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We have calculated differential reflection coefficient for
isolated well structure of micro-scale, etched on dielectric
surface. The differential reflection coefficient is computed
using Green's second integral theorem. The purpose of our
computation is to find a class of well profiles which give
maximal diffusive scattering. To have such a maximal ef-
fect, we have concluded that the waist radius of Gaussian
beam and its wavelength should be comparable to the well
width and that well depth has to be larger than a wave-
length. Exact calculation of differential reflection coeffi-
cients of dielectric surface with isolated structure on it may
be used for the examination of dielectric surfaces and also
in making simple but efficient di ffuser.
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I. INTRODUCTION

The enhanced backscattering from a large amplitude random
grating was calculated by Maradudin et al. based on Green's
second integral theorem [1]. Their formalism is so powerful to
naturally take account of surface shadowing and multiple
scattering. To resemble the experimental setup, they also used
the incident Gaussian beam with waist radius comparable to
the sample size, thereby eliminating periodic replication of the
sample surface as is the case in the scattering of plane wave.
The Maradudin's formalism draws a set of two integral
equations which can be solved numerically. Their numerical
solution confirmed the enhanced peak at back-scattering angle
[2], which has been experimentally observed. One early
formalism that has been used with some success is that of
Beckmann and Spizzichino [3], which uses so-called Kirchhoff
approximation. But the approximation fails completely if the
surface correlation scale a  is comparable with the wavelength
ë . Further, this theory does not take account of multiple
scattering or surface shadowing. The other several formalisms
have been made up and compared with the experimental
results, namely, the small perturbation method and extinction
theorem method. But these formalisms have their own
limitations. The enhanced backscattering from deterministic
surfaces instead of random grating has also been observed [4],
[5]. It is quite surprising to have enhanced back-scattering from
deterministic surfaces. The main conclusion out of their efforts
is that the enhanced backscattering is due to multiple scattering
from deep grooves. The multiply scattered optical paths with
their time reversed ones give us constructive interference at
backscattering angle. So it will be interesting to compute
differential reflection coefficient (DRC) from an isolated, large
amplitude groove on dielectric surface and to see whether we
can still have any sign of enhanced backscattering.
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In this paper, an isolated well is introduced on the dielectric
surface with varying its depth, width or wall slope. The
resulting DRC’s are obtained and analyzed to look for
correlation with well shape. The lateral size of well is
comparable to wavelength used so that we are in the diffractive
regime. The simple geometric optics can not be applied to this
system. Instead we used Maradudin’s formlism to compute
DRC by applying Gaussian beam on the sample surface. Our
results show that we do not have any sign of enhanced back-
scattering. But when the waist radius of incident beam is
comparable to well width, DRC obviously deviates from
specular reflection, becoming a good candidate for efficient
diffuser. This model calculation can be applied to examine real
sample surfaces also. We briefly describe theoretical back-
grounds in Section II. In section III, the numerical results are
shown and examined. Section IV concludes this paper.

  

II.THEORETICAL BACKGROUND

We consider the p-polarized electromagnetic field incident

from the vacuum side onto the dielectric surface defined by
)( 13 x î x =  with the plane of incidence of 31xx -plane. The

vacuum is at  xîx )( 13 >  and material )( 13 xîx < . The

material side has a dynamic dielectric function )(ùå . The

magnetic and electric fields have the form
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Translational symmetry in 2x -direction is implied and =ñ

),( 31 xx . Because time dependence is explicitly shown through

exponential term, hereafter any derivative t∂  in time will be
replaced with iù− . )(2 ñH  is the solution of the equations
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where i∂  is equivalent to ix/∂∂ . The boundary condition
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where +∂∂ n/  is normal derivative at the surface, pointing

from material to vacuum side. The   ñH )(2
> at +∞→3x

consists of an incoming and outgoing waves, while  ñH )(2
<  at

−∞→3x is exponentially decaying wave.

We now introduce two Green functions, ),( ññGo ′  and
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The ),( ññGo ′  and ),( ññGå ′  have solutions of Hankel

function of )()1( rHið o  and )()1( råHið o  respectively, in

which xxxxù/cr 22
11 )()()( 33 ′−+′−= . By applying Green’s

second integral theorem to vacuum side, we can have
inhomogeneous integral equation of
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The integral term of r.h.s. represents scattered field, scH ,2 .

The similar procedure is applied to material field  ñH )(2
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that we have
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we can transform (9) and (10) into
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This is a set of integral equations to be solved to compute DRC.

oH  and oL  are obtained by setting 1=å . We put the

observation point just above the surface, which was
represented by introducing positive infinitesimal, ä.

Now we have the total, time-averaged, scattered flux of
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In (20), incP  is total, time-averaged power of an incident

beam. The total DRC may be obtained by integrating (20) over
all scattering angles in the vacuum side. The sample
dismension was assumed to be 21 LL × .

