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QoS monitoring is a kind of real-time systems which allows
each level of the system to track the ongoing QoS levels
achieved by the lower network layers. For these systems,
real-time communication between corresponding transport
protocol objects is essential for their correct behavior. When
two or more entities are employed to perform a certain task
as in the case of communication protocols, the capability to
do so is called interoperability and considered as the essential
aspect of correctness of communication systems. This paper
describes a formal approach on modeling and interoperabil-
ity test case generation of a real-time QoS monitoring proto-
col. For this, we specify the behavior of flow monitoring of
transport layer QoS protocol, i.e., METS protocol, which is
proposed to address QoS from an end-to-end’s point of view,
based on QoS architecture model which includes ATM net-
work in lower layers. We use a real-time Input/Output Finite
State Machine to model the behavior of real-time flow moni-
toring over time. From the modeled real-time I/OFSM, we
generate interoperability test cases to check the correctness
of METS protocol’s flow monitoring behaviors for two end
systems. A new approach to efficient interoperability testing
is described and the method of interoperability test cases
generation is shown with the example of METS protocol’s
flow monitoring. The current TTCN is not appropriate for
testing real-time and multimedia systems. Because test
events in TTCN are for message-based system and not for
stream-based systems, the real-time in TTCN can only be
approximated. This paper also proposes the notation of real-
time Abstract Test Suite by means of real-time extension of
TTCN. This approach gives the advantages that only a few
syntactical changes are necessary, and TTCN and real-time
TTCN are compatible. This formal approach on interoper-
ability testing can be applied to the real-time protocols relat-
ed to IMT-2000, B-ISDN and real-time systems.

Manuscript received April 8; revised September 16, 1999.
Y Electronic mail: bmchin@pec.etri.rekr

52  Byoung-Moon Chin et al.

Sung-Un Kim, Sung-Won Kang, and Chee-Hang Park

[. INTRODUCTION

Over the past several years there has been a considerable
amount of research with the field of Quality-of-Service (QoS)
support for distributed multimedia systems. To date, most of
the work has been within the context of individual architectural
layers such as the distributed system platform, operating system,
transport subsystem and network layers [1], [2].

Much less progress has been made in addressing the issue of
overall end-to-end support for multimedia communications. In
recognition of this, a number of research teams have proposed
the development of QoS architectures which incorporate QoS
configurable interfaces and QoS driven control and manage-
ment mechanisms across all architectural layers [2]. As illus-
trated in Fig. 1, this generally requires end-to-end admission
testing and resource reservation in the first instance, followed
by careful coordination of disk and thread scheduling in the
end-system, packet/cell scheduling and flow control in the net-
work and, finally, active monitoring and maintenance of the
delivered QoS.

QoS monitoring allows each level of the system to track the
ongoing QoS levels achieved by the lower network layers.
QoS monitoring often plays an integral part in a QoS mainte-
nance feedback loop that maintains the QoS achieved by re-
source modules [2]. QoS monitoring is a kind of real-time systems
which stem from the use of computers for controlling physical
processes. For these systems, real-time communication between
corresponding transport protocol objects is essential for their
correct behavior.
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When more than one object are employed to perform a certain
function, there arises the problem of whether they together
behave correctly. This is the problem of interoperation in a
general sense and thus it can be said that two or more objects
interoperate if they together behave as expected in specifica-
tions. Usually the expectations about interoperation should be
inferred or derived from the relevant specifications [3], [4].
Within the context of communication networks, an object men-
tioned above can be a network node, a layer of a node or a com-
ponent of a layer or a plane or even a network, i.e. anything we
decide to view as a whole.

An abstract view of communication can be conceived when
protocols of network nodes are layered and underlying layers
are regarded as the service provider for the layer above. Then
by similarly abstracting from the underlying layers, we can focus
on the behavior of a certain layer and think about interoperation
of the objects which realize the particular layer under consid-
eration. Once the notion of interoperation is clearly understood,
there arises the problem of verifying interoperation for target
implementations which interact with each other. This is the task
of interoperability testing.

Work on interoperability testing can be classified into two
categories depending on whether it is more geared to practical
things such as clarification and implications of interoperability
testing or to systematic generation of interoperability test suite.
As work along the former line are [5]-[8]. [5], [7] present in-
teroperability testing experiences. [6] gives a comprehensive
discussion on various aspects related to interoperability testing.

