An Improved Calculation Model for Analysis of
[111] InGaAs/GaAs Strained Piezoelectric
Superlattices

We present a calculation model for an improved quanti-
tative theoretical analysis of electronic and optical properties
of strained-piezoelectric [111] InGaAs/GaAs superlattices
(SLs). The model includes a full band-coupling between the
four important energy bands: conduction, heavy, light, and
spin split-off valence bands. The interactions between these
and higher lying bands are treated by the k - p perturbation
method. The model takes into account the differences in
the band and strain parameters of constituent materials of
the heterostructures by transforming it into an SL potential
in the larger band-gap material region. It self-consistently
solves an 8 x 8 effective-mass Schrodinger equation and the
Hartree and exchange-correlation potential equations
through the variational procedure proposed recently by the
present first author and applied to calculate optical matrix
elements and spontaneous emission rates. The model can
be used to further elucidate the recent theoretical results
and experimental observations of interesting properties of
this type of quantum well and SL structures, including
screening of piezoelectric field and its resultant optical
nonlinearities for use in optoelectronic devices.
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[. INTRODUCTION

Since Smith [1] predicted the existence of large piezoelectric
fields in strained [111]-growth-axis semiconductor heterostruc-
tures in 1986, there has been intensive research on the physics
[2]H19] and opto-electronic device application of semicon-
ductor heterostructures oriented in high index directions, espe-
cially in the [111] crystallographic direction [20]-{33]. In con-
trast to the strained quantum well (QW) structures grown along
the [100] axis, strained layers grown other than [100] direction
are piezoelectrically active and large built-in electronic fields
can be generated [4].

Such strain-induced built-in electric fields provide extra degree
of freedom for band-gap engineering and open possibilities of
fabricating new or enhanced electrical and optical devices over
the conventional [100]-oriented counterparts [4], [8]. Attractive
features in this type of heterostructures include enhanced optical
transitions, a reduced threshold current density of laser diode [34],
[36], and large nonlinearity arising from the screening of the
internal electric field by the photo-generated carriers.

The critical thickness along [111] were predicted [5], [14] to
increase significantly as compared with that along [100] and
the piezoelectric field is predicted to be strongest in this direction.
Thus, the opportunity of tuning the electronic band structure as
a function of the strain conditions is greater in [111] than in
other directions. This flexibility is currently being exploited
through the improvement or novel design of semiconductor di-
ode lasers, electro-optical modulators, nonlinear optical devices,
infrared imaging systems, etc [20]-[33].

The Stark shift induced by the piezoelectric field is the key
reason that such structures have attracted much interest for use

Byoung-Whi Kim etal. 65



in nonlinear optical devices. It has been shown that the Stark
shift can be employed in the design of self electro-optic devices
(SEEDs) using blue shift with reverse bias rather than red shift
as in the case of conventional SEED [21]. This may lead to an
enhancement in the operating characteristics of such devices.
Also it has been suggested that the screening of the piezoelec-
tric field could be utilized in new device structures; e.g., cou-
pled waveguide structures could utilize a carrier density depen-
dent refractive index to switch the wave between individual
guides; and piezoelectric QW lasers operated under forward
bias could be used in an integrated laser and blue-shifting
waveguide electro-absorption modulator or an integrated laser
and frequency-doubling waveguide. Thus, together with the
quantum-confined Stark shift the strained-piezoelectric struc-
ture opens possibilities of making fully optically operated de-
vices where the strain-induced built-in piezoelectric field within
the QWs can be modulated by the incident optical signals.

Although it is well documented from the previous investiga-
tions that the screening of the piezoelectric fields by the photo-
excited carriers should be responsible for the observed energy
blue shift in these structures, there have been reported discrep-
ancies between the theoretical and experimental results related
to this phenomenon. Furthermore, it has been reported that in
some structures the blue shifts may also arise from effects other
than screening within the wells [10].

