay.P. Fillmore, On Macaulay modules and abstract Hilbert polynomials, Ph. D. thesis U.M.I (1965), 1-67.
- 2. E. Kunz, Introduction to Commutative Algebra and Algebraic Geometric, Bikhauser, Boston, 1985.

- 3. T.Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal, J. London Math. Soc. 2 (1989), 1-8.
- 4. M. Narita, A note on the coefficients of Hilbert characteristic functions in Cohen-Macaulay local rings, Proc. Camb. Phil. Soc. 59 (1963), 269-275.
- 5. D.G. Northcott, A note on the coefficients of abstract Hilbert functions, J. London Math. Soc. 35 (1960), 209-214.
- D.G. Northcott, Lessons on Rings, Modules and Multiplicities, Camb. Univ. Press, 1968.
- 7. J.D. Sally, Ideals whose Hilbert function and Hilbert polynomial agree at n=1, J. of Algebra 157 (1993), 534-547.
- O. Zariski and P. Samuel, Commutative Algebra, Vol. I. II, Springer-Verlag, Berlin, New York, 1975.
- 9. O. Zariski and P. Samuel, Homological method in Commutative Algebra, Tata Institute of Fundamental Research, 1975.