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SOME DISCRETE INEQUALITIES OF
GRUSS TYPE AND APPLICATIONS
IN GUESSING THEORY
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Abstract Some discrete inequalities of Griiss type and their applications
in estimating the p-moments of guessing mapping are given.

1. Introduction

In 1935, G. Griiss proved the following integral inequality which
gives an approximation of the integral of the product in terms of
the product of the integrals as follows:

b b b
[ @@ - o [ e 2 [ g@s

b—-a
(1.1)
<

(@ - ) ~1)

e R

where f,g : [a,b] — R are integrable on [a,b] and satisfy the
condition
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for each z € [a, b] where ¢, ®,~,T are given real constants.
Moreover, the constant ;} is sharp in the sense that it can not
be replaced by a smaller one.
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For a simple proof of (1.1) as well as some other integral in-
equalities of Griiss’ type see Chapter X of the recent book [1] by
Mitrinovié, Pe€ari¢ and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski [1, Ch.
X] established the following discrete version of Griiss’ inequality:

THEOREM 1. Let a = (a1, - ,a,),b = (b1, -+ ,b,) be two n-
tuples of real numbers such that r < a; < Rand s < b, < S for
t =1, ---,n. Then one has:
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where [z] is the integer part of x,x € R.

A weighted version of Griiss’ discrete inequality was proved by
J.E. Peéari¢ in 1979, [1, Ch. X]:

THEOREM 2. Let a and b be two monotonic n-tuples and p a
positive one. Then
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where P, := 30 pi , Pey1 = Py — Pry1.

In 1981, A. Lupas [1, Ch. X] proved some similar results for
the first difference of a as follows:

THEOREM 3. Let a, b two monotonic n-tuples in the same sense
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and p a positive n-tuple. Then
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If there exists the numbers a,a;,r,ry, (rr; > 0) such that ar =
@+ kr and by = @, + kry, then in (1.5) the equality holds.

For some generalizations of Gruss’ inequality for isotonic linear
functionals defined on certain spaces of mappings see Chapter X
of the book [1] where further references are given.

In the recent paper [2], S.S. Dragomir and G.L. Booth obtained
the following inequality of Griiss’ type:

THEOREM 4. Let a;,r; be real numbers and p; > 0 (i =
n
1,---,n) so that Y p; = 1. Then we have the inequality:
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The inequality (1.6) is sharp in the sense that the constant C = 1
in the right membership can not be replaced by a smaller one.

Note that in paper [2] they proved the inequality (1.6) in the
general case of normed linear spaces.
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The main aim of this paper is to point out another inequality
of Griiss’ type and apply it to estimate the moments of guessing
mappings as in the papers [5]-[7].

2. A New Discrete Inequality of Griiss’ Type
The following result holds:

THEOREM 5. Let a;,b; (i = 1,---,n) be real numbers and
pi(i =1,---,n) a probability distribution. Define
A 1
i a i B
ag;-’) = Z |a,k - ak_.lla , bf;ﬁ) . Z lbk - bk._llﬁ
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forall1 < j <i<nanda> 1,é+% = 1. Then we have the
inequality
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The first inequality in (2.1) is sharp.
Proof. 1t is well known that the following equality holds:

Zp,a. Zpaa, Zpg

=1

= Y pipj(ai —a;) (bi - b;).

1<j<i<n



Griiss Type Inequalities and Applications in Guessing Theory 119

Using the simple observation which asserts that

i

a; —aj = Z (ar — ag-1), by —b; = Z (bx — br—-1)

k=j-+1 k=j+1

and the generalized triangle inequality, we get
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Using Holder’s discrete inequality for double sums, we have
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forall1<j<i<mn.
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Now, by (2.2) and (2.3) and by Hoélder’s inequality, we have:
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and the first inequality in (2.1) is proved.
For the second inequality, let observe that

ol <aly and b < b)) forall1 <j<i<n.

