Calculation of Differential Reflection Coefficient for
Isolated Microscopic Well Structure

We have calculated differential reflection coefficient for
isolated well structure of micro-scale, etched on dielectric
surface. The differential reflection coefficient is computed
using Green's second integral theorem. The purpose of our
computation is to find a class of well profiles which give
maximal diffusive scattering. To have such a maximal d-
fect, we have concluded that the waist radius of Gaussian
beam and its wavelength should be comparable to the well
width and that well depth has to be larger than a wawe-
length. Exact calculation of differential reflection coeffi-
cients of dielectric surface with isolated structure on it may
be used for the examination of dielectric surfaces and also
in making smple but efficient di ffuser.
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[. INTRODUCTION

The enhanced backscattering from a large amplitude random
grating was cdculated by Maradudin et al. based on Green's
second integral theorem [1]. Their formalism is so powerful to
naturaly take account of surface shadowing and multiple
scattering. To resemble the experimenta setup, they aso used
the incident Gaussian beam with waist radius comparable to
the sample size, thereby eliminating periodic replication of the
sample surface as is the case in the scattering of plane wave.
The Maradudin's formalism draws a set of two integra
equations which can be solved numerically. Their numerical
solution confirmed the enhanced peak at back-scattering angle
[2], which has been experimentaly observed. One early
formalism that has been used with some success is that of
Beckmann and Spizzichino[3], which uses so-called Kirchhoff
approximation. But the approximation fails completely if the
surface correlation scale  a is comparable with the wavel ength
€. Further, this theory does not take account of multiple
scattering or surface shadowing. The other several formalisms
have been made up and compared with the experimenta
results, namely, the smal perturbation method and extinction
theorem method. But these formalisms have ther own
limitations. The enhanced backscattering from deterministic
surfaces instead of random grating has also been observed [4],
[5]. It is quite surprising to have enhanced back-scattering from
deterministic surfaces. The main conclusion out of their efforts
is that the enhanced backscattering is due to multiple scattering
from deep grooves. The multiply scattered optical paths with
their time reversed ones give us congructive interference at
backscattering angle. So it will be interesting to compute
differentia reflection coefficient (DRC) from an isolated, large
amplitude groove on didectric surface and to see whether we
can gill have any sign of enhanced backscattering.
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In this paper, an isolated well is introduced on the didlectric
surface with varying its depth, width or wall dope. The
resulting DRC's are obtained and andyzed to look for
corrdation with well shape. The laterd sze of wdl is
comparable to wavelength used so that we are in the diffractive
regime. The smple geometric optics can not be applied to this
system. Instead we used Maradudin’ s formlism to compute
DRC by applying Gaussian beam on the sample surface. Our
results show that we do not have any sign of enhanced back-
scattering. But when the waist radius of incident beam is
comparable to well width, DRC obvioudy deviates from
specular reflection, becoming a good candidate for efficient
diffuser. This modd caculation can be gpplied to examine real
sample surfaces dso. We briefly describe theoretica back-
grounds in Section I1. In section I11, the numericd results are
shown and examined. Section |V concludes this paper.

[1.THEORETICAL BACKGROUND

We consider the p-polarized eectromagnetic field incident

from the vacuum side onto the dielectric surface defined by
Xy = T(x) with the plane of incidence of xx,-plane. The

vacuum is at x3 >1(x) and materid x5 <i(x;). The
material Sde has a dynamic didectric function &U). The
magnetic and electric fields have the form

H(ft ) = (0H, () 0) exp(- iut), ©)

E(, t) = (E,(), 0, E5())exp(-iut). )

Trandational symmetry in x-direction is implied and f=
(%,,%;) . Because time dependence is explicitly shown through

exponential term, hereafter any derivative 1 in time will be
replaced with -it. H,(fi) isthesolution of the equations

N
E?wa; +‘;—2§4;(ﬁ)=0, %>1(x), @

§f+ﬂ§ +é(u)‘;—2§4§(ﬁ>:o, %< T(x), (@

where T is equivalent to T/9x . The boundary condition
satisfied by H () and H(f) attheinterfaceare
HZ () ) = HZ (D) ®)

T
fin,

H3 (), = Hi (W], ©

1 1
&w) fin,
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where  f/fin, is normal derivative at the surface, pointing
from materia to vacuum side. The Hy(f) a X, ® +¥
consists of an incoming and outgoing waves, while H5 () a
X; ® -¥ isexponentially decaying wave.