The most noticeable uncertainty is in the peizoelectric con-
stant ey, : it has been suggested that the value of the piezoe-
lectric constant obtained by linear interpolation should be re-
duced by 20 ~ 40 % depending on the In mole fraction. This is
the simplest way to achieve reasonable agreements with the
experimentally observed fields. However, the modifications are
only qualitatively similar and the origin of the discrepancies
between various groups is still unclear. This discrepancy may
be due to errors in the nominal values used in the calculations
(e.g., values of e, for GaAs are quoted, which vary from 0.12
to 0.21 C/m) or to the effects of strain on the materials con-
stants. [10], [37]

On the other hand, most of the previous theoretical work has
been done based on rather simplified theoretical models rather
than taking into account a full interband coupling between the
bands involved in the interband optical transitions and differen-
ce in band/strain parameters of constituent materials. In those
simplified models, where many parameters such as the pie-
zoelectric field, the strain, and the effective masses were ad-
justed to fit the experimental data, all physical trends can be re-
produced, but a quantitative agreement may not be found
without taking into account all the factors mentioned above. It
may be also possible that these simplifications partly cause the
discrepancies.

Furthermore, the magnitude of the blue shift needed for the
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application to optical devices is in the range of a few nm or a
few meV. Design of such devices requires more refined knowl-
edge of the behavior of QW structures with various structural
and material parameters, particularly including the effects of
high densities of charge carriers which result in non-square
wells and the screening of the internal piezoelectric field by
those injected carriers. Thus it becomes necessary to have a
more refined calculation model for performing more quantita-
tive analysis of these properties.

To this end, we present a comprehensive, detailed solution
procedure for obtaining more exact electronic and optical prop-
erties of strained-piezoelectric QW and superlattice (SL) systems
based on the envelope function equation and the variational
method we recently proposed [38].

The SL wave function and corresponding effective-mass
equation are formulated in terms of a linear combination of
Bloch states of the material with the smaller band gap. In this
formulation, the difference in bulk Bloch states and band
parameters between constituent materials are transformed to be
an SL potential in the larger band-gap material region, so that
the effective-mass equation can be solved as a whole. Thus, the
symmetry of SL and the current-continuity at the interfaces are
implicitly taken into account through the order in perturbation
theory [39] at which the bulk Bloch function at k is obtained in
terms of the zone-center Bloch functions.

In the present work the Poisson’s equation is reviewed for
calculation of the Hartree potential for general, not symmetric
QW systems, and relevant boundary conditions are derived.
For taking into account the renormalization of the band gap due
to high carrier densities, we present a slightly different calcula-
tion model of exchange-correlation potential for the two-
component electron and hole system within the local density
approximation. The model self-consistently solves an 8x8
Schrodinger equation [40] and the Hartree and exchange-
correlation [41], [42] potential equations to obtain the subband
energy structure and envelope functions, which in turn are used
to calculate optical matrix elements and spontaneous emission
rates.

As an illustration of application of the present model, and also
to briefly investigate the effect of piezoelectric field on elec-
tronic and optical properties of the QW structure, we perform
computations on a strain-induced piezoelectric GaAs/InGaAs
SL with well/barrier thicknesses of 100 A/100 A and In mole
fraction of 12 %. Comparison is made between the present result
and experimental result [25] reported previously.

The paper is organized in the following way. Sections II-V
present solution procedures for electronic properties. Sections
VI and VII provide those for optical properties. The results of
sample calculations are presented in Section VIII. Conclusions
are followed finally.
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II. ENVELOPE FUNCTION EQUATION

The one-particle SL effective-mass equation for envelope function {JJ can be expressed as [38]
E@l.k,mg;2)= 3 [Ha (k=0 )+ W, (k,,=i0.)] W'k ,m4:2), (M

where 7 is SL subband index, ¢ the wave vector associated with the SL growth direction (z-direction), and k, the in-plane wave
vector. The “fundamental” term H,,» and the “SL potential term” W, are defined, respectively, as

nk?
Hy (k.k') D% "o +_%\/v’6k,k’ + Ly Oy @)
2m0
W (e K') Of dze 002 (g 2, - o (2 ~ 12 ) B G)

where A(B) represent a constituent material with smaller (larger) bandgap, and

kpp'.0)

Ly (k)= ml<v,0| kDpp'.0) + Big 5 (v.0[ kP [N.0)}(N.0 | .\

[mny [ 8= Evo—Ewo

with J consisting of the primary bands with band index V .
Note that in Egs. (1)~(3) we employ a basis set of material 4 to describe the states for both constituent materials, and we assume

that the coefficient of ¢, which represents overlap of the Bloch functions between the materials A and B ¢ = B<v ',0|v ,0>A s
where v’ and v are band indices of the bulk, can be approximated as ¢, =9, ,, while keeping the difference in band and

strain parameters in the equation.