For the latter line of work, there are [9]-{14]. All these base
interoperability test suite derivation on some sort of reachability
analysis. For interoperability test architecture, [9] uses upper
testers as well as lower testers. [10], [13] introduces notions of
stable state to reduce the size of relevant state space. [12] devel-
ops interoperability test suite method for synchronous models.
[14] shows how to derive test suites for dynamic testing of
interoperability.

The previous work, however, did not provide a coherent
framework for interoperability testing in that the notions of
interoperability, interoperability testing, interoperability test case
and interoperability test architecture were not presented in an
integrated manner nor were interrelated for the purpose of in-
teroperability test suite development.

This paper, which belongs to the second line of work on in-
teroperability testing, addresses these issues. Starting from the
general definition of interoperability, we carefully select an in-
teroperability test architecture. The chosen architecture, com-
bined with natural assumptions and inherent limitations for
testing, is shown to induce a notion of interoperability test case.
And this notion of interoperability test case allows us to focus
on genuine interoperability aspect and at the same time to derive
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interoperability test suite in a cost-effective manner.

Formal protocol test generation becomes an indispensable
part of protocol specification and implementation. Formal test
generation often requires a formal specification of the protocols,
yet a large number of the protocols in practice are specified in-
formally, mostly in natural language [3], [4].

For this, as a case study, we specify formally the behavior of
flow monitoring of transport layer QoS protocol, i.e., multimedia
enhanced transport service (METS) protocol, which is pro-
posed to address QoS from an end-to-end’s point of view,
based on QoS architecture model which includes ATM net-
work in lower layers [19]. We use a real-time I/OFSM to model
the behavior of real-time flow monitoring over time. As a formal
method, real-time I/OFSM treats QoS monitoring components
as mathematical objects and provide mathematical models to
describe and predict the observable properties and behaviors of
these objects. It includes syntax for describing models, semantics
and meaning relations.

From the modeled real-time I/OFSM, we generate interoper-
ability test cases to check the correctness of METS protocol’s
flow monitoring behaviors for two end systems. A new approach
to efficient interoperability testing is described and the method
of interoperability test cases generation is shown with the example
of METS protocol’s flow monitoring.

This paper also presents the translation of the test cases ob-
tained by our generation algorithm to real-time tree and tabular
canonical notation (TTCN). The current TTCN is not appropri-
ate for testing real-time and multimedia systems, because test
events in TTCN are for message-based system and not for stream
-based systems. And also, real-time can be approximated in
TTCN. In this paper we propose the notation of real-time abstract
test suite (ATS) by means of real-time extension of TTCN.

This paper is organized as follows: in Section II, we present
QoS architecture proposed by Campbell [2], a QoS architecture
based on ATM network and METS protocol mechanism. In
Section III, we define a real-time I/OFSM and explain a real-
time modeling of METS protocol by using message sequence
chart (MSC). Following this, we give the description of the
method in Section IV, to generate interoperability test cases
from an intermediate real-time reference model equivalent to
the corresponding behavior of flow monitoring over time. We
then present the translation of the obtained test cases to real-
time TTCN form in Section V. Finally, in Section VI we con-
clude this paper.

II. BASIC MODEL OF QOS ARCHITECTURE

1. Quality-of-Service Architecture

The QoS-A is layered structure of service mechanism for
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Fig. 1. QoS architecture.

QoS management and control of continuous media flow in
multimedia network [20]. The QoS architecture presented in
Fig. 1 is composed of a number of layers and planes. The upper
layer consists of a distributed applications platform augmented
with services to provide multimedia communications and QoS
specifications in an object-based environment. Below the plat-
form level is an orchestration layer that provides multimedia
synchronization services across multiple related application
flows.

Supporting this is a transport layer that contains a range of
QoS configurable services and mechanisms. Below this, an
internetworking layer and lower layers form the basis for end-

to-end QoS support.

QoS management is realized in three vertical planes in the
QoS architecture. The protocol plane consists of distinct user
and control sub-planes. Separate protocol profiles are used for
the control and data components of flows because of the differ-
ent QoS requirement of the control and data: control generally
requires a low latency full duplex assured, high throughput and
low latency simplex services.

The QoS maintenance plane contains a number of layer
specific QoS managers. These are each responsible for the fine-
grained monitoring and maintenance of their associated protocol
entities. Based on flow monitoring information and a user sup-
plied service contract, QoS managers maintain the level of QoS
in the managed flow by means of fine-grained resource tuning
strategies.

