SUBREGULAR POINTS FOR SOME CASES OF LIE ALGEBRAS

Y.K. Kim, K.H. So, J.W. Jeong, D.Y. Park, and S.H. Choi

Dept. of Mathematics,

Chonbuk National University, Chonju, Chonbuk 561-756, Korea.

E-mail: yanggon@moak.chonbuk.ac.kr.

Dept. of Mathematics,

Jeonju University, Chonju, Chonbuk 560-759, Korea.

Abstract Dimensions of irreducible $so_5(F)$ —modules over an algebraically closed field F of characteristic p > 2 shall be obtained. It turns out that they should be coincident with p^m , where 2m is the dimension of coadjoint orbits of $\chi \in so_5(F)^* \setminus 0$ as Premet asserted. But there is no subregular point for $\mathfrak{g} = sp_4(F) = so_5(F)$ over F.

1. Introduction

In this paper, we let $\mathfrak{g}:=so_5(F)$ over an algebraically closed field F of characteristic p>2, i.e., $\mathfrak{g}=\mathcal{L}(SO_5(F))$ which is the Lie algebra of an algebraic group $G=SO_5(F)$; we are then mainly concerned with dimensions of all irreducible \mathfrak{g} -modules.

We use most notations and nomenclature appearing in [5], [6]. In 1954, Zassenhaus proved that any specialization of $\mathfrak{Z}=\mathfrak{Z}(\mathcal{U}(\mathfrak{g}))$ onto an F-algebra A determines a specialization of $\mathcal{U}(\mathfrak{g})$ onto a finitely generated A-ring B, which is unique up to isomorphisms over A. Moreover, according to him, except for a subvariety of \mathfrak{Z} characterized by the vanishing of the specialized discriminant ideal of $\mathcal{U}(\mathfrak{g})$ over \mathfrak{Z} , the classes of equivalent absolutely

Received March 31, 1999.

¹⁹⁹¹ AMS Subject Classification: 17B50, 17B20.

Key words and phrases: modular Lie algebra, modular representation theory.

^{*} Supported by the Basic Science Research Institute Program, Ministry of Education, 1998, Project No. BSRI-1998-015-D00009.

irreducible representations correspond to the specializations of the center 3 into F and the degree of those representations equals p^m with $[Q(\mathcal{U}(\mathfrak{g})):Q(\mathfrak{g})]=p^{2m}$. 3 becomes just a normal algebraic variety of the same dimension as that of \mathfrak{g} over F and $\mathcal{U}(\mathfrak{g})$ becomes a maximal order of a division algebra $Q(\mathcal{U}(\mathfrak{g}))$ of dimension p^{2m} over $Q(\mathfrak{Z})$ [10]. Such a variety is called a Zassenhaus variety.

Shafarevich and Rudakov showed in 1967 that there exists a correspondence between irreducible p-dimensional S-representations of $sl_2(F)$ and maximal points in $Spec(\mathfrak{Z})$ provided the point P of the manifold $Spec_m(\mathfrak{Z})$ is not equal to $(0,0,0,k^2),\ k(\neq 0)\in F$; the points $P=(0,0,0,k^2),\ k\neq 0$ correspond to two irreducible p-representations of degree k and p-k; (0,0,0,0) is just the irreducible representation V(p-1) [8]. Steinberg and Curtis classified p-representations for simple modular Lie algebras, but their dimension formulas are still under research by many Lie algebraists.

In this paper, the usual basis of $sl_2(F)$ is denoted by $\{e, f, h\}$ with [eh] = -2e, [fh] = 2f, [fe] = -h; $3(sl_2(F))$ is then generated by $x = f^p$, $y = e^p$, $z = h^p - h$, $t = (h+1)^2 + 4fe$ and $Spec_m(3)$ is defined by the algebraic equation $z^2 - \prod_{k=0}^{p-1} (t-k^2) + 4xy = 0$ defined in F[x, y, z, t] [8].

In §5, we shall define three kinds of points in the algebraic variety

 $Spec_m(3)$ from the standpoint of dimensions and characters of their associated irreducible modules [5], [6].

Final results appear in §6, 7 stating that $\mathfrak{Z}(\mathcal{U}(\mathfrak{g}))$ has no subregular point. It is well known that $\mathfrak{sl}_2(F)$ has no subregular point as mentioned above.

2. Least upper bounds of dimensions

Let E_{ij} denote an elementary matrix whose (i, j)-th entry is 1 with all others zero. The base of the root system Φ of $B_2 = C_2$ consists of a long root α_1 , a short root α_2 and $\Phi^+ = {\alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_1}$, where $2\alpha_1 + \alpha_2$ is a maximal root as a short root. A standard basis of \mathfrak{g} consists of : $h_{\alpha_2} := diag(1, 0, -1, 0)$, $h_{2\alpha_1+\alpha_2} := diag(0, 1, 0, -1)$, $x_{\alpha_1} = {}^tE_{12} - {}^tE_{43}$, $x_{\alpha_2} = E_{13}$, $x_{\alpha_1+\alpha_2} = E_{14} + E_{23}$, $x_{2\alpha_1+\alpha_2} = E_{24}$, $x_{-\alpha_1} = E_{12} - E_{43}$, $x_{-\alpha_2} = E_{14} + E_{23}$, $x_{2\alpha_1+\alpha_2} = E_{24}$, $x_{-\alpha_1} = E_{12} - E_{43}$, $x_{-\alpha_2} = E_{14} + E_{23}$, $x_{2\alpha_1+\alpha_2} = E_{24}$, $x_{-\alpha_1} = E_{12} - E_{43}$, $x_{-\alpha_2} = E_{14} + E_{23}$, $x_{2\alpha_1+\alpha_2} = E_{24}$, $x_{-\alpha_1} = E_{12} - E_{43}$, $x_{-\alpha_2} = E_{43}$