Upon including the four most important bands (the conduction, heavy-hole, light-hole, and spin split-off bands), H,, + W,
forms an 8x8 matrix which is given in Appendix A. For the SL structure, as the envelope function takes the form of
W =e"P(z), where ¢(z)=¢(z+d)with SL period d, the effective-mass equation for [111] SL can be constructed by replac-
ing k. by g —i0. . The equations for the non-strained k [p formalism are given by

A=E'+yk +V +y. (q2 -i2q0, —ﬁj), ®

S= E)Ezwfk"' _%ky' %;}_\/gé(q—mz,)z T,

2

€ == Rk +; Rlg=id.).
D=2y, (€ -k} )+ 4y, (g=id.)
F=E' -7k -7k =V, 227,k (g -i0.)-7,(¢* ~1240. - 92).
G=E' -7k -7k} ~V, +22pk (g-id.)-7,l¢* -i240. -92).

H=E -yk’ -V -ylq*-i2q0. -3?).
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M= V%Zwkk +—kZE+ E\E—“’k +\/_wk id,)-v, \/—(qz-ﬂqd,—df)’

N =y ( z\/_k2+Tk ) +27,k +%\/_y2k +12\/\£_y% ‘Eq idz,)+%73(q2—i2qdz,—dj),

and equations from strained part are given by

A —36_1'541 >
S =2 Bk, + L Bek, +-L_BF(g-id.)=
2\/5 T 36 2l-10.)
C :gﬁ)élky' —%130?(61 _idz') >

F=G =H =-3ae, ,
N =-ide, ,
M =wde,. (6)

In the above we ignore the band and strain parameters B and b’ in Egs. (A4) and (A5), respectively, as these are small for the
material system considered here [13]. The bar placed on top of the quantities in Egs. (5) and (6) implies that these quantities include
the “correction” part resulting from the difference in the band and strain parameters between materials A and B: e.g.,

v.=y!+0:4,, )

where 6 =1 only in the material B region.

III. VARIATIONAL PROCEDURE

A variational form in the envelope-function representation for the present problem can be established as [38]
—-i2n(I-"Yz/d — —i2niz/d i2m'z/d —i2miz/d i2m'z/d
E Zapj'“w dze " = IZ a,r[ [, dze H e +, dze Hge ]

+ Z a [ o TNy A Gi2nEId _ idnzld y B i2mzld ] ®)
I z z 72270
where a, is the expansion coefficient to expand the envelope functions by sets of plane waves, L, is the region of material A
(B) along the z-direction and z, designates interface positions inz,and J. is the current operator for material s.

If we define a unique envelope function over the entire SL structure; i.e., we expand the envelope functions in both material
regions by the same kind of basis set, the envelope-function continuity condition makes these identical and makes current-
continuity term disappeared. Note that the band-parameter difference is transformed into an SL potential in layer B so that the
current-continuity is implicitly satisfied. This can be further simplified through “symmetrization ” for indices /and /' ; thus the
resultant variational equation becomes

Ea=(H,+H;)a=(HY +Wa, ©)
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where

—i2mz/d i2m'z/d —i2mz/d i2m'z/d
H, +H, = [ dze™™/'H """+ dze™™™'Hpe' ,
total _ —i2miz/d i2m'z/d _ —i2mz/d i2n'z/d
HY“ =[ | dze™™'H e , W=[ dze™™(Hy~H e . (10)

The periodic part of the envelope function ¢(z) can be expanded by the Fourier series of plane waves exp(i277z/d) , where

[ are integers. Operating the Hamiltonian on the plane waves can be achieved easily by replacing

r

9. - i% or ko - q+211'/d. a1

Thus the variational eigenvalue matrix H,, , where
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and

A, = [3a'ed +f,,A; ] oy +./{1§’ Sll’ >
0 H w . w -0 27 g 5
Su' :Tu' = H’oe E‘—kx' +wTky' E“_Poeﬂl +_H+ﬁSl [‘511‘ +fl,sl’6ll’ >
g H 23 32 0 d0°'g
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D, =0,
Fr =G, =H , ={3ae, + £7}8, - 178, .

M, =|wde, + )6, + 145,

N, = —i[des + N ]5,,, —ifN . (14)

The Fourier transformed potentials £, are given in Appendix B.