We now introduce two Green functions, G,(fi,ii) and
G;(fi, fi9 satifying

G +15 #5720, (3,79 = - (- 1,
%]

@
gﬁf P24 é‘f’clf‘z a0 =- 4B 10, (©)
7]

The G,(fi,ii9 and G,(fi,fi9 have solutions of Hanke
function of iBHY(r) and iBHY (&) respectively, in

which r = (U/c)J(xr x{l)2 +(X, - x§)2. By applying Greeri s

second integral theorem to vacuum side, we can have
inhomogeneous integral equation of

& (x; - TO))HZ () = H (),

* %c‘i dXﬂ[H 2 (A9(- T ExHNE+ 14)G, (7, AY
S Go(r T T DI+ IOH; O - @

The integral term of r.h.s. represents scattered field, H,,..

The similar procedure is applied to material fidd H;(f) so
that we have
&1 (x) - % )JH () =
- 20, OXfiH 3 (R9(- T ExBTE+ 18)54 (R, 7Y
-&@)C, (1.19(- T DOTP+I9H; (9] (- (10)

By defining two source terms

) =H (0] (1)
L) = (1 0T+ T H @), (0 (12

and
Hu00 30 = lim 25T OB BN, o0y
19
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Lo, =lim EG @ .n9 (14)

400, xg T (x)+4 x§= (x§)

Hs (040 = lim 46( T OPTE+ GG .09, g gy
(15)
Ls G X = lim G EAY, g 0O

we can transform (9) and (10) into
H (%) = H (%) ine
+ 0, OHH O X H (X - L, (6, xLxP], (17)

0= ()2 oXf{H 5 (X, XD H () - 8(0) Lg%, XHL)] .(18)

Thisisaset of integral equationsto be solved to compute DRC.
H, ad L, are obtained by setting &=1. We put the

observation point just above the surface, which was
represented by introducing positive infinitesmal, a.
Now we have the total, time-averaged, scattered flux of

2

Ps: = dei(‘ﬂXZ Reg— I&;:J—H;sc (ﬂSH 23:)5 (19)
€ ux3>max(T (Xl))
By definition, DRC is given by
1 TP, 2
ENES &m(%'P |/(:L2)|rp(k)| , (20)
where
l‘p(k) :(\)¥ dxfb ikxg -ia o (K)E (x¢)
Hilkd P -aoHOD- LD, (@)
ad
N 12 N
ao(k):?_z- kzél , k2<uc—22, (22)
2. _+ 2 ﬁ
_Eﬁ CE’ > 23)

In (20), |Rye| is total, time-averaged power of an incident

beam. The total DRC may be obtained by integrating (20) over
dl scatering angles in the vacuum side. The sample
dismensonwasassumedtobe L~ L,.
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To compute DRC, we have to solve for
L(%)

be solved numericaly by transforming integral equations to
matrix forms[1], [6].

H(x) and
from(17) and (18). The coupled integral equations can

H=Hie+HPH- LOL, (24)

0=H®H- 8@, (25)
where H, L and Hix are column vectors. When comput-
ing diagona eements, singularity should be treated carefully [1].
The above coupled matrix equations have forma solutions of
in the following way.

