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1. Group Cohomology

Let G be a (finite) group, and let A be an abelian group on
which G acts, i.e., A is a G-module. For any subgroup H of G,
we denote

A ={ze A:ox=1zforallo € H}.

We define H°(G, A) = AC.
Let
CY(G, A) = hom(G, A),

ZYG,A) = {f € hom(G, A) : f(or) =0 f(7) + f(o) ¥V 0,7 € G},
BY(G,A) = {f € hom(G, A) : 3a € As.t. f(0)=0ca—a Vo € G}.
Then, we easily see that BY(G, A) C Z!(G, A). We define

HMG, A) = Z1(G, A)/B*(G, A).

For example, if G acts trivially on A, then H%(G, A) = A and
HY(G, A) = hom(G, A).

Now, if A is a G—module, and if H is any subgroup of G, then
A is an H-module. Hence, we get the restriction map Z'(G, A) —
ZY(H,A). Also, under this map, B*(G, A) maps into B(H, A).
Hence, they induce the restriction map H'(G, A) — H'(H, A). If
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0— A— B — C — 0is an exact sequence of G-modules, then
we have the following long exact sequence of homologies

0 — H(G, A) — H%(G, B) » HY(G, C)
- HY(G, A) = H'(G, B) » H\(G, C).

If H is a normal subgroup of G, A¥ is a G/H-module. Then, we
get the inflation map 2!(G/H, A¥) -+ 2Y(G, A). Also, B}(G/H, AH)
maps into BY(G, A). Hence, they induce the inflation map H*(G/H,
A"y o HY(G, A).

Then, we have the following exact sequence.

0 — HY(G/H, A¥) 24 HY(G, A4) ™ HY(H, A).

2. Definition of the Shafarevich-Tate Group of an El-
liptic Curve

Let K be a number field, and E/K be an elliptic curve over K.
Let L be a finite extension field of K. We denote

E(L)={(z,y) € F:z,y € L}u{0}.

Then, E(L) is a finitely generated abelian group.
Let G = G(K/K), the Galois group of K over K. Then, G acts
on E, via, for any o € G,

Pw{(ax,ay), if P=(z,y)
1o, if P=0.

Then, E(K)GK/L) = E(L).

Let Mg be the set of all absolute values v in K such that
vlg = |- lp or |- [oo. For any v € Mk, fix an extension w of v
to K. This fixes an embedding K — K,. Let G, = {0 € G =
G(K/K) : ow = w} be the decomposition group. Then, 7, acts
on E(K,). The natural inclusions G, — G and E(K) — E(K,)
give the restriction maps on cohomologies,

HY G, E/K) — H'Y(G,, E/K,).
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And, hence, give the map
HYG,E/K)—~ ][] H'G.,E/K.).
vEMg
Now, we define the Shafarevich-Tate group l | | (E/K) as the
kernel of the above map. T

3. Some Known Facts

ProposITION 1 ([2]). (1) ||| (E/K) is a torsion group.

(2) ||| (E/K] = {z € || |(B/K) :pz =0}, ie.,, ||| (B/K)(p), the
p—primary part of _[_U_ (E/K), is of finite corank.

Proof. (1) SinceG = Bm o atons OL/K is pro-finite, H'(G, E/K)
is a torsion group. Therefore, ||| (E/K) is a torsion group.

(2) The following sequence
0 Ejp—>EBE—-0

is exact. Hence, by acting G, we get the following long exact
sequence

0 — E(K)[p)| » E(K) & E(K)
— HY(G, Elp]) - H'(G,E) 5 H'(G,E).
Hence, the diagram
0 - E(K)/pE(K) —  HYG,Ep) - HY(G, B)[p] -0
4 { 4
0 “)HveMK E(KU)/PE(Kv)—’nveMK Hl(GmE[P])"*HueMK HY(Gy, E)[p]— 0
is commutative. Therefore,
0 — E(K)/pE(K) — SP(E/K) — ||| (E/K)[p] = 0

is exact. Here,
S®)(E/K) = Ker(H (G, Elp) —» [] H'(G. Elp),
vEMy

which is called p— Selmer group. This group is finite and effectively
computable. Therefore, ||| (E/K)[p] is finite.
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CONJECTURE 2. ||| (E/K) is finite.

It is known that ||| (2) and ||| (3) are finite for thousands of
elliptic curves over Q. T

THEOREM 3 ([2]). If ||| (E/K) is finite, then there is a non-
degenerate canonical alternating bilinear pairing

|| (E/K) x ||| (E/K) = Q/Z.

LEMMA 4. Let A be a finite abelian group. If there is a non-
degenerate alternating bilinear pairing

<,>:Ax A-Q/Z,

then, A = Sx§ for some subgroup S of A, where § is the character
group of S.

Proof. Let S be the subgroup of A such that < s,8' >= 0
for all 5,8’ € S and S is maximal with respect to this property.
Since< 1,1 >= 0, there is at least one subgroup with the property.
Consider the character x,(s) =< a,s > of A, for each a € A.
They are all distinct, since the pairing <, > is non-degenerate.
Consider A/S. For each a € A/S, we have a character of S defined
by xa(s) =< a,s > . By the definition of S, they are distinct.
Therefore, $ 2 A/S and A= S x S.