IV. HARTREE POTENTIALS
We start with the Poisson’s equation
OE0U0)=-p, 15)

where
p=lgl(p—n+Np-Ny). (16)
Solving the equation by performing the integration from —d/2 to z gives
£0U(2) =£SDU(—d/2)—ﬁd/2p(z')dz'. 17)
Plugging z=-d/2 and z=+d /2 ,respectively, into Eq. (17) gives
£0U(~d/2) =& 0U(=d /12)~ [ p(z)dz' =£,0U(=d /2), (18)
+d/2

£0U(+d/2)=£0U(=d/2)~ ) p(z)dz' =£,0U(=d | 2). (19)

This gives a boundary condition of

OU(+d/2)=0U(-d/2). (20)
Here we used the charge conservation condition of

" p(z)d: =0. @1)
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Note that for a symmetric superlattice about a center along the z-direction, Eq. (20) becomes
Ou(+d/2)=0U(-d/2)=0.
Performing integration once again on Eq. (17) from -d /2 to z gives

U(2)=U(=d/2) +[QU(=d 1 2))(z +d/2) = [, ,Ldz'[, , p(z")dz" .

d/2 Es

For z=+d /2 itbecomes

U(+d/2)=U(=d /2)+[0U(=d I12)}d - [, Ld=' fjm o(z")dz" .

d /2 Es
Since
U(+d/2)=U(-d/2)

due to the periodicity of SL, Eq. (24) gives an important boundary condition of

_ 1 oan ' 2 " o _
DU(—d/Z)—;fd Ldz'[, p(")dz" =0U(+d 2).

/2 Es

This can be simplified when we assume that &, is constant:

—d/2Z

OU(-d /2) = L J" 2 2o(z)dz =0U(+d 12) .
de,

Equations (22), (25), and (26) consist of the necessary boundary conditions, which are summarized as
U(+d/2)=U(-d/2),

/ZL

1 I U "
OU(+d /2)=0U(=d /2) :Eﬁ’/z Ld'f,,p(=")dz"

or for constant &,

OU(+d /2)=0U(-d /2) = L J" 2 2'p(z")dz"
de,

d/2

Incorporating Eq. (26) into Eq. (23) gives

Dd/Z
U(z) =U(-d/2)+ g L

—d/2 €,

1 n "DBE +d/2 z = " "
dZ _[—d/zp(z )dZ D H_de/zsLdZ de/zp(z )dZ s
A0 d O '

or for constant &,

U(z)=U(-d/2) - E;— [ 2p()d %”dﬂ Q- gi [,.(z=2)p()d"

Note that although U(0) # 0 in general, we can choose U (0) =0 as a reference potential level in the computations.
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V. EXCHANGE-CORRELATION POTENTIAL

The renormalization of the band gap in semiconductors due
to high carrier densities has been studied in bulk systems over
many years. It has been reported that under high optical excita-
tion the band gap decreases with increasing carrier densities
due to exchange-correlation effects in the electron-hole plasma.

Calculations of band gap renormalization for two-
dimensional systems have been reported using both the Ran-
dom Phase Approximation (RPA) [41] and the Local Density
Approximation (LDA) [42]. The RPA self-energy is simply the
energy of an electron interacting with itself via the RPA
screened Coulomb interaction. The LDA gives a useful and
simple description of these interactions in the ground state of
many-body systems. Its applicability in QW systems with their
spatially varying densities is not very clear, but it has been re-
ported that it gives results in reasonable agreement with ex-
perimental results [41].

It has been experimentally found that the renormalization in
a QW depends on the subbands involved in the transition. The
strong subband dependence of this contribution stems from its
dependence on the filling of the subbands through the Fermi
occupation functions. The temperature dependence of the re-
normalization can be explained by the relative occupation of
subband levels. For increasing temperatures the occupation of
higher subbands increases, and therefore the renormalization of
these subbands increases. On the other hand, for any constant
total density the fraction of carriers occupying the lowest sub-
band decreases if the temperature is raised. Both of these effects
decrease the density difference between the first and second
subbands and therefore decrease the dependence of band-gap
renormalization on subbands, in agreement with experiment.
Thus, for 300 K, for example, it may be acceptable to assume
that all the subbands have a similar renormalization.

The comparisons of LDA results with the RPA results show
that both provide the subband dependence of the renormaliza-
tion somewhat less than that seen experimentally. The overall
magnitude of the renormalization and the subband dependence
of it, respectively, obtained from the LDA are smaller than those
from the RPA. However, it has been shown that the LDA
provides a reasonable, simple description of subband depen-
dence of the band-gap shifts and that the overall magnitude of
the renormalization is in reasonable agreement with experiment.