 ${}^{t}E_{13}, x_{-\alpha_{1}-\alpha_{2}} = {}^{t}E_{14} + {}^{t}E_{23}, x_{-2\alpha_{1}-\alpha_{2}} = {}^{t}E_{24}.$ Let $\mathcal{O}(\mathfrak{g})$ be the p-center of $\mathcal{U}(\mathfrak{g})$. Denote the basis of \mathfrak{g} by $\{u_i|1\leq i\leq 10\}$ in any fixed order. An obvious filtration $\mathcal{U}^{(k)} := F \cdot 1 \oplus \mathfrak{g} \oplus \cdots \oplus \mathfrak{g}^k$ exists for $\mathcal{U}(\mathfrak{g})$. Noting that $(ad\ u_i)^p = ad\ u_i^{[p]}$ for some $u_i^{[p]} \in \mathfrak{g}$, $z_i := u_i^p - u_i^{[p]}$ commutes with $\mathfrak g$ elementwise, and hence $z_i \in$ $\mathfrak{Z}(\mathcal{U}(\mathfrak{g}))$. So $u_i^{[p]} = u_i^p - z_i \in \mathcal{U}^{(p-1)}$. Following §7 Chapter V [3], we see that all elements of the form $z_{i_1}^{\sigma_1} z_{i_2}^{\sigma_2} \cdots z_{i_{10}}^{\sigma_{10}} u_{i_1}^{\lambda_1} \cdots u_{i_{10}}^{\lambda_{10}}$ with $i_1 < i_2 < \cdots < i_{10}$, $\sigma_j \ge 0$ and $0 \le \lambda_j < p$ also constitute a basis for $\mathcal{U}(\mathfrak{g})$ and that \mathfrak{g} becomes a restricted Lie algebra with respect to the p-mapping. $\mathcal{O}(\mathfrak{g})$ becomes a polynomial ring in 10-variables and $\mathcal{U}(\mathfrak{g})$ is just a free $\mathcal{O}(\mathfrak{g})$ -module of rank p^{10} . Furthermore, $Q(\mathcal{U}(\mathfrak{g})) := \{\mathfrak{Z}(\mathcal{U}(\mathfrak{g})) \setminus 0\}^{-1}\mathcal{U}(\mathfrak{g}) \text{ equals } \{\mathcal{O}(\mathfrak{g}) \setminus 0\}^{-1}\mathcal{U}(\mathfrak{g}) \text{ since }$ $\mathcal{U}(\mathfrak{g})$ is a finitely generated $\mathcal{O}(\mathfrak{g})$ -module (see §6.5 [9]). Hence $p^{2m}:=dim_{Q(\mathfrak{Z}(\mathcal{U}(\mathfrak{g})))}Q(\mathcal{U}(\mathfrak{g}))\leq dim_{Q(\mathcal{O}(\mathfrak{g}))}Q(\mathcal{U}(\mathfrak{g}))=p^{10}.$ So $m \leq 5$ is obtained implying that p^5 is an upper bound for the dimensions of all irreducible g-modules. The next proposition shows that p^4 is in fact the upper bound of these and so there exists an irreducible g-module of dimension p^4 since F is algebraically closed.

Proposition (2.1). $[Q(\mathcal{U}(\mathfrak{g})):Q(\mathfrak{Z})]=p^8$.

Proof. Consider the $Q(\mathfrak{Z})$ -vector space generated by $\{x_{\alpha}^{i_1} | 0 \leq i_1 \leq p-1\}$. Then $Q(\mathfrak{Z}) \cdot 1 + Q(\mathfrak{Z}) x_{\alpha} + \cdots + Q(\mathfrak{Z}) x_{\alpha}^{p-1}$ for any $\alpha \in \Phi$ becomes a free $Q(\mathfrak{g})$ -module in $Q(\mathcal{U}(\mathfrak{g}))$. For, if there is a linearly dependent relation with the least number of terms, then by multiplying h_{α} on both sides of this equation and by using $h_{\alpha}x_{\alpha} = x_{\alpha}(2+h_{\alpha})$, we can make a shorter relation than the given one. Next by the elementary theory for tensor products of free modules and by the fact that $\mathcal{O}(\mathfrak{g})$ is the Noether normalization of \mathfrak{Z} , we see easily that $\{\oplus_{i=0}^{p-1}Q(\mathfrak{Z})x_{\alpha}^{i}\}\otimes_{Q(\mathfrak{Z})}\{\oplus_{j=0}^{p-1}Q(\mathfrak{Z})x_{-\alpha}^{j}\}$ becomes a free $Q(\mathfrak{Z})$ -module in $Q(\mathcal{U}(\mathfrak{g}))$ with basis $\{x_{\alpha}^{i_1}\otimes x_{-\alpha}^{i_2}|0\leq i_1,\ i_2\leq p-1\}$. By induction, we see easily that $B=\{x_{\alpha_1}^{i_1}\otimes x_{-\alpha_1}^{i_2}\otimes x_{\alpha_2}^{i_2}\otimes x_{-\alpha_2}^{i_2}\otimes x_{-\alpha_1-\alpha_2}^{i_2}\otimes x_{-\alpha_1-$

COROLLARY (2.2). $[Q(3):Q(\mathcal{O}(g))] = p^2$.

Proof. Straightforward since $p^{10} = [Q(\mathcal{U}(\mathfrak{g})) : Q(\mathcal{O}(\mathfrak{g}))] = [Q(\mathcal{U}(\mathfrak{g})) : Q(\mathfrak{J})][Q(\mathfrak{J}) : Q(\mathcal{O}(\mathfrak{g}))] = p^8[Q(\mathfrak{J}) : Q(\mathcal{O}(\mathfrak{g}))]$ by the proposition.

REMARK (2.3). Evidently the above base B spans a free 3-submodule M of $\mathcal{U}(\mathfrak{g})$ with cardinality p^8 , while $(3 \setminus 0)^{-1}M = Q(3) \otimes_3 M = Q(3) \otimes_3 \mathcal{U}(\mathfrak{g}) = Q(\mathcal{U}(\mathfrak{g}))$ does not always mean $M = \mathcal{U}(\mathfrak{g})$.

3. Center 3 of $\mathcal{U}(\mathfrak{g})$

The natural representation $\varphi: \mathfrak{g} \to gl_4(F)$ has a Casimir element $s:=(h_{\alpha_2}+1)^2+(h_{2\alpha_1+\alpha_2}+1)^2+2h_{\alpha_2}+4(x_{-\alpha_2}x_{\alpha_2}+x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2})+2(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1})$ belonging to $\mathfrak{Z}:=\mathfrak{Z}(\mathcal{U}(\mathfrak{g}))$. With respect to the nondegenerate symmetric bilinear form $\beta(x,y):=tr(\varphi(x)\varphi(y))$, we have dual basis as follows:

 $\begin{array}{cccc} \text{Basis element(dual element)}: & x_{\alpha_2} & h_{\alpha_2} & x_{2\alpha_1+\alpha_2} \\ & \updownarrow & \updownarrow & \updownarrow & \updownarrow \\ \text{Dual element(basis element)}: & x_{-\alpha_2} & 2^{-1}h_{\alpha_2} & x_{-2\alpha_1-\alpha_2} \end{array}$

Now we shall show that s becomes an integral element over $\mathcal{O}(\mathfrak{g})$ of degree p^2 .

PROPOSITION (3.1). The following hold:

- (i) $dim_{Q(3)}Q(3)(h_{\alpha_2})(h_{2\alpha_1+\alpha_2})=p^2$.
- (ii) $Q(\mathfrak{Z})(h_{\alpha_2})(h_{2\alpha_1+\alpha_2})$ becomes a Galois field over $Q(\mathfrak{Z})$.

