RELATIONS AMONG SHAFAREVICH-TATE GROUPS

HWASIN PARK AND DAEYEOUL KIM

Dept. of Mathematics, Chonbuk National University, Chonju, Chonbuk 561-756, Korea.

1. Group Cohomology

Let G be a (finite) group, and let A be an abelian group on which G acts, i.e., A is a G-module. For any subgroup H of G, we denote

$$A^{H} = \{x \in A : \sigma x = x \text{ for all } \sigma \in H\}.$$

We define $H^0(G, A) = A^G$.

Let

$$C^1(G,A) = \hom(G,A),$$

$$Z^{1}(G, A) = \{ f \in \text{hom}(G, A) : f(\sigma\tau) = \sigma f(\tau) + f(\sigma) \ \forall \ \sigma, \tau \in G \},$$

$$B^1(G,A) = \{ f \in \text{hom}(G,A) : \exists a \in A \text{ s.t. } f(\sigma) = \sigma a - a \ \forall \sigma \in G \}.$$

Then, we easily see that $B^1(G,A) \subset Z^1(G,A)$. We define

$$H^1(G, A) = Z^1(G, A)/B^1(G, A).$$

For example, if G acts trivially on A, then $H^0(G, A) = A$ and $H^1(G, A) = \text{hom}(G, A)$.

Now, if A is a G-module, and if H is any subgroup of G, then A is an H-module. Hence, we get the restriction map $Z^1(G,A) \to Z^1(H,A)$. Also, under this map, $B^1(G,A)$ maps into $B^1(H,A)$. Hence, they induce the restriction map $H^1(G,A) \to H^1(H,A)$. If

Received April 16, 1999.

This was partially supported by KOSEF, 1996, 961-0101-003-2.

 $0 \to A \to B \to C \to 0$ is an exact sequence of G-modules, then we have the following long exact sequence of homologies

$$0 \to H^0(G, A) \to H^0(G, B) \to H^0(G, C)$$
$$\to H^1(G, A) \to H^1(G, B) \to H^1(G, C).$$

If H is a normal subgroup of G, A^H is a G/H-module. Then, we get the inflation map $Z^1(G/H, A^H) \to Z^1(G, A)$. Also, $B^1(G/H, A^H)$ maps into $B^1(G, A)$. Hence, they induce the inflation map $H^1(G/H, A^H) \to H^1(G, A)$.

Then, we have the following exact sequence.

$$0 \to H^1(G/H, A^H) \xrightarrow{inf} H^1(G, A) \xrightarrow{res} H^1(H, A).$$

2. Definition of the Shafarevich-Tate Group of an Elliptic Curve

Let K be a number field, and E/K be an elliptic curve over K. Let L be a finite extension field of K. We denote

$$E(L)=\{(x,y)\in E: x,y\in L\}\cup\{O\}.$$

Then, E(L) is a finitely generated abelian group.

Let $G = G(\overline{K}/K)$, the Galois group of \overline{K} over K. Then, G acts on E, via, for any $\sigma \in G$,

$$\sigma P = \begin{cases} (\sigma x, \sigma y), & \text{if } P = (x, y) \\ O, & \text{if } P = O. \end{cases}$$

Then, $E(\bar{K})^{G(\bar{K}/L)} = E(L)$.

Let M_K be the set of all absolute values v in K such that $v|_{\mathbb{Q}} = |\cdot|_p$ or $|\cdot|_{\infty}$. For any $v \in M_K$, fix an extension w of v to \bar{K} . This fixes an embedding $\bar{K} \hookrightarrow \bar{K}_v$. Let $G_v = \{\sigma \in G = G(\bar{K}/K) : \sigma w = w\}$ be the decomposition group. Then, G_v acts on $E(\bar{K}_v)$. The natural inclusions $G_v \hookrightarrow G$ and $E(\bar{K}) \hookrightarrow E(\bar{K}_v)$ give the restriction maps on cohomologies,

$$H^1(G, E/K) \to H^1(G_v, E/K_v).$$

And, hence, give the map

$$H^1(G, E/K) \to \prod_{v \in M_K} H^1(G_v, E/K_v).$$

3. Some Known Facts

PROPOSITION 1 ([2]). (1) | | | (E/K) is a torsion group.

$$(2) |||(E/K)[p]| = \{x \in |||(E/K)|: px = 0\}, \text{ i.e., } |||(E/K)(p), \text{ the } p-\text{primary part of } |||(E/K), \text{ is of finite corank.}$$

(2) The following sequence

$$0 \to E[p] \to E \xrightarrow{p} E \to 0$$

is exact. Hence, by acting G, we get the following long exact sequence

$$0 \to E(K)[p] \to E(K) \xrightarrow{p} E(K)$$
$$\to H^{1}(G, E[p]) \to H^{1}(G, E) \xrightarrow{p} H^{1}(G, E).$$

Hence, the diagram

 $0 \to \prod_{v \in M_K} E(K_v)/pE(K_v) \to \prod_{v \in M_K} H^1(G_v, E[p]) \to \prod_{v \in M_K} H^1(G_v, E)[p] \to 0$ is commutative. Therefore,

$$0 \to E(K)/pE(K) \to S^{(p)}(E/K) \to \left| \; \left| \; \left| \; (E/K)[p] \to 0 \right| \right|$$

is exact. Here,

$$S^{(p)}(E/K) = Ker(H^1(G, E[p]) \rightarrow \prod_{v \in M_K} H^1(G_v, E[p]),$$

which is called p-Selmer group. This group is finite and effectively computable. Therefore, $| \ | \ | \ (E/K)[p]$ is finite.