The LDA has been applied widely to study inhomogeneous
one-component electronic systems, such as surfaces, impurities
in metals, and atoms [43]. In it, the form of the full non-local
exchange-correlation energy is replaced by that for a homoge-
neous system, and an approximate local form obtained from
bulk results is used for it. It is known in homogeneous bulk
systems that the sum of exchange and correlation energies for a

72 Byoung-Whi Kim et al.

system of equal densities of electrons and holes is to a good
approximation independent of material and of band structure
provided that the units of length and energy are given by the set
of excitonic units appropriate for each material [44]. Further-
more, in such systems the magnitude of electron and hole self
energies due to exchange and correlation effects have been
found to be to a reasonable approximation equal and indepen-
dent of wavevector [45].

For application of LDA to the two-component electron-hole
system in QW structures, the total of the exchange-correlation
energy is divided equally between electrons and holes: [42]

E [0, m (1] = (1/2)f|n.(0)E
(30

where E ¢ is the exchange-correlation energy per electron-
hole pair. For the density dependence of the exchange-
correlation effects, the same form suggested by Hedin and
Lundqvist [43] for one-component systems has been used for
both electrons and holes:

v.(r))=-[1+B(r,/ A)In(l+(A/r))][2/mar,)], (31)

where o =(4/9m)"” and the parameters A and Bare A4 =21
and B=1.8913, r, is defined in the usual way for each
component (7,)’ =3/4min, ay =(& /m,)ap, & static re-
lative dielectric constant, ap Bohr radius, and the mass is the
optical mass [42] m,' =m.' +m,', where m, and m, are
the electron and hole effective masses.

In the present work we make a slightly different generaliza-
tion to the two-component electron and hole system, but in the

same line of the method as above. Instead of the optical mass
of m,, we independently use Eq. (31) for the electrons and

holes by using m, and m,, respectively, but with different
fitting parameter B. The value of B turns out to be 0.7 which is
the same as the original value given by Hedin and Lundqvist
[43]. More quantitative analysis on the validity of this ap-
proximation should be made, but the results are found to
maintain the same level of quality as those from the previous
LDA [42] in terms of overall band-gap renormalization.

VI OPTICAL MATRIX ELEMENT

In the dipole approximation, which is appropriate in practical
QW structures, the momentum matrix element between the
states, | Kk,,n, q> and |kl,n, q>,is given by

(kinq|éD|k,.n'.q)=€Pu(k,q), (32)
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where p is the momentum operator, € is the polarization unit vector of light, and direct transitions are assumed (i.e. transitions in
which Kk, and ¢ are conserved). Upon substituting the SL state into this form, the matrix element may be conveniently described

by utilizing the D2, notation [39], [46]:
h A D 1 T ix xi i i
£, 05 0| [dpw.k.ng 0"k, w'q:2) | x| 3 e (D +Dik, +DY + DIk, |
my vv [ T
+ fdepw ke, n gz D=0 w0 k' gi2) 4 Y e (05 +03) ] (@)
7 0
with i=x,y,z

Assuming the band constant B =0 for the reason mentioned before, the optical matrix elements can be written in the same
matrix structure as Eq. (A1):

A=y k,0)¢. +y.k,0)5, +@y.R)E.
W + CA)+
= RO, - RO, - RO, ,
RO B o R Aol
w— + w+
= PO X PO ¥y })0 z
R - ro R ol
2 1
_B£R) b B_PO %;a
% n0f, +Fonol)
D=2\2y k Q¢ + (— 2V2y,k,0+ 4y2R)éy, +4y,k 08,
F=-2y"k,08, -y k,0+22y.R)E, - [V2y.k 0 + 2R )2

=2y k Q. + (2\/§y2R - 2y*k},Q)éy, + (2\/5y2ky,Q - 2y1R)éz, ,

H=-2yk Q€ =2y k O, 2y ReE.,

. AN . 4o \/_w -
M = 20 R -2k, , 2w k. 20w k Q-—
v, (2w R =20 },.Q)fﬁVsE’ Wk Q0 % Ef 0+ 2k 0" R

EZ\/_ 'y Q+’2\/_ k O+

(34

f“

where &, i=x',y', 2", is the unit polarization vector of light, and within the dipole approximation, the direct and dipole cou-

pling coefficients of Q and R, respectively, for optical transitions from subband n to »' are defined as
= [dzp(v.k,,n,q;2) PV’ K, 1, q2)