Proof. (i) Since $Q(\mathfrak{Z})$ is the center of the simple Artinian algebra $Q(\mathcal{U}(\mathfrak{g}))$, it becomes a central simple $Q(\mathfrak{Z})$ -algebra. Since $Q(\mathfrak{Z})(h_{\alpha_2})(h_{2\alpha_1+\alpha_2})$ is a finite dimensional simple $Q(\mathfrak{Z})$ -subalgebra of $Q(\mathcal{U}(\mathfrak{g}))$ containing $Q(\mathfrak{Z})$, then by Skolem-Noether theorem,

every automorphism of $Q(\mathfrak{J})(h_{\alpha_2})(h_{2\alpha_1+\alpha_2})$ extends to an inner automorphism of $Q(\mathcal{U}(\mathfrak{g}))$. By direct computation, we have

$$\begin{split} h_{\alpha_{2}}(x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j}) &= \\ x_{\alpha_{2}}x_{-\alpha_{2}}^{i}(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j})(h_{\alpha_{2}}-2(i-1)), \\ h_{2\alpha_{1}+\alpha_{2}}(x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j}) &= \\ x_{\alpha_{2}}x_{-\alpha_{2}}^{i}(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j})(h_{2\alpha_{1}+\alpha_{2}}-2(j-1)) \end{split}$$

for $1 \leq i, j \leq p$. So conjugation by $x_{\alpha_2} x_{-\alpha_2}^i x_{2\alpha_1 + \alpha_2} x_{-2\alpha_1 - \alpha_2}^j$ in $Q(\mathcal{U}(\mathfrak{g}))$ gives p^2 -different values to $Q(\mathfrak{Z})$ $(h_{\alpha_2}, h_{2\alpha_1 + \alpha_2}) = Q(\mathfrak{Z})$ (h_{α_2}) $(h_{2\alpha_1 + \alpha_2})$. Hence we have $[Q(\mathfrak{Z})(h_{\alpha_2}, h_{2\alpha_1 + \alpha_2}) : Q(\mathfrak{Z})] = p^2$. (ii) is an immediate consequence of the proof of (i).

Proposition (3.2).
$$Q(\mathcal{O}(\mathfrak{g}))(s) = Q(\mathfrak{Z})$$
 in $Q(\mathcal{U}(\mathfrak{g}))$.

Proof. Since $\mathcal{O}(\mathfrak{g})$ is a Noether normalization of $\mathfrak{Z}(\mathcal{U}(\mathfrak{g}))$ and since $s \in \mathfrak{Z}(\mathcal{U}(\mathfrak{g})) \setminus \mathcal{O}(\mathfrak{g})$, our assertion is straightforward. Specifically, recall that $(h_{\alpha_2}^p - h_{\alpha_2})^2 - \prod_{k=0}^{p-1} \{(h_{\alpha_2} + 1)^2 + 4x_{-\alpha_2}x_{\alpha_2} - k^2\} = -4x_{-\alpha_2}^p x_{\alpha_2}^p$ holds by virtue of [8]. Since $(h_{\alpha_2} + 1)^2 + 4x_{-\alpha_2}x_{\alpha_2} = s - \{(h_{2\alpha_1 + \alpha_2} + 1)^2 + 4x_{-2\alpha_1 - \alpha_2}x_{2\alpha_1 + \alpha_2} + 2h_{\alpha_2} + 2x_{-\alpha_1 - \alpha_2}x_{\alpha_1 + \alpha_2} + 2x_{\alpha_1}x_{-\alpha_1}\}$, we have

$$(h_{\alpha_{2}}^{p} - h_{\alpha_{2}})^{2} - \prod_{k=0}^{p-1} [s - \{2h_{\alpha_{2}} + (h_{2\alpha_{1}+\alpha_{2}} + 1)^{2} + 4x_{-2\alpha_{1}-\alpha_{2}}x_{2\alpha_{1}+\alpha_{2}} + 2x_{-\alpha_{1}-\alpha_{2}}x_{\alpha_{1}+\alpha_{2}} + 2x_{\alpha_{1}}x_{-\alpha_{1}}\} - k^{2}] + 4x_{-\alpha_{2}}^{p} x_{\alpha_{2}}^{p} = 0,$$

which is clearly an algebraic equation of s over the field $Q(\mathcal{O}(\mathfrak{g}))$ $(2h_{\alpha_2} + (h_{2\alpha_1+\alpha_2}+1)^2 + 4x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2} + 2x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2} + 2x_{\alpha_1}x_{-\alpha_1})$. So if there exists an algebraic equation of s over $Q(\mathcal{O}(\mathfrak{g}))$, it should be of degree p, i.e., of degree p^2 by Corollary (2.2).

Noting that $\mathcal{O}(\mathfrak{g})$ is a unique factorization domain and that 3 becomes integral over $\mathcal{O}(\mathfrak{g})$, we have $Irr(s, Q(\mathcal{O}(\mathfrak{g}))) = Irr(s, \mathcal{O}(\mathfrak{g}))$.

PROPOSITION (3.3). $\mathcal{O}(\mathfrak{g})[s] = \mathfrak{Z}(\mathcal{U}(\mathfrak{g})) = \mathfrak{Z}$ holds.

Proof. We see easily that $Q(\mathfrak{Z}) = Q(\mathcal{O}(\mathfrak{g})[s])$ by proposition (3.2). Since \mathfrak{Z} becomes a finitely generated $\mathcal{O}(\mathfrak{g})$ -module and $\mathcal{O}(\mathfrak{g})[s]$ is completely closed in \mathfrak{Z} , i.e., any nontrivial quotients of $\mathcal{O}(\mathfrak{g})[s]$ is not contained in $\mathfrak{Z}\setminus\mathcal{O}(\mathfrak{g})[s]$, our assertion holds. Explicitly, suppose that some $\mu\in\mathfrak{Z}\setminus\mathcal{O}(\mathfrak{g})[s]$ satisfies an equation $\mu\cdot\alpha$ $(x_{\alpha_2}^p,x_{-\alpha_2}^p,h_{\alpha_2}^p-h_{\alpha_2},\cdots,x_{-\alpha_1}^p,x_{\alpha_1}^p,s)=\beta(x_{\alpha_2}^p,x_{-\alpha_2}^p,h_{\alpha_2}^p-h_{\alpha_2},\cdots,x_{-\alpha_1}^p,x_{\alpha_1}^p,s)$ with β/α reduced, where α,β are distinct polynomials in $F[x_{\alpha_2}^p,x_{-\alpha_2}^p,h_{\alpha_2}^p-h_{\alpha_2},\cdots,x_{-\alpha_1}^p,x_{\alpha_1}^p,s]$ and μ,s must satisfy a nontrivial integral equation over $\mathcal{O}(\mathfrak{g})$. Note that $x_{\alpha_2}^p,x_{-\alpha_2}^p,h_{\alpha_2}^p-h_{\alpha_2},\cdots,x_{-\alpha_1}^p,x_{\alpha_1}^p$ are all algebraically independent and so the above relation must be an identical equation with respect to these variables. Now comparing degrees of both sides yields a contradiction by P-B-W theorem.