To compute DRC, we have to solve for   xH )( 1 and

  xL )( 1  from (17) and (18). The coupled integral equations can

be solved numerically by transforming integral equations to
matrix forms [1], [6].
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where H , L  and  Hinc  are column vectors. When comput-

ing diagonal elements, singularity should be treated carefully [1].
The above coupled matrix equations have formal solutions of
in the following way.
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The 2-dimensional Gaussian wave ),(2 zxH ,inc  is obtained

from paraxial Helmholz equation [7] of
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illuminated with incidence angle iè , which is measured from

z  axis in counterclockwise direction, x  and z  will be

replaced by the relation of
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At   x 03 = plane, we compute incP . From 29 and 30, we

should get
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Fig. 1. The surface profiles of (A , 1, 5) are shown.
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in which partial derivative with respect to 3x  will become
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where   xèx i 1cos= and 1sin xèz i−= . If oz  goes to infinity,

we surely retrieve the result of plane wave, πθ 8cos21 /cLL i .

incP  will be obtained numerically.

III. RESULTS AND DISCUSSIONS

In this section, we compute DRC of a single 1-dimensional
well etched on flat surface. The well is represented by
differentiable scalar function. We have chosen a product of two
hyperbolic tangents as the well,

[ ] [ ] CxBCxB A  xî 1)(tanh1)(tanh)( 111 −−++= , (33)

where A , B  and C are all positive numbers. A  is for well
depth, B wall slope and C well width. By varying A , B
and C  in arbitrary way, we can have smooth and
differentiable wells of various shapes. So we will represent a
particular well profile using a triad of ( A , B , C ) hereafter. The
incident Gaussian beam illuminated on the groove is p-

polarized, whose wavelength is 0.62 ìm . The waist radius of

the beam is set to be 1.86 ìm , The corresponding Rayleigh

range is about 28 ë . The bulk material has dielectric constant
of 12.25 (typical value of Si), for which imaginary part is
neglected.

Fig. 2. For (A, 1, 5) case, Total DRC’s are shown. Fresnel result is
also shown for comparison.
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Fig. 3. For (A, 1, 5), incidence angle is fixed to 0 °.
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From many possible combinations of ( A , B , C ), we choose
a reference profile of A = 4ë , B = ë  and C = 5ë . We also
fix the sample width to be 70 ë  and divide the whole sample
width into 2000 steps. These values are based on the
parameters of the Gaussian beam as defined above. Because
we want the beam center to be always located at coordinate
origin and to be completely enclosed by well mouth, the waist
radius has to be less than or comparable to the well width. The
covering area by the incident field on sample surface increases
as the incident angle increases. So the sample width must be
large enough to accept all the incident fields. We found that
70 ë  was reasonable width to get convergent result in
computing DRC even up to 65°. Furthermore 2000 steps were
large enough to take account of the spatial variations of fields
and well profile. To check the computer program works fine,
we first applied it to the flat surface, then computed DRC’s
from 0° up to 65°. For the flat surface, we have exact
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Fig. 4. For (A, 1, 5) case, incidence angle is fixed to 65°.
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Fig. 5. For (A, 1, 5) case, incidence angle is fixed to 45°.
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expression for reflection coefficient,
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The actual computation shows that the total DRC at each

iè does differ from Fresnel result within less than 1 %.

Fist of all we compute DRC by varying A  only. Three
different values of A  are chosen. Surface profiles are shown in
Fig. 1. B  and C  are fixed to ë  and 5ë  respectively. The
total reflection coefficient into the vacuum side at various
reflection angles up to 65° are shown in Fig. 2. Fresnel
reflection coefficient of (34) is also shown in the same plot for
comparison. At small iè ’s, the reflection coefficient is close to

Fresnel result, but gradually deviating as iè increases. We now

look at DRC at normal incidence in Fig. 3. No particular

Fig. 6. The surface profiles of (4, B, 5) are shown.
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Fig. 7. Only B is changed. Fresnel result is also shown for
comparison.
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structures are seen except strong specular reflection. It seems
that the incident beam is not much affected by the well. But it is
understandable if we compare the beam waist radius with well
width. The beam waist radius is much smaller than the width of
well bottom. That's why DRC’s are more or less Fresnel-like.

Figure 2 shows two distinct features at large incidence angles.
One is that, around 45°, (4, 1, 5) and (7, 1, 5) have local
minima. The other one is that total DRC does not vanish even
at Brewster's angle, which is about 74°, but increases. The latter
one is due to the fact that well’s wall is illuminated at different
angle rather than Brewster’s angle. It becomes evident from
Fig. 4. The specular reflection is barely seen. Instead we see
enhanced peak in the backscattering direction. These peaks can
be understood with geometrical optics. Because the beam waist
radius is small enough to illuminate particular position on wall,
the incident energy is specularly reflected. That's why we
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Fig. 8. Only B is changed. The incidence angle is fixed at 0°.
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Fig. 9. Only B is changed. The incidence angle is fixed at 65 °.
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have prominent peaks in Fig. 4. Understanding the former one
is also based on the same reasoning. Qualitatively saying, as we
increase iè  from 0°, the actual incidence angle on wall