R‘f”v =Idzl,ll(v,k,,n,q;z) O(=id, W'k, ,n',q;z) . (35)
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Fig. 1. Subband energy structure in the (a) conduction band and (b) valence band in terms of inplane wave vector. The inplane wave
vector is taken along the x-direction. The solid lines are obtained from the self-consistent computation where the Hartree and
exchange-correlation potentials and the piezoelectric field are taken into account (designated by “SCC”). The dotted lines are
obtained without these factors (designated by “SQW?). Zero of the energy is taken at the top of the bulk valence band of InGaAs.

VII. SPONTANEOUS EMISSION RATE

Within the dipole approximation, the spontaneous emission
rate of the intersubband transition from subband #» to #n' can

be expressed as [47]
®e’hw . 2
L*l"' hw = = ) nn' kl, n kl: 1_ n' kl:
(o) = 2| € B ki) [ Skl = i)
9 al . 36)

E.-E,-nw) +(r,. )’

where €, ¢, Q and f, are, respectively, the dielectric con-

stant, the speed of light in the material, the volume of the solid,
and the Fermi distribution function. [I,.(k,,q) is the

linewidth of the transition from n to »' for the state (k,,q),

which accounts for lifetime broadening due to scattering and
inhomogeneity of well widths. In this paper %[, =5 meV is

assumed for numerical computations.

VIII. NUMERICAL COMPUTATIONS

For numerical computations, we take an [111] In, ,Ga, g
As/GaAs SL with 100 A/100 A well/barrier widths and com-
pare the result with that obtained experimentally by Chin and
Lin [25]. The pumped carrier density is assumed to be
1x107cm™ over 40 A width in the wells. The material
parameters used in the calculations are summarized in Table 1.
The ratio of band offsets between the conduction and valence
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Table 1. Band and material parameters. All values for bulk GaAs
and InAs are from Ref. [48]. All values for GalnAs are
obtained by an interpolation.

Parameters GaAs InAs Gayg3Ing ,As
a, (A) 5.6533 6.0584 5.70
E, at15K (eV) 1.522 0.410 1.388
Vi 6.85 20.4 8.48
2 2.1 8.3 2.84
vs 2.9 9.1 3.64
¢, (10" dyn/em®) 11.88 8.329 11.5
C, (10" dyn/em®) 538 4.526 527
€., (10" dyn/em®) 5.94 3.959 5.70
a, (V) -1.16 -1.00 —1.14
b (eV) -1.7 -1.8 4.71
d (eV) —4.55 -3.6 4.44
e (C/m?) 0.16 0.045 0.15

bands is taken to be 25 % : 75 %. For 12 % of In, the piezo-
electric field in the well is evaluated to be 52 KV/cm. The en-
velope-function equation of Eq. (1) is solved variationally, as
shown in Eq. (8), by expanding envelope functions in terms of
33 orthogonal sets, which are chosen as periodic plane waves
exp(i27iz/d) ,where [ and d are an integer and the SL period,

respectively. Energies and envelope functions are obtained by
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Fig. 2. Subband energy structure of (a) the conduction band and (b) valence band in terms of superlattice wave vector g. The solid lines
are obtained from the self-consistent computation where the Hartree and exchange-correlation potentials and the piezoelectric
field are taken into account (designated by “SCC”). The dotted lines are obtained without these factors (designated by “SQW”).
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Fig. 3. Electron and hole distribution. The schematic picture of QW
is inserted to provide a structural reference. The arrows
designate change of distribution from the system ignoring
the piezoelectric field to the one including the field. The
pumped carrier density is assumed to be 1x10""cm™ over 40
A width in the wells.

numerical diagonalization of (8%33)x (8%33) matrix for
each quantum state (k,,n,q), where the four conduction,

heavy-hole, light-hole, and spin split-off bands are included in
the primary band group.

Figures 1 and 2 show the E — k, and E — ¢ subband energies,
respectively, with two types of computations. The solid lines
are obtained from the self-consistent computation where the
Hartree and exchange-correlation potentials and the piezoelec-
tric field are taken into account (designated by “SCC” in the
figure). The dotted lines are obtained without these factors
(designated by “SQW” in the figure). The result shows a sig-
nificant subband renormalization (about 23 meV reduction
between CB1 and VBI1). The renormalization becomes larger

ETRI Journal, Volume 21, Number 4, December 1999

for the subband with heavier effective mass due to larger ex-
change-correlation potential. The figure also shows that the
subband energies obtained from SCC become split as away
from k, =0. This is due to removal of spatial symmetry
along the growth direction by the piezoelectric field.