4. Irreducible polynomial of s over $\mathcal{O}(\mathfrak{g})$

Here we want to find out the irreducible polynomial of s over $Q(\mathcal{O}(\mathfrak{g}))$, which is just the irreducible integral equation of s over $\mathcal{O}(\mathfrak{g})$ by the unique factorization domain property.

PROPOSITION (4.1). We have the following:

(i) $Irr(s, \mathcal{O}(\mathfrak{g}))$ is obtained by expanding out

$$\begin{split} N_{Q(3)}^{Q(3)(h_{\alpha_2},h_{2\alpha_1+\alpha_2})} &\{ s - (h_{\alpha_2} + 1)^2 - (h_{2\alpha_1+\alpha_2} + 1)^2 - 2h_{\alpha_2} \} \\ &= N_{Q(3)}^{Q(3)(h_{\alpha_2},h_{2\alpha_1+\alpha_2})} &\{ 4(x_{-\alpha_2}x_{\alpha_2} + (x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2}) \\ &+ 2(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2} + x_{\alpha_1}x_{-\alpha_1}) \} \end{split}$$

and its degree is p^2 .

(ii) s is separable over $\mathcal{O}(\mathfrak{g})$ and so over $Q(\mathcal{O}(\mathfrak{g}))$.

Proof. (i) Left hand side $= s^{p^2} + a_1 s^{p^2-1} + \cdots + a_{p^2-1} s + a_{p^2}$ for some $a_i \in Q(\mathfrak{J})(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$, so we show that $a_i \in Q(\mathcal{O}(\mathfrak{J}))$. For, choose any distinct p^2 -elements $s_i \in \mathcal{O}(\mathfrak{g})$, and take norms as:

$$\begin{split} &N_{Q(3)}^{Q(3)(h_{\alpha_{2}},h_{2\alpha_{1}+\alpha_{2}})} \{ s_{i} - (h_{\alpha_{2}}+1)^{2} - (h_{2\alpha_{1}+\alpha_{2}}+1)^{2} - 2h_{\alpha_{2}} \} \\ &= N_{Q(3)}^{Q(3)(h_{\alpha_{2}},h_{2\alpha_{1}+\alpha_{2}})} \{ s_{i} - s + 4(x_{-\alpha_{2}}x_{\alpha_{2}} + (x_{-2\alpha_{1}-\alpha_{2}}x_{2\alpha_{1}+\alpha_{2}}) \\ &+ 2(x_{-\alpha_{1}-\alpha_{2}}x_{\alpha_{1}+\alpha_{2}} + x_{\alpha_{1}}x_{-\alpha_{1}}) \} \in Q(3). \end{split}$$

Since $Q(\mathfrak{Z})$ is the center of the simple Artinian algebra $Q(\mathcal{U}(\mathfrak{g}))$, $Q(\mathcal{U}(\mathfrak{g}))$ becomes a $Q(\mathfrak{Z})$ -algebra. Since $Q(\mathfrak{Z})(h_{\alpha_2},h_{2\alpha_1+\alpha_2})$ is a finite dimensional simple $Q(\mathfrak{Z})$ -subalgebra of $Q(\mathcal{U}(\mathfrak{g}))$ containing $Q(\mathfrak{Z})$, then by Skolem-Noether theorem, every automorphism of $Q(\mathfrak{Z})(h_{\alpha_2},h_{2\alpha_1+\alpha_2})$ extends to an inner automorphism of $Q(\mathcal{U}(\mathfrak{g}))$. By direct calculation, we have

$$\begin{aligned} h_{\alpha_{2}}(x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j}) \\ &= (x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j})(h_{\alpha_{2}} - 2(i-1)), \\ h_{2\alpha_{1}+\alpha_{2}}(x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j}) \\ &= (x_{\alpha_{2}}x_{-\alpha_{2}}^{i})(x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{j})(h_{2\alpha_{1}+\alpha_{2}} - 2(j-1)). \end{aligned}$$

Hence conjugation by $x_{\alpha_2}x^i_{-\alpha_2}x_{2\alpha_1+\alpha_2}x^j_{-2\alpha_1-\alpha_2}$ in $Q(\mathcal{U}(\mathfrak{g}))$ gives p^2 -distinct values to $Q(\mathfrak{Z})$ $(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$. Next, since $[Q(\mathfrak{Z})]$ $(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$: $Q(\mathfrak{Z})$ $[Q(\mathfrak{Z})]$ = $[Q(\mathcal{O}(\mathfrak{g}))]$ $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ = $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ and since isomorphisms of $Q(\mathfrak{Z})$ $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ over $[Q(\mathfrak{Z})]$ are the same as those of $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ over $[Q(\mathfrak{Z})]$ which are precisely conjugations by $[Q(\mathfrak{Z})]$ $[Q(\mathfrak{Z})]$ over $[Q(\mathfrak{Z})]$, we obtain

$$\begin{split} &N_{Q(3)}^{Q(3)(h_{\alpha_2},h_{2\alpha_1+\alpha_2})} \big\{ s_i - (h_{\alpha_2}+1)^2 - (h_{2\alpha_1+\alpha_2}+1)^2 - 2h_{\alpha_2} \big\} = \\ &N_{Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_2},h_{2\alpha_1+\alpha_2})}^{Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_2},h_{2\alpha_1+\alpha_2})} \big\{ s_i - (h_{\alpha_2}+1)^2 - (h_{2\alpha_1+\alpha_2}+1)^2 - 2h_{\alpha_2} \big\} \\ &\in Q(\mathcal{O}(\mathfrak{g})), \end{split}$$

so we see that $N_{Q(\mathfrak{Z})}^{Q(\mathfrak{Z})(h_{\alpha_2},h_{2\alpha_1+\alpha_2})}$ $\{s_i-s+4(x_{-\alpha_2}x_{\alpha_2}+x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2})+2(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1})\}$ actually belongs to $Q(\mathcal{O}(\mathfrak{g}))$. On the other hand,

$$N_{Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_{2}},h_{2\alpha_{1}+\alpha_{2}})}^{Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_{2}},h_{2\alpha_{1}+\alpha_{2}})} \{s_{i} - (h_{\alpha_{2}}+1)^{2} - (h_{2\alpha_{1}+\alpha_{2}}+1)^{2} - 2h_{\alpha_{2}}\}$$