-1

1

H=§ - HO+ I o @@l b, (26)
é H inc?
L = % L& 1@y | @7

The 2-dimensional Gaussian wave H,;..(X 2z) is obtained
from paraxia Helmholz equation[7] of
&2 2|iﬂ29H2'mC(x,z) =0. (28)
e C g
With a depth of focus of z called Rayleigh range in 2-dim
verson H,in(X,z) hasagenera solution of

_Wo‘?XU‘f"uae X2 0 i ez ol

Hainc(x,2) = We(pg' W—g g ?g +——+—tan ;3,
e u Z,

(29)

inwhich R(z)=z[t + (z/2)? | is called radius of curvature

of wavefront, W(2) =W, [1 + (2/20)2]”2 beam radius and
W, = (&,/8)"? incident beam is
illuminated with incidence angle €, which is measured from

z axis in counterclockwise direction, x and z will be
replaced by the relation of

gez“?

At x;=0 plane, we compute |Ruc|. From 29 and 30, we
should get

wast radius. If an

@&coxy singdaxd

§ sing cosqfagw 40

&€z a
"

(3D

oe2></W ﬂ Py +___

| |nc|_ L _djxl ﬂxs € SR A
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Fig. 1. Thesurface profilesof (A, 1, 5) are shown.

inwhich partia derivative with respectto xs will become

L€ X(z2*-Z) ¢ z U
1 w0 = CO®; al- - = Y
oo 200 ) W2
. € xz U
+8ne é5—-0, (32
& +7

where Xx=cosg X and z=-singx.If z goes to infinity,
we surely retrieve the result of plane wave, LilL.ccos)/8.
|Rnc| will be obtained numerically.

[1l. RESULTS AND DISCUSSIONS

In this section, we compute DRC of a single 1-dimensional
well etched on flat surface. The well is represented by
differentiable scalar function. We have chosen a product of two
hyperbolic tangents as the well,

1(%) = AltanhB(x +C) +1] [tanhB(x, - C)- 1] , (33)

where A, B and C are dl postive numbers. A is for well
depth, B wall dope and C well width. By varying A, B
and C in abitrary way, we can have smooth and

differentiable wells of various shapes. So we will represent a
particular well profile using atriad of (A, B, C ) heregfter. The
incident Gaussian beam illuminated on the groove is p-

polarized, whose wavelength is 0.62im. The waist radius of
the beam is set to be 1.86 im, The corresponding Rayleigh
range is about 28 €. The bulk materia has didlectric constant
of 12.25 (typical vaue of S), for which imaginary part is
neglected.
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Fig. 2. For (A, 1, 5) case, Totd DRC’ s are shown. Fresnel result i<
aso shown for comparison.
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Fig. 3. For (A, 1, 5), incidence angleisfixed to 0°.

From many possible combinations of (A, B, C), we choose
areference profileof A= 48, B=& and C =5&. We d
fix the sample width to be 70 & and divide the whole sample
width into 2000 steps. These vaues are based on the
parameters of the Gaussian beam as defined above. Because
we want the beam center to be always located at coordinate
origin and to be completely enclosed by well mouth, the waist
radius has to be less than or comparable to the well width. The
covering area by the incident field on sample surface increases
as the incident angle increases. So the sample width must be
large enough to accept dl the incident fields. We found that
70é was reasonable width to get convergent result in
computing DRC even up to 65°. Furthermore 2000 steps were
large enough to take account of the spatia variations of fields
and well profile. To check the computer program works fine,
we first applied it to the flat surface, then computed DRC s
from 0° up to 65°. For the flat surface, we have exact
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Fig. 4. For (A, 1, 5) case, incidence angleisfixed to 65°.
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Fig. 5. For (A, 1, 5) case, incidence angle is fixed to 45°.

expression for reflection coefficient,

2
|n2coséi - Jn?- sin?g |

n’cosy +1/n2- sin’g |

R = (34)

The actua computation shows that the total DRC at each
€, does differ from Fresnel result within lessthan 1 %.