The final QoS-A plane pertains to flow management, which
is responsible for flow establishment (including QoS based
routing, end-to-end admission control and resource reservation),
QoS mapping (which translates QoS representations between
layers) and QoS scaling (which correctly describes QoS adap-
tation and QoS filtering for coarse grained QoS management)

2. QoS Architecture Based on ATM Network

In this section QoS architecture model which includes ATM
network in lower layers is illustrated. Figure 2 shows QoS ar-
chitecture model based on ATM network [14].

Note that Fig. 2 only shows the transport layer and below
because the scope of this paper for real-time modeling is to im-
plement transport layer of QoS architecture model. The protocol
plane of transport layer uses METS protocol [19]. The physical

Control plane Control plane
QMP FMP QMP FMP
User plane User plane
R | R |
s Transport : 1 Transport :
METS <Chl QoS Q) c'c\)Annectlon METS <Chl QoS Q) c'c\)Annectlon
My Manager anager PRVIN Manager anager
AALS AALS
€ €
£ £
R[] Switch % ATM Switch R[] Switch %
ATM ||| QoS i« £ ATM ||| QoS i« g
M["| Manager £ M["| Manager £
2 2
~ LR},| physical = ~ LR,| physical =
physical QoS physical QoS
[“M[” Manager [“M[” Manager
[ [ |

Fig. 2. QoS architecture model based on ATM.
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and ATM layer are based on ATM switching, the primary
functions of ATM adaptation layer (AAL) are to segment IP
packets into 53 bytes ATM cells and to reassemble ATM cells
into IP packets. The QoS maintenance plane (QMP) is com-
posed of a transport QoS manager responsible for managing
QoS of on-going flows, application layer interact with flow
management plane (FMP) for establishment and dynamic QoS
management of multimedia flows.

At each layer in Fig. 2, the various mechanism in each plane
well defined interfaces to their peer. At the transport layer the
support of QoS is dependent on interactions between the trans-
port protocol, transport QoS manager, the flow management
plane and AAL.

The QoS-A defines the following internal interfaces between
the three planes at the transport layer and below as illustrated in
Fig. 2:

« R (resource control) interface used to allocate, tune and re-
lease transport protocol resources, and alert the QoS man-
agement plane if protocol resources are short. It contains the
following primitives: alloc_resource, tune_resource, resource
_alert and free resource;

« M (monitor) interface used by the transport QoS manager to
configure and control monitoring of flows in the transport
protocol and to receive reports of actually achieved QoS per-
formance over a preceding interval. It contains the following
primitives: start_monitor, set_rate, qos_assessment and stop
monitor;

« C (control) interface used by the QoS manager to set, modify
and read internal transport protocol states during flow con-
nection, data transfer and re-negotiation. The interface con-
tains the following primitives: set_state and report_state;

 Qt (maintenance) interface is supported by the transport QoS
manager and used by the flow management plane. It contains
the following primitives: start maintenance, set_attributes, free
_attributes, assessment, qos_alert and stop_maintenance;

3. METS Protocol Mechanism

The METS is a transport protocol and provides an ordered
but non-assured, connection oriented transport communication
service. It allows the user to negotiate QoS parameters such as
bandwidth, jitter, delay and the tightness of synchronization
between multiple related connections [14].

It is the responsibility of the protocol to share communica-
tions resources in end-to-end systems among flows with
widely diverse QoS requirements. To meet this need, the
METS protocol mechanism is composed of flow monitor, buffer
manager, flow regulator and flow scheduler. Also included is a
resource manager responsible for overseeing the allocation and
adaptation of the various protocol resources.
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Fig. 3. METS protocol mechanism and interface.

Figure 3 describes the mechanism of METS protocol and
interface [14]. Table 1 presents the performance parameters to-
gether with the mechanisms required for their support and the
resource configuration required for the three types of service
commitment. Flow monitoring is a core mechanism in the
QoS-A. The transport protocol flow monitoring component
gathers statistical information regarding the ongoing flow of
media, both at the source and the sink of the transport flow.

The information given in Table 1 is used by the transport
QoS manager during the on-going QoS maintenance of flows.
Based on a flow’s measured performance the transport QoS
manager and transport protocol interact over the resource, con-
trol and monitor interfaces to maintain the flow’s QoS [15].