Then

Q=

Z (i — j) Pip; [GE?)]Q

1<j<igtn
5 4
X Z (i~ J) pipj [b,(f)]

1<j<ign

<aP | X (i“-j)pipj)

1<j<i<n

R

T

b 3 (- pp
1<€j<i<n

=a\75Y) Z (i — 7) pip;
1<€ji<i<n



Griiss Type Inequalities and Applications in Guessing Theory 121
and the second inequality is also proved.
For the sharpness of the first inequality in (2.1), let choose a; =

a1+ (i —1a,bj=b+(i—-1)bwitha,b>0andi=2,---,n
Then we have:
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and the sharpness of the first inequality in (2.1) is proved.
The following corollary holds:
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COROLLARY 1. With the above assumptions we have:
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The first inequality in (2.4) is sharp.

Proof. The first inequality is obvious by the above theorem.
Let us compute
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and the corollary is thus proved.

3. Applications for the Moments of Guessing Mapping

J.L. Massey in the paper [3] considered the problem of guessing
the value of realization of a random variable X by asking questions
of the form: ”Is X equal to x 7”until the answer is " Yes”.
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Let G(X) denote the number of guesses required by a particular
guessing strategy when X = z .

Massey observed that E(G(X)), the average number of guesses
is minimized by a guessing strategy that guesses the possible val-
ues of X in decreasing order of probability.

We begin by giving a formal and generalized statement of the
above problem by following E. Arikan [4].

Let (X,Y) be a pair of random variable with X taking values in
a finite set x of size n, Y taking values in a countable set Y . Call
a function G(X) of the random variable X a guessing function in
X ifG:x — {1,---,n} is one-to-one. Call a function G(X |Y)
a guessing function for X given Y if for any fixed value ¥ = y,
G(X |y) is a guessing function for X . G(X | y) will be thought
of as the number of guessing required to determine X when the
value of Y is given.

The following inequalities on the moments of G(X) and G(X |
Y') were proved by E. Arikan in the recent paper [4].

THEOREM 6. For an arbitrary guessing function G(X) and
G(X |Y) and any p > 0, we have:

(3.1) E(G(X)?)>(1+1Inn)~

and

1+p

(32) B(G(X|Y)?)>(1+lhn)"Y" {Z Pxy (z,y)™F

yey Lzex

where Px y and Px are probability distributions of (X,Y) and
X, respectively.

In paper [7], S.S. Dragomir and J. van der Hoek have proved the
following estimation result for the moments of guessing mapping:

THEOREM 7. Assume that

Py :=max{p; |i=1,---,n} and Py :=min{p; |i=1, - ,n}
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and Py # P,,. Then we have the estimates:

G (n) [ mn”“ m (1 - an)IH-l}
< E(G(X))
< GP (n) [Pan+1 + (PM - Pm)p ('I’LPM - 1)P+1]
for p > 1, where
() = 22
Gy Pl

and

COROLLARY 2. With the above assumption, we have:

1 1+l Po,Pyn? —2nP,, +1
2 n PM*-’P
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< < - —
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For other estimations of E(G(X)P) see the papers [5]-[7].
Now, let us introduce the notations

ol

=741

b (p) == [ 3 (k- (k- 1)?)“}

where 1 <j<i:<n,p>0,a>1.
The following proposition holds.

PROPOSITION 1. Let p,q > 0. Under the above assumptions,
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we have
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where o, > 1 and ; + 5 = L.

The proof follows by Theorem 5 applied for a; = i?,b; = 19(1 =
1,---,n). We shall omit the details.

Now, starting to the probability distribution p; > 0(i =1, -,
n) with _7 | p; = 1, we define:

1

; 8
)
P = ( > lpk—pk-ﬂﬂ)

k=j+1

where 1 <j<i<n,@>1.
Using Corollary 1 we have the following estimation of the mo-
ments of guessing mapping:

PROPOSITION 2. Let p > 0. Then we have the estimate
|E(G(X)?) - Sa(p)|
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In particular, we have the following bound for the average num-
ber of guesses:

BG0) -
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