Fist of al we compute DRC by varying A only. Three
different valuesof A are chosen. Surface profiles are shownin
Fig 1. B and C aefixedto & and 5& respectively. The
total reflection coefficient into the vacuum side at various
reflection angles up to 65° are shown in Fig. 2. Fresnd
reflection coefficient of (34) is aso shown in the same plot for
comparison. At small s, the reflection coefficient is close to
Fresnel result, but gradudly deviating as €, increases. We now

look a DRC a normd incidence in Fig. 3. No particular
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Fig. 7. Only Bis changed. Fresnel result is also shown for
comparison.

structures are seen except strong specular reflection. It seems
that the incident beam is not much affected by thewell. But it is
understandable if we compare the beam waist radius with well
width. The beam waist radius is much smaller than the width of
well bottom. That'swhy DRC s are more or |ess Fresnd-like.
Figure 2 shows two distinct festures at large incidence angles.
One is that, around 45°, (4, 1, 5) and (7, 1, 5) have locd
minima. The other one is that totdl DRC does not vanish even
at Brewster's angle, which is about 74°, but increases. The latter
one is due to the fact that well' swall isilluminated at different
angle rather than Brewster s angle. It becomes evident from
Fg. 4. The specular reflection is barely seen. Instead we see
enhanced peak in the backscattering direction. These peaks can
be understood with geometrical optics. Because the beam waist
radiusis small enough to illuminate particular position on wall,
the incident energy is specularly reflected. That's why we
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Fig. 9. Only B is changed. Theincidence angleis fixed at 65 °.

have prominent peaks in Fig. 4. Understanding the former one
is also based on the same reasoning. Qualitatively saying, aswe
increase € from 0°, the actua incidence angle on wall
decreases from 90°. So before we get to € = 74°, we should

be able to see a minimum. But because the incident beam has a
finite waist radius and wall's dope depends on position, we can
not say that the minimum will show up & &= 16°. Only
actual computation tells us local minimum angle.

Figure 5 plots DRC swhen ¢ = 45°. We now have specular
pesk & € = 45° for (2, 1, 5), reveding the tendency of
convergence to the case of flat surface. Other profiles let
incident energy be scattered off into various angles. It should be
understood as a result of multiple scattering. The fields trapped
in the wdl is multiply reflected back and forth then findly
some portion of the field energy escapes into the vacuum. The
multiply reflected fields are coherently interferes with itself,

46  Jong Tai Lee

Fig. 11. Only Cis changed. Fresnel result is also shown for
comparison.

thereby producing highly complicated structure of DRC.

Now let’ sexamine (4, B, 5) cases. With A=4é and C =
5é fixed, only wall dope varies. Figure 6 shows three different
surface profiles. We plot total DRC sfor themin Fig. 7. Except
(4, 1, 5), we do not see any interesting festures here. At small
incidence angles totd reflection coefficient is not much
different from Fresnel result. But because the well bottom is
not flat now, Fresndl peak is broadened as shown in Fig. 8. The
smoothness of DRC means that almost no multiple scattering
effects take place here. The structures of DRC s in Fg. 9. are
much smpler compared to Fig. 4. As mentioned above,
because waist radius is small enough to be specularly reflected
from a certain position of wall, we have specular peaks at dif-
ferent reflection angles even for the same incidence angle. Of
course, as we increase the wall dope, we should recover the
Fresnel result.
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Fig. 13. For (4, 1, C) case, DRC’ sareshownwhen €r 0°.

Now consder well width dependence of DRC. We fix
A=4é& and A=¢& but vary C only. Figure 10 compares three
surface profiles and Fig. 11 tota DRC s At smdl incidence
angles, we recognize that the dependence of DRC on well width
is much different from those on its depth or dope. With gradua
decrement of the well width, the totd DRC at small angles
decreases too, then turns upward converging to Fresnd result.
Note that Fig. 11 has (4, 1, 0.02) case dso. Before we
understand this behavior, we first look at DRC s a norma
incidence. Figure 12 shows that the strength of DRC of (4, 1, 1)
is so much reduced, implying that the most of incident energy
is transmitted into the bulk. For  p-polarized wave, if incident
angle is close to Brewster's angle, this reduction should be
possible. Infact, T&X,) of (4, 1, 1) is the largest among those
of four profiles. This is the reason for the reduction. If we fur-
ther decrease the width comparable to wavelength, we enter
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Fig. 15. For (4, 1, 0.02) profile, DRC' s are shown when €,= 10°,
40° and 65°.