[II. REAL-TIME MODELING

Formal methods treat system components as mathematical
objects and provide mathematical models to describe and predict
the observable properties and behaviors of these objects [3], [4].
It includes syntax for describing models, semantics and meaning
relations. There are several advantages to use formal methods
for the specification and analysis of real-time systems [16], [17].
These are:

« the early discovery of ambiguities, inconsistencies and in-
completeness in informal requirements.

« the automatic or machine-assisted analysis of the correct-
ness of specifications with respect to requirements.

- the evaluation of design alternatives without expensive

prototyping.
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Table 1. Mechanism and performance parameter for flow type.

QoS Commitment
QoS QOS. Guaranteed Statistical Best effort
parameter mechanism
Loss Buffer Management Fixed buffer Allocation based on Shared buffers based on No guaranteed buffer allocation
the peak rate average rate
Regulation Eligibility time based on Eligibility time based on No regulation resources
Throughput . .
(flow shaping) peak rate average rate committed
Delay and Jitter scheduling Flow alyve}y§ .Sch.eduled at Flow scheduled at eh.gﬂ.)lhty time Flow scheduled if scheduler idle
eligibility time resource permitting

In formal methods, we can categorize three following sets:

« Logic based: High Order Logic, Temporal Logic, Z, VDM,
Real-Time Logic, Timed Temporal Logic, Metric Temporal
Logic;

« State/Net based: Statecharts, Modechart, Petri-Net, Timed-
Petri-Net, I/OFSM, Communicating State Machine, Timed
I/OFSM;

« Process Algebra based: CSP, CCS, Timed CSP, ACP, ATP,
ACSR.

In this paper, we use a real-time I/OFSM to model the be-
haviors of real-time flow monitoring over time.

1. Real-Time /OFSM

We define real-time I/OFSM (Timed I/OFSM) to model the
behavior of real-time systems over time [16]. A timed I/OFSM
is an extension of a finite /OFSM with a finite set of real-
valued clock variables.

Definition 1 A real-time I/OFSM is a 5-tuple <L, S, So, C, Tr>

where:

@ L= {my, ..., my} is a finite message.

@ S={so, ..., sm} is a finite set of states.

@ So & Sis a finite set of initial states.

@ C={cy, ..., cp} is a finite set of clocks, and

® TrOSxSxLx2°x@(C) is the set of transitions. An
edge<s,s',a, A, d > represents a transition from state s
to state s’ on input message a. Theset A O C gives the
clocks to be reset with this transition, and Jis a clock con-
straintover C .

Definition 2 Characterization of Clock

(D The domain of clocks is the set of real numbers.

@ The initial values for all clocks are zero.

@ The values of all clocks increase at the same rate.

@ Any subset of them can be reset to zero when a transition is
executed

Definition 3 Communicating system » of »n real-time VOFS
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Msis <{(M,Q)[|Si<n}, Ly . Ly .55, > where:

@ M, 1<i<n,isareal-time JOFSM<L, S, So, C, Tr>as in
Definition 1.

@ Qi 1<i<n,isaninput queue for Mi.

@ Lsnis a set of external input symbols.

@ Lz ouis a set of external output symbols.

(® The initial state of the system is sx0 = <(s10, Qo), ..., (Sn0,Qn)>
where Q; is empty and si is the initial state of M;, 1 <7< n.

In this model, there is one explicitly defined input queue for

each real-time [/OFSM and implicit bi-directional communi-

cation channels between each pair of real-time /OFSM’s. A

system state in which input queues are all empty is called a stable

state [12]. The communicating system as defined above takes a

sequence of inputs from the environment one by one. The next

input from the environment is processed only when the system

is in a stable state. This definition of stable state makes it unne-

cessary in later sections to describe input queues to show stable

states of a communicating system.

2. Real-Time Modeling of METS Protocol

We specify the behavior of flow monitor using MSC which
is one of formal methods, as in Fig. 4. The current version of
MSC does not handle real-time constraints. In this paper MSC
is used as a complementary formalism to show a first design of
the protocol message exchanges, and real-time constraints are
modeled using real-time I/OFSMs.