$$= \prod_{j,k} (x_{\alpha_{2}}x_{-\alpha_{2}}^{j}x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{k})^{-1} \{s_{i} - (h_{\alpha_{2}}+1)^{2}$$

$$- (h_{2\alpha_{1}+\alpha_{2}}+1)^{2} - 2h_{\alpha_{2}}\} (x_{\alpha_{2}}x_{-\alpha_{2}}^{j}x_{2\alpha_{1}+\alpha_{2}}x_{-2\alpha_{1}-\alpha_{2}}^{k})$$

$$= \prod_{j,k} \{s_{i} - (h_{\alpha_{2}}-2(j-1)+1)^{2} - (h_{2\alpha_{1}+\alpha_{2}}-2(k-1)+1)^{2}$$

$$- 2(h_{\alpha_{2}}-2(j-1))\}$$

$$=: s_{i}^{p^{2}} + b_{1}s_{i}^{p^{2}-1} + \dots + b_{p^{2}-1}s_{i} + b_{p^{2}} = k_{i}$$

for some $b_l(l=1,2,\cdots,p^2)\in Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_2},h_{2\alpha_1+\alpha_2})$ and $k_i\in Q(\mathcal{O}(\mathfrak{g}))$. Hence there arises a linear system in indeterminates b_l of p^2 - equations with the determinant of coefficients

$$\begin{vmatrix} 1 & s_1 & \cdots & s_1^{p^2-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & s_{p^2} & \cdots & s_{p^2}^{p^2-1} \end{vmatrix} = \prod_{i < j} (s_j - s_i) \neq 0,$$

which is nothing but the well known Vandermonde determinant. Hence by the Cramer's method, we may obtain solutions $b_l \in Q(\mathcal{O}(\mathfrak{g}))$. But since $b_i = a_i$ for $i = 1, 2, \dots, p^2$, we have $a_i \in Q(\mathcal{O}(\mathfrak{g}))$.

On the other hand, since s is integral over $\mathcal{O}(\mathfrak{g})$, right hand side of (i) = $N_{Q(\mathfrak{Z})}^{Q(\mathfrak{Z})(h_{\alpha_2},h_{2\alpha_1+\alpha_2})}\{4(x_{-\alpha_2}x_{\alpha_2}+(x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2})+2(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1})\}$ also belongs to $Q(\mathcal{O}(\mathfrak{g}))$. This is so because of the following fact.

LEMMA (4.2). Let $s \in \mathfrak{Z}(\mathcal{U}(\mathfrak{g})) =: \mathfrak{Z}$ be as before and let s satisfy an algebraic equation $f(X) := X^{p^2} + a_1 X^{p^2-1} + \cdots + a_{p^2-1}X + a_{p^2} \in Q(\mathfrak{Z})[X]$ with $a_j \in Q(\mathcal{O}(\mathfrak{g}))$ for $1 \leq j \leq p^2 - 1$ the same as in the above argument for the left hand side of (i); we have then $a_{p^2} \in Q(\mathcal{O}(\mathfrak{g}))$.

Proof. Since $\mathcal{O}(\mathfrak{g})$ becomes the Noether normalization of \mathfrak{F} , the integral equation of s is itself $Irr(s,Q(\mathcal{O}(\mathfrak{g})))$. Let $Irr(s,Q(\mathcal{O}(\mathfrak{g})))$ =: $X^{p^k} + b_1 X^{p^k-1} + \cdots + b_{p^k-1} X + b_{p^k}$. Put $\sigma_{m,n} := \text{conjugation}$ by $x_{\alpha_2} x_{-\alpha_2}^m x_{2\alpha_1+\alpha_2} x_{-2\alpha_1-\alpha_2}^n$ for $1 \leq m, n \leq p$. Then $s \mapsto \sigma_{m,n}(2h_{\alpha_2} + (h_{\alpha_2+1})^2 + (h_{2\alpha_1+\alpha_2} + 1)^2) + \sigma_{m',n'}(4(x_{-\alpha_2}x_{\alpha_2} + x_{-2\alpha_1-\alpha_2}x_{2\alpha_1+\alpha_2}) + 2(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2} + x_{\alpha_1}x_{-\alpha_1}))$ for $1 \leq m, m', m', n' \leq p$ yields an isomorphism of $Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})(s)$ over $Q(\mathcal{O}(\mathfrak{g}))$. Hence $Irr(s, Q(\mathcal{O}(\mathfrak{g}))) \mid f(X)$, and so $f(X) = Irr(s, Q(\mathcal{O}(\mathfrak{g}))) \mid g(X)$ for some unique $g(X) := X^{p^2-p^k} + c_1 X^{p^2-p^k-1} + \cdots + c_{p^2-p^k-1} X + c_{p^2-p^k}$ with $c_j \in Q(\mathfrak{F})$. Since c'_j s are uniquely determined only by the coefficients of $Irr(s, Q(\mathcal{O}(\mathfrak{g})))$ and those of terms X^{p^2} , X^{p^2-1} , \cdots , X^{p^k+1} , X^{p^k} in f(X) and since these coefficients belong to $Q(\mathcal{O}(\mathfrak{g}))$, we have our assertion.

Returning to our main proof, we have to show that the algebraic equation of s obtained above is just the $Irr(s, Q(\mathcal{O}(\mathfrak{g})))$, which is

also the integral equation of s over $\mathcal{O}(\mathfrak{g})$. Such a fact is due to the following lemma.

LEMMA (4.3). Let E be a finite extension of F with characteristic p and let α , β , γ be in $E \setminus F$ with $[F(\alpha)(\gamma):F] = p^n$. Let $f(X) = Irr(\alpha, F) = (X - \sigma_1(\alpha)) \cdots (X - \sigma_{p^m}(\alpha))$ for some distinct $\sigma_i(\alpha) \in F(\alpha)$, $i = 1, 2, \cdots, p^m \leq p^n$ with $\sigma_i \in \{\text{isomorphisms of } E \text{ over } F\}$ and let $\beta = \alpha + \gamma$ be an element such that β satisfies $\sigma_i(\beta) = \beta$ for all σ_i . Suppose that $\prod_{i=1}^{p^m} \sigma_i(\gamma) \in F$ and $g(X) := \prod_{i=1}^{p^m} (X - \sigma_i(\alpha)) - \prod_{i=1}^{p^m} \sigma_i(\gamma) \in F[X]$. We have then $g(X) = Irr(\beta, F)$ and is separable over F.

Proof. We see easily that $\gamma \notin F(\alpha)$ and so at least p^{m+1} distinct isomorphisms of $F(\alpha)(\gamma)(\ni \beta)$ over F exist.