Figure 3 shows the change in the distribution of electrons and
holes when the peizoelectric field is incorporated. The schematic
picture of the QW is inserted as a structural reference. Initially
both carriers are distributed symmetrically around the center of
QW. The piezoelectric field separates electrons and holes in the
opposite direction. This is more effective for holes as holes are
spatially more confined due to heavier effective mass, and con-
sequently produce more noticeable change with the electric
field. This separation, in turn, results in significant change in
optical transition matrix element and absorption and emission
coefficients.

Figure 4 shows the optical momentum matrix elements
(MME) of the lights polarized in the x-direction [Fig. 4(a)] and
in the growth (z) direction [Fig. 4(b)]. For both polarizations,
the MME of CB1-VB1 (MME between the lowest subband in
CB and the highest subband in VB) significantly reduces as the
piezoelectric field is included, while the MME of CB1-VB2
increases significantly. Note that for a symmetric QW structure
the transition of CB1-VB2 is forbidden at the zone center due
to the parity of envelope functions involved. The non-zero MME
of CB1-VB2 at k, =0 and also the large increase in magni-
tude of MME demonstrate that the symmetry is broken. On the
other hand, the reduction of MME for CB1-VBI1 is mainly
dueto the separation of electrons and holes.

Figure 5 shows the spontaneous emission rate between CB1
and VB for both polarizations of light. The emission result
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Fig. 5. Spontaneous emission rate between CB1 and VB1 for both
x- and z-polarization of light. The temperature is assumed
to be 15 K. The results with inclusion of piezoelectric field
(SCC) appear to be almost identical for both polarizations
of light.

without inclusion of the piezoelectric field has peak at 1451
meV, while that with the field at 1429 meV. The shift is mainly
due to the bandgab renormalization, which is 23 meV at the
center of subband, and a small Stark shift due to the electric
field. The reduction of peak magnitude is due to the decrease in
MME resulting from separation of the two types of carriers.
The temperature is assumed to be 15 K in the computation.
The temperature and the structural parameters are chosen to
make a similar condition for comparison to the photolumines-
cence (PL) experiment by Chin and Lin [25]. Their PL peak
was at around 1470 meV. Thus there is a 40 meV discrepancy
between the two results. As mentioned earlier, the InGaAs
parameters used in the computation were obtained by the linear
interpolation between the parameters of bulk GaAs and InAs.
In the computation, no adjustment of parameters has been con-
ducted. Thus, it is expected that the difference between the
theoretical and experimental results comes from the large un-
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certainty in the values of material parameters, especially in the
band gap of InGaAs.

IX. CONCLUSIONS

We presented a calculation model for more quantitative theo-
retical analysis of electronic and optical properties of strained
piezoelectric [111] InGaAs/GaAs superlattices (SLs). The
model takes into account a full band-coupling between the four
important bands of conduction, heavy, light, and spin split-off
valence bands. In this model, the difference in bulk Bloch states
and band parameters between constituent materials are
transformed to be a SL potential in the larger band-gap material
region, which, as a result, removes the interface-matching
problem at the heterojunction interfaces.

The model self-consistently solves an 8 %8 Schrddinger equa-
tion and equations of Hartree and exchange-correlation potentials
using the variational procedure. It provides the subband energy
structure and envelope functions, which in turn are used to cal-
culate optical matrix elements and spontaneous emission rates.

The Poisson’s equation has been reviewed for calculation of
the Hartree potential for general, not symmetric QW systems,
and relevant boundary conditions were derived. For taking into
account the renormalization of the band gap due to high carrier
densities, a slightly different calculation model of exchange-
correlation potential has been presented for the two-component
electron and hole system within the local density approximation.

As an illustration of application of the present model, and also
to briefly investigate the effect of piezoelectric field on elec-
tronic and optical properties of the QW structure, numerical
computations have been performed on a strain-induced pie-
zoelectric [111] GaAs/InGaAs SL with well/barrier thicknesses
of 100 A/100 A and 12 % of In mole fraction.
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The comparison between the theoretical and experimental PL peaks for CB1-VBI transition shows a large discrepancy
amounting to 40 meV. The InGaAs parameters used in the present computations were obtained by a linear interpolation between
values of bulk GaAs and InAs. In the computations, no adjustment of parameters has been conducted. Thus, it is expected that
the difference between the theoretical and experimental results comes from the large uncertainty in the values of material pa-
rameters, especially the band gap of InGaAs.