In Fig. 4, flow monitoring is initiated when a start moni-
tor_req command is received by the transport protocol from the
transport QoS manager at the protocol’s monitor interface.
‘When monitoring is enabled, the monitor operates in one of the
two defined modes; the mode is implicitly based on the direc-
tion of the flow. In essence, the transport protocol monitors a
flow’s on-going performance and the transport QoS manager
maintains it. Table 2 identifies the states of flow monitoring in
METS protocol, input and output messages of flow monitoring
are given in Fig. 4, and timers and counters are represented in
Table 3 respectively.
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QMP A QMP B
start_monitor.req
start_monitor.ind o
Ll
start_monitor.res
start_monitor.conf
<
<
M_control.ind o
>
gos_assessment.req
- qos_assessment.ind
b - ~(0s_assessment.req
{~qos_assessment.ind,
- start_tune_resource} qos_assessment.req
gos_assessment.ind
1
¢
. ~(os_assessment.req
{~gos_assessment.ind,
» start_tune_resource} qos_assessment.req
o M_assessment =
< gos_assessment.ind

stop_tune_resource

stop_monitor.req

stop_monitor.conf

M_release

stop_monitor.ind

Y

stop_monitor.res

-l
-t

stop_monitor.ind

stop_monitor.res

stop_monitor.conf

Fig. 4. MSC of flow monitor.

Table 2. State of flow monitor.

Table 3. Timer and counter of flow monitor.

state Meaning variable Meaning
So NULL a Transmission time of unidirectional message
S; Monitoring initiated B Maximum processing time of message
S, Monitoring present 14 Maximum transmission time of one message
S; First assessment waiting Dnax Maximum return transmission time
Ss Monitoring request TC Timeout counter (maximum value: TC,,,,)
Ss Active VC Violation counter (maximum value: VC,,,,)
Se Stop request CC Conformance counter (maximum value: CC,,)
S; Adjustment

and counters in Table 3 behaves as follows:

Considering all the points described above, Real-time reference  + In order to establish the flow monitoring, METS protocol re-
I/OFSM model of flow monitor is generated as in Fig. 5. Ac- ceives the message start monitor.req from the QoS manager
cording to MSC in Fig. 4, the flow monitor using the timers  via the interface M.
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Calling Part Called Part

S, < /;

\4

start_monitor.req /M_setup xj/ M_setup / start_monitor.ind
(t:=0,TC:=0) (t=0)
(t<Drw) /(t<p
M_connect/ {start_monitor.conf, M_control} start_monitor.res / M_connect
(t:=0)

(t:=0)
(t<2a)
M_assessment /
qos_assessment.ind
(t:=0)

(t < 2a) M_control /M_control.ind

(t=0) Qos_assessment.req / M_assessment

or

(t<20) ~M_assessment/ ~gos_assessment.req ~M_assessment

{~qos_assessment.ind,
start_tune_resource} (t<y) M_assessment/
(t:=0,VC:=0,CC:=0) qos_as(sessr;wem.md
ST T t:=0

qos_assessment.req/M_assessment
' or
~Qos_assessment.req ~M_assessment

t<vy
~M_assessment / {~gos_assessment.ind,
start_tune_resource} (t:=0,VC:=0, CC:=0)

(t<y) ~M_assessment/
(t<y)M_assessment/ {~qos_assessment.in}d,
- ; start_tune_resource
qos_assessment.ind e
(t:=0,CC:=CC+1, VC :=0) (t:=0,VC=VC+1, CC:=0)

(a) Flow monitoring setup and monitoring phase

(TC=TC,,) stop_monitor.req /

{M_release, stop_monitor.conf }

stop_monitor.req / {M_release,
(t < B stop_monitor.conf }

(t < D, Stop_monitor.req /

{M_release, stop_monitor.conf} —» S,

M_release / stop_monitor.ind (t := 0)

. stop_monitor.res /e
stop_monitor.req/{M_release,

(t< B stop_monitor.conf } (t := 0)

S.,S » < i
o M_release / stop_monitor.ind (t := 0) ° ™ E&e‘gg’é’@rgoﬁ'ﬁﬁﬁcﬁ,m}
- (t:=0)

4

M_release /
stop_monitor.ind
(t:=0)

(VC =VC,,) stop_monitor.req /
M_release / stop_monitor.ind {M_release, stop_monitor.conf } (t := 0)
t=0)

(cc=cc,,)
stop_tune_resource /e

(b) Flow monitoring release phase

Fig. 5. Real-time I/OFSM of flow monitor.

58 Byoung-Moon Chin et al. ETRI Journal, Volume 21, Number 4, December 1999



« After transmission of the METS M _setup message to the Figure 5-(a) represents the flow monitoring setup and moni-
remote METS protocol (timer starts with a reset to £ = 0), toring phase and Fig. 5-(b) the flow monitoring release phase,
METS protocol should receive M_connect message within  respectively.

the maximum return transmission time D, from the remote
METS protocol.