Now consider a field lattice diagram:

$$F(lpha)(\gamma)
ightarroweta$$
 at least p -dimensional $F(lpha)
otin \gamma$ p^m -dimensional

Then for any nontrivial isomorphism τ of $F(\alpha)(\gamma)$ over $F(\alpha)$, $\tau(\beta) = \tau(\sigma_i(\alpha) + \sigma_i(\gamma)) = \tau(\sigma_i(\alpha)) + \tau(\sigma_i(\gamma)) = \sigma_i(\alpha) + \bar{\tau}(\gamma)$ holds for some isomorphism $\bar{\tau}$ of $F(\alpha)(\gamma)$ over $F(\alpha)$ and for all i with $1 \leq i \leq p^m$. Hence there are at least p^m -distinct conjugates of β over F since $F(\alpha)$ is a Galois extension of F. But since $\deg g(X) = p^m$ and since $g(\beta) = 0$ obviously, $Irr(\beta, F) = g(X)$ should hold.

Finally to complete our proof of the proposition (4.1), put

$$\begin{split} F &= Q(\mathcal{O}(\mathfrak{g})), \\ \beta &= s, \\ \alpha &= (h_{\alpha_2} + 1)^2 + (h_{2\alpha_1 + \alpha_2} + 1)^2 + 2h_{\alpha_2}, \\ \gamma &= 4(x_{-\alpha_2}x_{\alpha_2} + x_{-2\alpha_1 - \alpha_2}x_{2\alpha_1 + \alpha_2}) \\ &\quad + 2(x_{-\alpha_1 - \alpha_2}x_{\alpha_1 + \alpha_2} + x_{\alpha_1}x_{-\alpha_1}) \end{split}$$

and use the proof of proposition (3.1), where isomorphisms of $F(\alpha)$ over F are well specified. Evidently, (ii) is obtained from Lemma (4.3).

COROLLARY (4.4).

$$Q(\mathcal{O}(\mathfrak{g}))(h_{\alpha_2}, h_{2\alpha_1 + \alpha_2}) = Q(\mathcal{O}(\mathfrak{g}))((h_{\alpha_2} + 1)^2 + (h_{2\alpha_1 + \alpha_2} + 1)^2 + 2h_{\alpha_2}).$$

Proof. Straightforward from isomorphisms of $Q(\mathcal{O}(\mathfrak{g}))$ $(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$ over $Q(\mathcal{O}(\mathfrak{g}))$.

REMARK. From the proof of proposition (4.1), we must see that $Q(3)(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$ is a Galois extension of Q(3) and that the division algebra $Q(\mathcal{U}(\mathfrak{g}))$ is a crossed product of Q(3) $(h_{\alpha_2}, h_{2\alpha_1+\alpha_2})$ $(x_{\alpha_2}x_{-\alpha_2} + x_{2\alpha_1+\alpha_2} x_{-2\alpha_1-\alpha_2} + x_{\alpha_1+\alpha_2} x_{-\alpha_1-\alpha_2} + x_{-\alpha_1}x_{\alpha_1})$.

5. Points in the Zassenhaus Variety

Let V be any finite dimensional irreducible \mathfrak{g} -module, i.e. $\forall v (\neq 0) \in V$, $\mathcal{U}(\mathfrak{g})v = V$. By virtue of [1], its irreducible representation $\varphi: \mathcal{U}(\mathfrak{g}) \to End_F(\mathcal{U}(\mathfrak{g})v)$ is uniquely determined up to isomorphisms by $3/(Ker\,\varphi\cap\mathfrak{Z})$ and by 1-dimensional representation of a Cartan subalgebra. Note that for $\Delta = C_{End_F(V)}(\varphi(\mathcal{U}(\mathfrak{g})))$, $\varphi(\mathcal{U}(\mathfrak{g}))$ is dense in $End_{\Delta}(V)$. Since $\Delta = F$ by Schur's lemma and since $[Q(\mathcal{U}(\mathfrak{g})):Q(\mathfrak{Z})]=p^8$ by proposition (2.1), we have $End_{\Delta}(V)\cong End_F(V)\cong F_n$ for $n\leq p^4$ as F-algebras, where $F_n=M_n(F)$, which boils down to $\varphi(\mathcal{U}(\mathfrak{g}))\cong F_n$ after all. Furthermore, the irreducible representations of the same dimension are equivalent so long as their kernels meet \mathfrak{Z} in the same part and $dim_F(\mathcal{U}(\mathfrak{g})v)=dim V=p^4$ [10].

Let ρ be a (regular) left maximal ideal of $\mathcal{U}(\mathfrak{g})$ and put $(\rho : \mathcal{U}(\mathfrak{g})) := \{x \in \mathcal{U}(\mathfrak{g}) | x \cdot \mathcal{U}(\mathfrak{g}) \subset \rho\}$. Then the annihilator $A(\mathcal{U}(\mathfrak{g})/\rho) = (\rho : \mathcal{U}(\mathfrak{g}))$ becomes the largest two sided ideal contained in ρ , and so a maximal ideal \mathfrak{m} of $\mathcal{U}(\mathfrak{g})$. Hence using the above notation, we have $\varphi(\mathcal{U}(\mathfrak{g})) \cong \mathcal{U}(\mathfrak{g})/\mathfrak{m}$.

Furthermore,

$$\begin{split} & \rho \supset A(\mathcal{U}(\mathfrak{g})/\rho) \supset \mathcal{U}(\mathfrak{g})(x_{\alpha_{2}}^{p} - \xi_{1}) \\ & + \mathcal{U}(\mathfrak{g})(x_{-\alpha_{2}}^{p} - \xi_{2}) + \mathcal{U}(\mathfrak{g})(h_{\alpha_{2}}^{p} - h_{\alpha_{2}} - \xi_{3}) + \mathcal{U}(\mathfrak{g})(x_{2\alpha_{1} + \alpha_{2}}^{p} - \xi_{4}) \\ & + \mathcal{U}(\mathfrak{g})(x_{-2\alpha_{1} - \alpha_{2}}^{p} - \xi_{5}) + \mathcal{U}(\mathfrak{g})(h_{2\alpha_{1} + \alpha_{2}}^{p} - h_{2\alpha_{1} + \alpha_{2}} - \xi_{6}) \\ & + \mathcal{U}(\mathfrak{g})(x_{\alpha_{1} + \alpha_{2}}^{p} - \xi_{7}) + \mathcal{U}(\mathfrak{g})(x_{-\alpha_{1} - \alpha_{2}}^{p} - \xi_{8}) \\ & + \mathcal{U}(\mathfrak{g})(x_{-\alpha_{1}}^{p} - \xi_{9}) + \mathcal{U}(\mathfrak{g})(x_{\alpha_{1}}^{p} - \xi_{10}) + \mathcal{U}(\mathfrak{g})(s - \xi_{11}) \end{split}$$