Conjecture 2. | | | (E/K) is finite.

It is known that |||(2)| and |||(3)| are finite for thousands of elliptic curves over \mathbb{Q} .

THEOREM 3 ([2]). If | | | | (E/K) is finite, then there is a non-degenerate canonical alternating bilinear pairing

$$\left| \; \left| \; \left| \; (E/K) \times \; \right| \; \right| \; \left| \; (E/K)
ightarrow \mathbb{Q}/\mathbb{Z}.$$

LEMMA 4. Let A be a finite abelian group. If there is a non-degenerate alternating bilinear pairing

$$<,>: A \times A \to \mathbb{Q}/\mathbb{Z},$$

then, $A \cong S \times \hat{S}$ for some subgroup S of A, where \hat{S} is the character group of S.

Proof. Let S be the subgroup of A such that $\langle s, s' \rangle = 0$ for all $s, s' \in S$ and S is maximal with respect to this property. Since $\langle 1, 1 \rangle = 0$, there is at least one subgroup with the property. Consider the character $\chi_a(s) = \langle a, s \rangle$ of A, for each $a \in A$. They are all distinct, since the pairing \langle , \rangle is non-degenerate. Consider A/S. For each $a \in A/S$, we have a character of S defined by $\chi_a(s) = \langle a, s \rangle$. By the definition of S, they are distinct. Therefore, $\hat{S} \cong A/S$ and $A \cong S \times \hat{S}$.

As a corollary, we have

COROLLARY 5 ([2]). If | | | | (E/K) is finte, then it is a square.

Until 1987, there was not a single example of an elliptic curve whose Safarevich-Tate group was known to be finite.

In 1987, Rubin proved that if E/\mathbb{Q} has complex multiplication and $L(E/\mathbb{Q},1) \neq 0$, then $|\cdot|\cdot|(E/\mathbb{Q})$ is finite. Here $L(E/\mathbb{Q},s)$ is L-series of E/\mathbb{Q} . He actually calculated $|\cdot|\cdot|(E/\mathbb{Q})$ for some elliptic curves with complex multiplication. For example, if E is given as $E: y^2 = x^3 - x$, then $|\cdot|\cdot| = 0$; if $E: y^2 = x^3 + 17x$, then $|\cdot|\cdot| = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; and if $E: y^2 = x^3 - 2^8 3^4 5^2$, then

 $| | | | = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. These were the first known examples of elliptic curves with finite Safarevich-Tate groups.

In 1989, Kolyvagin proved that if E/\mathbb{Q} is a modular curve and if $L(E/\mathbb{Q}, s)$ has no zero or simple zero at s = 1, then $|\cdot| |\cdot| (E/\mathbb{Q})$ is finite. For example, if $E: y^2 = 4x^3 - 4x + 1$, then it has not complex multiplication, and $|\cdot| = 0$.

PROPOSITION 6. Let L be a finite Galois extention field of a number field K with Galois group G. Let E be an elliptic curve over K. If $| \ | \ | \ (E/L)$ is finite, then so is $| \ | \ | \ (E/K)$.

Proof. From the inflation-restriction exact sequence, we have the following commutative diagram with exact rows

Here, all vertical arrows are inclusions.

Since $H^1(G, E(L))$ is finite, so is Φ . Therefore, if $|\cdot| |\cdot| (E/L)$ is finite, so is

$$|\cdot| | (E/K).$$

4. Main Result

Let G be a finite group. For any subgroup H of G, we put

$$\epsilon_H = \frac{1}{|H|} \sum_{\sigma \in H} \sigma \in \mathbb{Q}[G],$$

and call it the *idempotent associated with H*. Note that ϵ_H is indeed an idempotent in $\mathbb{Q}[G]$, i.e., $\epsilon_H^2 = \epsilon_H$.

A relation of the form

$$\sum_{H} n_{H} \epsilon_{H} \stackrel{\cdot}{=} 0, \ n_{H} \in \mathbb{Q},$$

is called an *idempotent relation in G*. Whenever G is non-cyclic, G has a non-trivial idempotent relation [1].