Beside the discrepancy, however, the theoretical model successfully reveals all the important characteristics coming from ap-
pearance of the piezoelectric field. Among the various effects from the piezoelectric field, it has been shown that most significant
consequences are the removal of spatial symmetry and separation of electrons and holes, which result in a large change in optical

transition properties.

Thus, the model can be used to further elucidate the recent theoretical results and experimental observations of interesting
propetties of this type of quantum well (QW) and SL structures, including screening of piezoelectric field and its resultant optical
nonlinearities, which have been intensively studied for use in the design of novel opto-electronic devices.
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APPENDIX A

The structure of 8 %8 matrix [40] for H,, +W,, isgivenas

DO000R000000000000
o> ©
e

I/

>

]

v <

N
]

|
)
a

0 -S

A -J2c
_\/E o G

V38" M

—
(=]

B
NG

c” -D

MD

The basis functions for this equation are chosen as

HHI([,~1/2) :%(p(') +i|Y')t o,

HH2(I'8,1/2)=_T;(|X’>—i|Y'>)l ,

0 —\31"

V38 0
M" N
F 0
0 F
N -M
“VaN® - L

CBI(I,1/2)=|S) 1 ,

CB2(I,~1/2)=|S) 1 ,

-\2C

T"
0

-C —\/Es%
_\/ETD C D
By p
2 0
—\/EN _LMD
"

1 [m] [m]
-——M" 2N" O
V2 O
D —ﬁMDB
V2 O
0
H 0 O
0
0
0 H O
B

LHl(l'g,—3/2):_T;(|X'>+i|Y’>)l +i%|2’>T ,

ETRI Journal, Volume 21, Number 4, December 1999

Byoung-Whi Kim et al.

(AD)

77



NG

LH2([,.,3/2) :%q XY =iy +,_|Z bi,

SHI(I,1/2) :%q XY +ilY') L - d

ﬁ|Z’>r ,

SH2(I5,-1/2) = (|X>—1|Y>)T + (A2)

o,

where the label [ specifies the irreducible representation of the 7, double group; | S > represents the s-like spatial function, and
) |y

'> ,and | zZ '> represent the p-like functions; and the arrows designate the two eigenspinors of the operator o :

nggand lZQ;Q. (A3)

The primes in the basis functions indicate that these are transformed by an orthogonal rotation so that z' is aligned to the [111]
direction.
Based on the above basis functions, the non-strained k [ part (represented by slant capital characters, e.g., A4 ) and strain-

interaction part (represented by script characters, e.g., A ) are, respectively, given as:
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and
A =3d'e, ,
S= _bw e, — hw ek, + A ek, + R’ ek, ,
V3 23 6 32
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Here E, and E,
and spin split-off bands, respectively, and we set E,

are band edge energies of the conduction
=0. The
other quantities included in these equations are defined as

w =1%i ,
y. =A+1,
V' =vity.,
R==i (o)
2
1 Kspxn/lj)
T E R,
n? _\s\psnlaj\nlajip,|Z
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where j labels the row to which the function associated with
I" belongs, and n specifies the band (in the summation the
bottom of conduction band with energy of E . is not included

because this band is included in the primary band set), and
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e =e, +2e,
s>,
z>,

d= i<X|Dﬂ z

NG

In the above D,, is the x, y component of the operator D
defined by writing D, as [40]

a' = <S|DX,\.

b’ =2<SD

xy

). (A7)

D, = 2 —p,p, +V g (A8)
and the strain constant e; can be found in the literature [4].

The modified Luttinger parameters are related to the original
Luttinger parameters with superscript L by [40]

— L _ )
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., 1 E,
S A9
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where E, is the band gap between the conduction band (/)

and the valence band ( [ ), and

2m,

E, =3 P (A10)
APPENDIX B
The Fourier transformed potentials f;; included in Egs. (13)
and (14) are given by
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with barrier thickness 4. Note that the expansion indices / and [ are symmetrized, and for / =/" Eq. (B3)is replaced by

b
Wy - E (B4)
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