decreases from 90°. So before we get to iè = 74°, we should

be able to see a minimum. But because the incident beam has a
finite waist radius and wall's slope depends on position, we can
not say that the minimum will show up at iè = 16°. Only

actual computation tells us local minimum angle.
Figure 5 plots DRC’s when iè = 45°. We now have specular

peak at rè = 45° for (2, 1, 5), revealing the tendency of

convergence to the case of flat surface. Other profiles let
incident energy be scattered off into various angles. It should be
understood as a result of multiple scattering. The fields trapped
in the well is multiply reflected back and forth then finally
some portion of the field energy escapes into the vacuum. The
multiply reflected fields are coherently interferes with itself,

 

Fig. 10. The surface profiles of (4, 1, C) are shown.
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Fig. 11. Only C is changed. Fresnel result is also shown for
comparison.
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thereby producing highly complicated structure of DRC.
Now let’s examine (4, B , 5) cases. With A = 4 ë  and C =

5 ë  fixed, only wall slope varies. Figure 6 shows three different

surface profiles. We plot total DRC’s for them in Fig. 7. Except

(4, 1, 5), we do not see any interesting features here. At small
incidence angles total reflection coefficient is not much
different from Fresnel result. But because the well bottom is
not flat now, Fresnel peak is broadened as shown in Fig. 8. The

smoothness of DRC means that almost no multiple scattering
effects take place here. The structures of DRC’s in Fig. 9. are
much simpler compared to Fig. 4. As mentioned above,     
because waist radius is small enough to be specularly reflected

from a certain position of wall, we have specular peaks at dif-
ferent reflection angles even for the same incidence angle. Of
course, as we increase the wall slope, we should recover the
Fresnel result.
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Fig. 12. For (4, 1, C) case, DRC’s are shown when iè  = 0°.
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Fig. 13. For (4, 1, C) case, DRC’s are shown when iè= 0°.
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  Now consider well width dependence of DRC. We fix    
A = 4 ë  and A = ë  but vary C only. Figure 10 compares three
surface profiles and Fig. 11 total DRC’s. At small incidence
angles, we recognize that the dependence of DRC on well width
is much different from those on its depth or slope. With gradual
decrement of the well width, the total DRC at small angles
decreases too, then turns upward converging to Fresnel result.
Note that Fig. 11 has (4, 1, 0.02) case also. Before we
understand this behavior, we first look at DRC’s at normal
incidence. Figure 12 shows that the strength of DRC of (4, 1, 1)
is so much reduced, implying that the most of incident energy
is transmitted into the bulk. For p-polarized wave, if incident

angle is close to Brewster's angle, this reduction should be
possible. In fact, )( 1xî′  of (4, 1, 1) is the largest among those

of four profiles. This is the reason for the reduction. If we fur-
ther decrease the width comparable to wavelength, we enter

Fig. 14. For (4, 1, 1) profile, DRC’s are shown when iè  = 10°,

40° and 65°.
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Fig. 15. For (4, 1, 0.02) profile, DRC’s are shown when iè  = 10°,

40° and 65°.
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diffractive regime. Then we should expect diffusive scattering
as in Fig. 13. Even more decrement of the well width should
recover the Fresnel result. Figure 14 and 15 show DRC’s when

iè = 10°, 40° and 65° of (4, 1, 1) and (4, 1, 0.02) cases

respectively. Both profiles seem to scatter incident beam in
most diffusive way. These computed DRC’s include all the
effects of multiple scattering, surface shadowing and diffraction.
It looks like that more multiple scatterings are involved in (4, 1,
1) compared to (4, 1, 0.02) .

IV. CONCLUSION

We have computed DRC’s for several well profiles and
examined how DRC varies as we change well depth, slope or
width. DRC’s were computed based on the second Green’s
theorem which should be exact even in diffractive regime. The
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purpose of this computation was to determine the class of
surface profiles which causes most diffusive scattering.

At normal incidence, it is hard to get diffusive scattering
unless the well width is comparable to beam waist radius oW .

But at oblique angles, narrow and deep well gives rise to
multiple scattering as well as diffraction so that we can have
simple but somewhat reasonably efficient diffuser. In this paper,
we always set oW  to be less than or equal to the well width.
Otherwise the specular reflection will dominate compared to
other effects. Therefore to have maximal diffusiveness, the
waist radius of Gaussian beam and its wavelength should be
comparable to the well width and that well depth has to be
larger than a wavelength.

The class of surface profiles is rather limited here. We may
use different well shapes. For those new class of profiles, we
will probably have much different structures of DRC’s. But the
arguments would still be the same as stated in Section III. It
will also be worth to compute DRC using p-polarized beams.

We hope to continue this work until we get some practical
value out of it.
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