As a corollary, we have

CoroLLARY 5 ([2]). If ||| (E/K) is finte, then it is a square.

Until 1987, there was not a single example of an elliptic curve
whose Safarevich-Tate group was known to be finite.

In 1987, Rubin proved that if £/QQ has complex multiplication
and L(E/Q,1) # 0, then [ || (E/Q) is finite. Here L(E/Q,s)

is L—series of E/Q. He actually calculated ] || (E/Q) for some

elliptic curves with complex multiplication. For example, if E is
givenas E : y? = 23 — 7, then ||| = 0;if E : y? = 2% + 17z,

then ||| = Z/2Z x Z/2Z; and if E : y? = z° — 283452, then
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||| = Z/3Z x Z/3Z. These were the first known examples of
elliptic curves with finite Safarevich-Tate groups.

In 1989, Kolyvagin proved that if F/Q is a modular curve and
if L(E/Q, s) has no zero or simple zero at s = 1, then ||| (E/Q)
is finite. For example, if E ; y? = 423 — 4z + 1, then it has not
complex multiplication, and ‘ ‘ ! = 0.

PROPOSITION 6. Let L be a finite Galois extention field of a
number field K with Galois group G. Let E be an elliptic curve
over K. If | || (E/L) is finite, then so is ||| (E/K).

Proof. From the inflation-restriction exact sequence, we have
the following commutative diagram with exact rows

0 — ® —  ||[(B/K)  ——  ||[(E/L)

! ! !

0 — HYG,B(L)) — HY(Gg,k, E(K)) —— H'(Gp,., E(L))

Here, all vertical arrows are inclusions.
Since H'(G, E(L)) is finite, so is ®. Therefore, if ||| (E/L) is
finite, so is T

| (E/K).

4. Main Result
Let G be a finite group. For any subgroup H of G, we put

and call it the idempotent associated with H. Note that ey is
indeed an idempotent in Q[G], i.e., ¢} = ey.
A relation of the form

Z’n‘HGH =0, ng € Qv
H

is called an idempotent relation in G. Whenever G is non-cyclic,
G has a non-trivial idempotent relation [1].



40 Hwasin Park and Daeyeoul Kim

THEOREM 7 ([3]). Let G be a finite group, and let 3 nyey =
Z m HeH, where ny and my are non-negative intergers. Let A =

zZ[|G l ]. If M is a finite A[G]—module, then there is a A—module
isomorphism
@(Meg)ng - @(Me”)my
H H

Here, M¥ = {z*¥ :z € M}.
In particular, [Ty |M= ™" =], | M|

As a corollary, we have

LEMMA 8. If M is a finite G—module, and if }_ ;nyey = 0 is
an idempotent relation in G, then

[T1Men ™ i) 1.
H

Here, a ~,, b means a and b are the same up to prime factors of
n.

Proof. Let M = {z € M : The order of z is prime to|G|}.
Then, M is a finite A—module. Hence, by the above theorem, we

have )
H IMeH lnH =1
H

But, |M<#| ~g| |M®#|. Therefore,

H | Me# ™~y 1

PROPOSITION 9. Let M be a finite G—module. If )y ngey =
0 is an idempotent relation in GG, then

[T1MH* i 1.
H

Proof. By Lemma 8, it is enough to show that MH = Mex
A-modules. If z € M 'H , then 2% = z for every o € H. Hence,
T2oen® = |H|x, ie., x‘” = z. Therefore, x € M*H
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Conversely, if £ € M*#, then z = y*¥ for some y € M. Let
7 € H be any element. Then,

7 = yﬁil”' = yTFl!"T ZGEHGT = er%iT z"'e”a = ye” = .

Hence, z € MH which completes the proof.

Returning to our elliptic curve case, again we assume that E
is an elliptic curve over a number field K, and L is a finite Galois
extention field with Galois group G.

Suppose Y, ngen = 0 is an idempotent relation in G.

THEOREM 10. HH ’Eto.,-s(LH)’ ~G| 1.

Proof. Eiors(L) is a finite G—module. Therefore, by Proposi-
tion 9, we get the result.

LEMMA 11. | ~LU_(E/LH)i ~ig) | _U_L(E/L)H|.

Proof. We have the following commutative diagram with infla-
tion- restriction exact rows

0— o - M(E/LH) - |||(E/L)H - ¥
) ) X! L
0 »HY(H,E(L)~HYGrn, ) n, E)>H Gy, E)¥ = H*(H, E(L))

Here, all vertical arrows are inclusions.

Since E(L) is finitely generated, H'(H, E(L)) and H*(H, E(L))
are finite groups annihilated by |H|, hence by |G|. Hence, @ and
¥ are also finite groups annihilated by !G !, ie.,

12|~y L [¥] ~igp 1
Therefore, we have

| HIE/L)] ~er | E/LH].

Combining Propositon 9 and Lemma 11, we have
TueoreM 12. [, | ||| (B/L™)|™ ~ig 1.
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