holds, where $\xi_i (i=1,2,\cdots,10)$ is an independent value in F for the corresponding indeterminate and $\xi_1,\cdots,\xi_{10},\ \xi_{11}$ must satisfy $Irr(s,\mathcal{O}(\mathfrak{g}))$; $A(\mathcal{U}(\mathfrak{g})/\rho)\cap \mathfrak{Z}=\mathfrak{Z}(x_{\alpha_2}^p-\xi_1)+\mathfrak{Z}(x_{-\alpha_2}^p-\xi_2)+\mathfrak{Z}(h_{\alpha_2}^p-h_{\alpha_2}-h_{\alpha_2}-\xi_3)+\mathfrak{Z}(x_{2\alpha_1+\alpha_2}^p-\xi_4)+\mathfrak{Z}(x_{-2\alpha_1-\alpha_2}^p-\xi_5)+\mathfrak{Z}(h_{2\alpha_1+\alpha_2}^p-h_{2\alpha_1+\alpha_2}-\xi_6)+\mathfrak{Z}(x_{\alpha_1+\alpha_2}^p-\xi_7)+\mathfrak{Z}(x_{-\alpha_1-\alpha_2}^p-\xi_8)+\mathfrak{Z}(x_{-\alpha_1}^p-\xi_9)+\mathfrak{Z}(x_{\alpha_1}^p-\xi_{10})+\mathfrak{Z}(s-\xi_{11})$ becomes a maximal ideal of \mathfrak{Z} by going-up theorem in [9].

So, if $\mathfrak{m} \cap \mathfrak{Z} = \overline{\mathfrak{m}}$ corresponds to $(\xi_1, \dots, \xi_{10}, \xi_{11})$ in the Zassenhaus variety, $\dim_F \mathcal{U}(\mathfrak{g})/\rho$ may be easily computed through independence of some elements of $\mathcal{U}(\mathfrak{g})/\rho$. It is noteworthy that a character $\chi: \mathfrak{Z} \to F$ is given if and only if $(\xi_1, \dots, \xi_{10}, \xi_{11})$ is given.

By the way, [5] and [6] say that any maximal ideal \mathfrak{m} of $\mathcal{U}(\mathfrak{g})$ must contain some $\{\sum_{i=1}^{10} \mathcal{U}(\mathfrak{g})(x_i^p - x_i^{[p]} - \xi_i)\} + \mathcal{U}(\mathfrak{g})(s - \xi_{11}),$ where x_i ranges over $\{x_{\alpha_2}, x_{-\alpha_2}, h_{\alpha_2}, x_{2\alpha_1+\alpha_2}, x_{-2\alpha_1-\alpha_2}, h_{2\alpha_1+\alpha_2}, x_{\alpha_1+\alpha_2}, x_{-\alpha_1-\alpha_2}, x_{-\alpha_1}, x_{\alpha_1}\}$ and $\dim_F \mathcal{U}(\mathfrak{g})/\mathfrak{m} \leq p^{2\times 4}$ considering proposition (2.1).

PROPOSITION (5.1). Suppose that all $\xi_i = 0$ for $1 \leq i \leq 10$; then for all left maximal ideals \mathfrak{m}_j containing $\sum_{i=1}^{10} \mathcal{U}(\mathfrak{g})(x_i^p - x_i^{[p]}) + \mathcal{U}(\mathfrak{g})(s - \xi_{11})$, $\mathcal{U}(\mathfrak{g})/\mathfrak{m}_j$ become irreducible p-representation modules.

Proof. It is well known that the associated representations φ_j with

 $\mathcal{U}(\mathfrak{g})/\mathfrak{m}_j$ satisfy $\varphi_j(x^{[p]}) - \varphi_j(x)^p = S_j(x)^p \cdot Id$ for some $S_j \in \mathfrak{g}^*$ and for all $x \in \mathfrak{g}$ [9]. But then $x_i^p \equiv 0 \Rightarrow \varphi_j(0) - \varphi_j(x_i)^p \equiv \varphi_j(x_i)^p \equiv 0 \pmod{\mathfrak{m}}$, and $x_i^p - x_i \equiv 0 \Rightarrow \varphi_j(x_i) - \varphi_j(x_i)^p \equiv 0 \pmod{\mathfrak{m}}$ for $1 \leq i \leq 10$, where \mathfrak{m} is the maximal ideal contained in \mathfrak{m}_j for a fixed j. So we have $S_j(x) = 0 \ \forall x \in \mathfrak{g}$.

In our situation, we encounter 3 possible cases of $(\xi_1, \dots, \xi_{10}, \xi_{11}) \in F^{11}$ as follows:

- (I) all $\xi_i = 0$ for $1 \leq i \leq 10$: There may exist finitely many left maximal ideals \mathfrak{m}_j containing $\{\sum_{i=1}^{10} \mathcal{U}(\mathfrak{g})(x_i^p x_i^{[p]} \xi_i)\} + \mathcal{U}(\mathfrak{g})(s \xi_{11})$ so that $\mathcal{U}(\mathfrak{g})/\mathfrak{m}_j$ become p-representation modules for \mathfrak{g} with dimension $\leq p^4$ in view of proposition (5.1) and [10]. Here we suggest that we call such a point $(\xi_1, \dots, \xi_{10}, \xi_{11}) \in F^{11}$ p-point; in particular, we mean, by a regular p-point, that it is a p-point and its associated irreducible module has dimension p^4 .
 - (II) not all $\xi_i = 0$ for $1 \le i \le 10$:
- (i) For any left maximal ideals \mathfrak{m}_j containing $\{\sum_{i=1}^{10} \mathcal{U}(\mathfrak{g})(x_i^p x_i^{[p]} \xi_i)\} + \mathcal{U}(\mathfrak{g})(s \xi_{11})$, $\mathcal{U}(\mathfrak{g})/\mathfrak{m}_j$ may all become p^4 -dimensional S-representation modules for \mathfrak{g} and are isomorphic. Since F is algebraically closed of characteristic p > 2, such a module must necessarily exist [9]. We shall call such a point $(\xi_1, \dots, \xi_{10}, \xi_{11})$ in F^{11} a regular point.
- (ii) For all left maximal ideals \mathfrak{m}_j containing $\{\sum_{i=1}^{10} \mathcal{U}(\mathfrak{g})(x_i^p x_i^{[p]} \xi_i)\} + \mathcal{U}(\mathfrak{g})(s \xi_{11})$, $\mathcal{U}(\mathfrak{g})/\mathfrak{m}_j$ may have F-dimension $< p^4$ and are possibly nonisomorphic and are possibly of different dimensions. So, we call in this case such a point $(\xi_1, \dots, \xi_{10}, \xi_{11}) \in F^{11}$ a subregular point.