diffractive regime. Then we should expect diffusive scattering
as in Fig. 13. Even more decrement of the well width should
recover the Fresnel result. Figure 14 and 15 show DRC s when
€ =10° 40° and 65° of (4, 1, 1) and (4, 1, 0.02) cases
respectively. Both profiles seem to scatter incident beam in
most diffusive way. These computed DRC s include dl the
effects of multiple scattering, surface shadowing and diffraction.
It looks like that more multiple scatterings are involved in (4, 1,
1) compared to (4, 1,0.02) .

V. CONCLUSION

We have computed DRC s for severa wel profiles and
examined how DRC varies as we change well depth, slope or
width. DRC s were computed based on the second Greeris
theorem which should be exact even in diffractive regime. The
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purpose of this computation was to determine the class of
surface profiles which causes most diffusive scattering.

At norma incidence, it is hard to get diffusive scattering
unless the well width is comparable to beam waist radius W, .

But at oblique angles, narrow and deep well gives rise to
multiple scattering as well as diffraction so that we can have
simple but somewhat reasonably efficient diffuser. In this paper,
we aways set W, to be less than or equal to the well width.
Otherwise the specular reflection will dominate compared to
other effects. Therefore to have maximal diffusiveness, the
waist radius of Gaussian beam and its wavelength should be
comparable to the well width and that well depth has to be
larger than awavelength.

The class of surface profiles is rather limited here. We may
use different well shapes. For those new class of profiles, we
will probably have much different structures of DRC s. But the
arguments would till be the same as stated in Section |11 It
will aso be worth to compute DRC using  p-polarized beams.
We hope to continue this work until we get some practical
value out of it.

ACKNOWLEDGMENTS

This work is supported by the Electronics and Telecommu-
nications Research Indtitute, Korea. We are grateful to depart-
ment manager D. H. Kim for his support on thisresearch.

REFERENCES

[1] E. R. Méndez, “ Enhanced Backscattering of Light from a Ran-
dom Grating,” Annalsof Phys., 203, 1990, pp. 255-307.
[2] K. A. ODonndl and E. R. Méndez, “ Experimenta Study of

Scattering from Characterized Random Surfaces” J. Opt. Sco. Am.

A, Vd.4,No. 7,1987, pp. 11941205

[3] P. Beckmann and A. Spizzichino, The Scattering of Electromag-
netic Waves from Rough Surfaces, Pergamon, New Y ork, 1993.

[4] A.A.Maradudic and E. R. M éndez, “ Enhanced Backscattering of

Light from Deterministic Quasi-periodic Surfaces” Opt. Lett., Vol.

17, No. 24, 1992, pp. 1752-1754.

[5] dJun Q. Lu and Zu-Han Gu, “ Enhanced Backscattering from One-
dimensiond Determinigtic Surfaces” J. Opt. Soc. Am. A, Vadl. 13,
No. 9, 1996, pp. 1877-1883.

[6] . T. Leeand W. L. Saich, “Towardsthe Cdculation of Crygdlin-
ity Effects on the Surface Optical Responsein Metas” Phys. Rev.
B, 43,1991, pp. 4629-4635.

[7] B. E. A. Sdeh and M. C. Teich, Fundamental sof Photonics, John
Wiley & Sons, Inc., New York, 1991.

48  Jong Tai Lee

Jong Tai Leereceived the B.S. degreein phys-
ics education from Seoul Nationd University,
Korea in 1984, the M.S. and Ph.D. degrees in
physics in 1989 and 1991, respectively, both
from Indiana University, USA. Since he joined
ETRI in 1992, he has been engaged in the 1e
search and development of ATM cdl control

and information security. His current research
interests are quantum cryptography and internet seaurity.

ETRI Journal, Volume 21, Number 3, September 1999