If the confirmation message M_connect for start monitor has
not reached the METS protocol from the remote counterpart
within the time limit Dy, the timeout counter TC is in-
creased. When TC reached the maximum 7Cpa, it is as- Conformance testing checks correctness for a single com-
sumed that flow monitoring cannot be established, and munication protocol entity whereas interoperability testing
METS protocol sends the message stop monitorreq checks correctness for a system of two or more communication
(M _release). protocol entities [3], [4] [18]-{20].

+ When M_connect arrives with the time limit as usual, METS In our approach to interoperability test suite derivation, it is
protocol notifies the setup of flow monitoring to the transport ~ assumed that (1) the communication protocol is structured as a
QoS manager, and sends M_control to the remote METS  real-time I/OFSM and that (2) a complete set of conformance
protocol (starts with # = 0) which orders the remote METS  abstract test cases has been already developed (elsewhere)
protocol to start the transmission of assessment message. based on the a real-time I/OFSM structure. Because of this
After the setup of flow monitoring and the receipt of second assumption, our approach will yield an interoperability
M control informing the transmission of the assessment test suite which has no overlapping with conformance test
message, the remote transport QoS manager sends suites as we will see later. Furthermore, (3) we adopt the test
qos_assessment containing statistical information about the architecture in Fig. 6. We call an individual object involved in
current media flow with a period ¢+ < Y. When the first interoperation an implementation under test (IUT). In spite of
qos_assessment arrives in time t < 20t from the remote QoS the term IUT, it is important to note that the target of testing
manager, METS protocol measures the receiver side QoS here is not the individual objects (which are the targets of con-
considering the sender’s QoS in the qos_assessment message. formance testing) but the system as a whole which consists of
If the first assessment message is qos_assessment meaning those objects. Still, TUT is a convenient term and will be used
no problem in QoS rather than ~qos_assessment implying  throughout the paper.

the existence of a QoS problem, METS protocol sends trans-
port QoS manager a request start tune resource for starting

IV. GENERATION OF TEST CASE

1. Interoperability Test

tune_resource via R interface. Tester A IUT A IUT B Tester B
« Ifthe second and the following messages are qos_assessment, O O

the conformance counter CC is increased by one. When CC Service Provider

is equal to CCiax, METS protocol sends transport QoS man- QO rco

ager a request stop tune resource for freeing the

tune_resource. If, however, ~qos_assessment messages are Fig. 6. Test architecture of interoperability testing.

received instead of qos assessment consecutively with a
period of # <Y, the violation counter VC is increased. When Note that there are only two points of control and observa-
VC amounts t0 ¥Cya, stop_monitor.req (M_release) is sent ~ tion (PCOs) in Fig. 6. Often in practice a monitoring point or
to the remote transport protocol requesting the end of flow point of observation (PO) is set between IUTs. We do not set
monitoring. such PO. For with such PO, (1) it would be more costly to gen-
- Ifa qos_assessment is received after a number of successive ~ erate test suite, (2) it would be more costly to perform testing
~qos_assessment’s, VC is reset to zero; similarly, CC is reset ~ and (3) interoperability testing would have much overlapping
to zero upon receipt of a~qos_assessment after a sequence of ~ With conformance testing.
qos_assessment’s. As with conformance testing, interoperability testing is re-
« Transport QoS manager can send anytime stop monitor stricted by observability and controllability that is allowed in a
message requesting the termination of flow monitoring. After ~ chosen test architecture. In addition, it is usually assumed that the
a receipt of stop_monitor.req from the transport QoS man- slowness of the environment [12] places practical limit on ob-
ager, the transport protocol should transmit M_release to the — servability and controllability. That is, transient states cannot be
remote transport protocol (starting with a reset ¢ = 0), and observed or controlled in a predictable way and hence are con-
send stop_monitor.conf to transport QoS manager with time  sidered useless for the purpose of testing. This justifies basing
t<pB. any notion of test case on stable states as we do in this paper.
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Input: I/O FSM’s S, and S,

Output : Stable [j] contains all the stable states of S; X S,

J=0;

Stable[j] == {(S1.0, S20)}; /* All stable states generated up to Stage j */
New = {(s10, $20)}; /* Stable states to be expanded at Stage j+1 */