THEOREM 7 ([3]). Let G be a finite group, and let $\sum n_H \epsilon_H =$ $\sum m_H \epsilon_H$, where n_H and m_H are non-negative intergers. Let A = $Z[|G|^{-1}]$. If M is a finite A[G]-module, then there is a A-module isomorphism

$$\bigoplus_{H} (M^{\epsilon_H})^{n_H} \to \bigoplus_{H} (M^{\epsilon_H})^{m_H}.$$

Here, $M^{\epsilon_H} = \{x^{\epsilon_H} : x \in M\}$. In particular, $\prod_H \left|M^{\epsilon_H}\right|^{n_H} = \prod_H \left|M^{\epsilon_H}\right|^{m_H}$.

As a corollary, we have

LEMMA 8. If M is a finite G-module, and if $\sum_{H} n_H \epsilon_H = 0$ is an idempotent relation in G, then

$$\prod_{H} \left| M^{\epsilon_H} \right|^{n_H} \sim_{|G|} 1.$$

Here, $a \sim_n b$ means a and b are the same up to prime factors of

Proof. Let $\tilde{M} = \{x \in M : \text{ The order of } x \text{ is prime to } |G|\}.$ Then, \tilde{M} is a finite A-module. Hence, by the above theorem, we have

$$\prod_{H} \left| \tilde{M}^{\epsilon_H} \right|^{n_H} = 1.$$

But, $\left| \tilde{M}^{\epsilon_H} \right| \sim_{|G|} \left| M^{\epsilon_H} \right|.$ Therefore,

$$\prod_{H} \left| M^{\epsilon_H} \right|^{n_H} \sim_{|G|} 1.$$

PROPOSITION 9. Let M be a finite G-module. If $\sum_{H} n_H \epsilon_H =$ 0 is an idempotent relation in G, then

$$\prod_{H} \left| M^H \right|_{\bullet}^{n_H} \sim_{|G|} 1.$$

Proof. By Lemma 8, it is enough to show that $M^H = M^{\epsilon_H}$ as A-modules. If $x \in M^H$, then $x^{\sigma} = x$ for every $\sigma \in H$. Hence, $x^{\sum_{\sigma \in H} \sigma} = |H|x$, i.e., $x^{\epsilon_H} = x$. Therefore, $x \in M^{\epsilon_H}$.

Conversely, if $x \in M^{\epsilon_H}$, then $x = y^{\epsilon_H}$ for some $y \in M$. Let $\tau \in H$ be any element. Then,

$$x^{\tau} = y^{\epsilon_H \tau} = y^{\frac{1}{|H|} \sum_{\sigma \in H} \sigma \tau} = y^{\frac{1}{|H|} \sum_{\sigma \in H} \sigma} = y^{\epsilon_H} = x.$$

Hence, $x \in M^H$, which completes the proof.

Returning to our elliptic curve case, again we assume that E is an elliptic curve over a number field K, and L is a finite Galois extention field with Galois group G.

Suppose $\sum_{H} n_{H} \epsilon_{H} = 0$ is an idempotent relation in G.

THEOREM 10.
$$\prod_{H} |E_{tors}(L^{H})| \sim_{|G|} 1$$
.

Proof. $E_{tors}(L)$ is a finite G-module. Therefore, by Proposition 9, we get the result.

Lemma 11.
$$\left| \begin{array}{c|c} & & & \\ & & & \\ \end{array} \right| \left| \begin{array}{c|c} & & \\ & & \\ \end{array} \right| \left| \begin{array}{c|c} & & \\ & & \\ \end{array} \right| \left| \begin{array}{c|c} & & \\ \end{array} \right| \left| \begin{array}{c|c} & & \\ \end{array} \right| \left| \begin{array}{c|c} & & \\ \end{array} \right|$$

Proof. We have the following commutative diagram with inflation- restriction exact rows

Here, all vertical arrows are inclusions.

Since E(L) is finitely generated, $H^1(H, E(L))$ and $H^2(H, E(L))$ are finite groups annihilated by |H|, hence by |G|. Hence, Φ and Ψ are also finite groups annihilated by |G|, i.e.,

$$|\Phi| \sim_{|G|} 1$$
, $|\Psi| \sim_{|G|} 1$.

Therefore, we have

$$| \ | \ | \ | \ | (E/L^H)| \sim_{|G|} | \ \underline{| \ | \ |} (E/L)^H |.$$

Combining Propositon 9 and Lemma 11, we have

Theorem 12.
$$\prod_{H} \left| \ \left| \ \left| \ \left| \left| \left| \left(E/L^{H} \right) \right|^{n_{H}} \sim_{|G|} 1. \right| \right| \right|$$

References

- 1. E. Kani and M. Rosen, Idempotent relations and factors of Jacobians, Math.Annalen 284 (1989), 307-327.
- 2. J. Tate, On the conjecture of Birch and Swinnerton-Dyer and a geometric analogy, Seminar Bourbaki 306 (1966).
- 3. C Walter, Brauer's class number relation, Acta Arithmetic XXXV (1979), 33-40.