While New # O do begin
<New, (s, S,)> = delete-one-element(New);
OldFrontier == @; /* Already expanded nodes at Stage j */
NewFrontier := {(s;,s,)}; /* Nodes to be expanded at Stage j+1 */
While (NewFrontier # @) do begin
<NewFrontier, (s;, s,)> = delete-one-element(NewFrontier);
OldFrontier := OldFrontier U {(s,,s,)};
Event Seq_Set = interaction-sequences ((s,,5,));
While (Event_Seq_Set+ @) do begin
<Event_Seq_Set, Event_Seq> := delete-one element(Event
Seq_Set);
if Event_Seq_Set ends with a stable state (5,,s,)
then begin
if s'[i(Stable[j] UNew U OldFrontier)
then NewFrontier := NewFrontier U {(s,s,)};
End

Else begin
There is an error in the specifications.
Stop and fix the error
End
End while;
End while;
=it
Stable [j] := Stable[j-1] U OldFrontier;
End while;

Fig. 7. Algorithm of generate stable states.

The interoperability test approach of this paper is to test in-
teroperability of implementations against interoperability of
specifications. In this approach, interoperability testing is a (yet
another) conformance testing, i.e. conformance testing of the
system which is composed of the actual subsystem implemen-
tations. Any notion of interoperation, if any, should be ex-
pressed in principle in a given specification or should be agreed
upon in advance by specification writers and implementers.
Ascertaining correctness of specifications in this respect is the
task of verification and validation, which goes beyond the
proper scope of testing, For the target of testing is the relation
between specification and implementation rather than between
specifications. However, if specific interoperability require-
ments are subject to validation and verification at the specifica-
tions level, then the same validation and verification method
can be applied to a system of implementations for testing.

As the result of interoperability testing of implementations,
problems residing in specifications may be found and reported.
Then the additional ingredient interoperability testing provides
in addition to verification of interoperability of specifications is
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to fill the gap left by usual conformance testing. The real work
of interoperability assurance should come at the stage of speci-
fication development. But still the fine points that may have
been missed at the time of specification writing (including vali-
dation and prototyping) can be augmented through testing.

2. Generation of Interoperability Test Case

A system state in which input queues are all empty is called a
stable state [12]. The communicating system as defined in
Definition 3 takes a sequence of inputs from the environment
one by one. The next input from the environment is processed
only when the system is in a stable state.

In interoperability testing, interoperability test suite is devel-
oped in such a way that for the given specification with real-
time I/OFSM structure, absence of operation errors (or correct-
ness of input/output behavior) and absence of transfer errors
(correctness of the state reached after the transition) are examined
with respect to each transition of the real-time [/OFSM [21].

We show below an algorithm to generate all stable states,
which form the starting, and the ending states of interoperabil-
ity test cases. Actual test cases generation is realized by deco-
rating the algorithm with the step to store the applicable se-
quence of events between stable states [19]. In our approach to
interoperability testing, the number of stable states is small
enough that it can be used as a suitable basis for manual calcu-
lation as well as for automatic generation of interoperability test
suites.

In Fig. 7, s, and s,, denote the initial stable states of real-
time I/OFSM §,, S, respectively and (s;, s,) represents the
global system state which sl and s, are stable states of S; and S,
respectively. Delete-one-element (set) is a function that chooses
an arbitrary element from the set and removes it. Interaction-
sequence ((s;, S,)) generates all possible sequences of interac-
tions that are initiated by the real-time /OFSM that is in the
state S;. s' denotes the final stable state that became to the results
of applying the (s;, S,).

We applied the proposed algorithm to the reference 'OFSM
given in Fig. 5. The resulting application of the algorithm is
shown in Fig. 8. The global states in boxes are stable states and
those in parentheses are transient states. Interoperability test
cases generation is realized by decorating the sequence of
events between stable states.

In each stable state, the dotted vertical lines means that left
and right edges of those lines denote interactions which are ini-
tiated by the left and right IUTs, respectively. The nodes of tree
marked up (&) would be not fully expanded as the full expan-
sion has been done in other stages. Finally, the sequence of
events between stable states is an interoperability test cases for
the reference real-time I/OFSM of flow monitoring shown in
Fig. 5 and for the test architecture given in Fig. 6.
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Fig. 8. Application of algorithm.

V. REAL-TIME TTCN NOTATION
In this section the real-time TTCN notation of interoperability

test cases described above are presented.
ISO 9646-3 define TTCN that denotes ATS specifications by
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standard methods [22]. The goal of TTCN notation is to
provide simplicity in general analysis for ATS and to provide
the bases to do automatic execution of tests. ATS consist of sets
of test cases.

The current TTCN is not appropriate test for testing real-time
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Test Case Dynamic Behavior

Test Case Name 1 (S1,5,)_(Se,Se)

Purpose : From starting state set (S,,S,), we test that Lta receives stop_monitor.conf from IUTa within (t<f) after Lta sends
stop_monitor.req to IUTa, and also we test that LTb receives stop monitor.ind from IUTb and then we confirm
whether the arrived state set is (S;,Se).

Nr La Time Time Options Behavior Description CRef | Verdict Comment
1 L1 +preamble_S, S,
2 (T1:=B )
3 L2 L1,L1+T1 LTa ! stop_monitor.req
4 (T2:=D,,sy)
5 L2, L2+T2 M LTa ? stop_monitor.conf P)
6 L2, L2+T1 M LTb ? stop_monitor.ind P)
7 +state_verify(S,,S,) (T1:=0, T2:=0)
8 LTb ? OTHERWISE F)
9 +postamble
10 LTa ? OTHERWISE F
11 +postamble
12 L2, L2+T2 M LTb ? stop_monitor.ind P)
13 L2, L2+T1 M LTa ? stop_monitor.conf P)
14 +state_verify(S,,S,) (T1:=0, T2:=0)
15 LTa ? OTHERWISE (3]
16 +postamble
17 LTb ? OTHERWISE F
18 +postamble

Fig. 9. Real-time TTCN.

and multimedia systems. Because test events in TTCN are for
message-based system and not for stream-based systems and in
TTCN real-time can only be approximated. In this paper we
use the notation of real-time ATS by means of real-time TTCN.
In the extension of TTCN to real-time TTCN the syntactical
extension is that statements are annotated with time labels for
earliest execution time (EET) and latest execution time (LET)
[23].

The EET and LET are time constraints that a transition can
be performed in this time and transition must be performed
within that time, respectively. In real-time /OFSM <L, S, so,C,
Tr>, an EET. 0 R and a LET [0 RU{o} where R is set of
real value defined for each transition t U Tr, where we can
assume that EET; < LET.. EET; and LET: define timing con-
straints which ensure that transitions can not be performed
neither to early (EET:) nor too late (LET). We suppose the
default values are zero for EET; and o for LET..

A distinction between Fig. 9 and traditional TTCN is Time
and Time Options column are added in Test Case Dynamic
Bahavior table. An entry in the Time column specifies EET
and LET for the corresponding TTCN statement.

In real-time TTCN, besides Label can be used in a GOTO,
Label can be used in Time column, so that EET and LET values
are computed relative to the execution time of the alternative

62  Byoung-Moon Chin et al.

identified by the Label. In Fig. 9 on line 3 the time labels (L1,
L1+T1) are referencing to the execution time of the alternative
in line 1 (for which label L1 is defined). If time option M
(mandatory) is specified and the corresponding alternative can
be successfully evaluated before it has been enabled for EET
units, then this results in a Fail verdict.

VI. CONCLUSION

In this paper, based on QoS architecture model which in-
cludes ATM network in lower layer, we have specified the real-
time behavior of flow monitoring of transport layer QoS proto-
col which is proposed to address QoS from an end-to-end’s
point of view. We have used a real-time [/OFSM to model the
behavior of real-time flow monitoring over time. From the
modeled real-time I/OFSM, we have generated interoperability
test cases to check the correctness of METS protocol’s flow
monitoring behaviors for two end systems. We have experi-
mented that formal specification (specified in real-time /OFSM)
approach gives the automatic or machine-assisted analysis of
the correctness of specifications with respect to requirements.

This paper has also presented the translation of the test cases
obtained by our generation algorithm to real-time TTCN. We
have defined syntax and semantics of real-time TTCN. On a
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syntactical level TTCN statements can be annotated by time
labels. Time labels are interpreted as earliest and latest execu-
tion times of TTCN statements relative to the enabling time of
the TTCN notation. The operational semantics of real-time
TTCN is based on timed transition system. This approach
gives the advantages that only a few syntactical changes are
necessary, and TTCN and real-time TTCN are compatible.

In the future, we have plan to specify all functions of METS
protocol in real-time I/OFSM and build a tool for the proposed
framework with special attention to real protocol in order to
generate the executable test cases in an automatic way.
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