Note that we have an obvious surjective mapping $\psi : Spec_{\mathfrak{m}}(\mathfrak{Z}) \to \{Irreducible L - module classes\}$, where $Spec_{\mathfrak{m}}(\mathfrak{Z})$ denotes the maximal spectrum of \mathfrak{Z} .

PROPOSITION (5.2). There exists no subregular point for $sl_2(F)$. Proof. See §1. Introduction of this paper.

6. Main result

We want in this section to show that there is no subregular point for $\mathfrak{g}=sp_4(F)$ like $sl_2(F)$. For this, we should like to find out dimensions for irreducible \mathfrak{g} -modules corresponding to points $(\xi_1,\dots,\xi_{10},\xi_{11})\in F^{11}\leftrightarrow\{\sum_{i=1}^{10}\mathfrak{Z}(x_i^p-x_i^{[p]}-\xi_i)\}+\mathfrak{Z}(s-\xi_{11})$ which are maximal ideals of \mathfrak{Z} .

Let φ be a finite dimensional irreducible representation of \mathfrak{g} as before. Let $\{x_{\alpha}, y_{\alpha}, h_{\alpha}\}$ be a standard basis corresponding to a

root α which spans a copy of $sl_2(F)$, i.e., $[x_{\alpha}y_{\alpha}] = h_{\alpha}$, $[h_{\alpha}, x_{\alpha}] = 2x_{\alpha}$, $[h_{\alpha}y_{\alpha}] = -2y_{\alpha}$. For $\mathfrak{g} = sp_4(F)$, we have 4 kinds of such subalgebras corresponding to 4 positive roots α_2 , $2\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_2$, x_{α_1} . Specifically, they are respectively

$$\begin{split} S_{\alpha_2} &= F x_{\alpha_2} + F x_{-\alpha_2} + F h_{\alpha_2}, \\ S_{2\alpha_1 + \alpha_2} &= F x_{2\alpha_1 + \alpha_2} + F x_{-2\alpha_1 - \alpha_2} + F h_{2\alpha_1 + \alpha_2}, \\ S_{\alpha_1 + \alpha_2} &= F x_{\alpha_1 + \alpha_2} + F x_{-\alpha_1 - \alpha_2} + F (h_{\alpha_2} + h_{2\alpha_1 + \alpha_2}), \\ S_{\alpha_1} &= F x_{-\alpha_1} + F x_{\alpha_1} + F (h_{\alpha_2} - h_{2\alpha_1 + \alpha_2}). \end{split}$$

Now put

$$\begin{split} &\omega_{\alpha_2} = (h_{\alpha_2} + 1)^2 + 4x_{-\alpha_2}x_{\alpha_2}, \\ &\omega_{2\alpha_1 + \alpha_2} = (h_{2\alpha_1 + \alpha_2} + 1)^2 + 4x_{-2\alpha_1 - \alpha_2}x_{2\alpha_1 + \alpha_2}, \\ &\omega_{\alpha_1 + \alpha_2} = (h_{\alpha_2} + h_{2\alpha_1 + \alpha_2} + 1)^2 + 4x_{-\alpha_1 - \alpha_2}x_{\alpha_1 + \alpha_2}, \\ &\omega_{\alpha_1} = (h_{\alpha_2} - h_{2\alpha_1 + \alpha_2} + 1)^2 + 4x_{\alpha_1}x_{-\alpha_1} \end{split}$$

and put

$$\begin{split} g_{\alpha_2} &= x_{\alpha_2}^{p-1} - x_{-\alpha_2}, \\ g_{2\alpha_1 + \alpha_2} &= x_{2\alpha_1 + \alpha_2}^{p-1} - x_{-2\alpha_1 - \alpha_2}, \\ g_{\alpha_1 + \alpha_2} &= x_{\alpha_1 + \alpha_2}^{p-1} - x_{-\alpha_1 - \alpha_2}, \\ g_{\alpha_1} &= x_{\alpha_1}^{p-1} - x_{-\alpha_1}. \end{split}$$

Let $\mathcal{U}(\mathfrak{g})/\rho$ for a left maximal ideal ρ of $\mathcal{U}(\mathfrak{g})$ be an irreducible \mathfrak{g} -module; then for each positive root $\beta_i \in \{\alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_1\}$, we have an irreducible S_{β_i} -module V_{β_i} in $\mathcal{U}(\mathfrak{g})/\rho$. By choosing an appropriate basis of $\mathcal{U}(\mathfrak{g})/\rho$, we see by virtue of [8] that $\omega_{\beta_i} \in \mathfrak{Z}(\mathcal{U}(S_{\beta_i}))$ acts on V_{β_i} as a constant matrix respectively, where β_i represents any of positive roots.

We note here that the equations

$$\begin{split} h_{\alpha_2}g_{\alpha_2} &= g_{\alpha_2}h_{\alpha_2} - 2g_{\alpha_2} = g_{\alpha_2}(h_{\alpha_2} - 2), \\ h_{2\alpha_1 + \alpha_2}g_{2\alpha_1 + \alpha_2} &= g_{2\alpha_1 + \alpha_2}h_{2\alpha_1 + \alpha_2} - 2g_{2\alpha_1 + \alpha_2} \\ &= g_{2\alpha_1 + \alpha_2}(h_{2\alpha_1 + \alpha_2} - 2), \\ (h_{\alpha_2} + h_{2\alpha_1 + \alpha_2})g_{\alpha_1 + \alpha_2} &= g_{\alpha_1 + \alpha_2}(h_{\alpha_2} + h_{2\alpha_1 + \alpha_2}) - 2g_{\alpha_1 + \alpha_2}, \\ (h_{\alpha_2} - h_{2\alpha_1 + \alpha_2})g_{\alpha_1} &= g_{\alpha_1}(h_{\alpha_2} - h_{2\alpha_1 + \alpha_2}) - 2g_{\alpha_1} \end{split}$$

are obtained without difficulty and that g_{α_2} is invertible in $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$ if $\xi_1 = \xi_2 = 0$ but $\xi_3 \neq 0$; similarly $g_{2\alpha_1 + \alpha_2}$ is also invertible in $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$ if $\xi_4 = \xi_5 = 0$ but $\xi_6 \neq 0$.

PROPOSITION (6.1). Suppose that $\xi_1 \neq 0$ or $\xi_2 \neq 0$ or $\xi_3 \neq 0$; $\sum_{i=0}^{p-1} F(h_{\alpha_2}^i + \mathfrak{m})$ becomes then a free F-submodule of $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$. Suppose similarly that $\xi_4 \neq 0$ or $\xi_5 \neq 0$ or $\xi_6 \neq 0$; $\sum_{i=0}^{p-1} F(h_{2\alpha_1 + \alpha_2}^i + \mathfrak{m})$ becomes then a free F-submodule of $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$.

Proof. We recall that $\bar{m} := \mathfrak{Z} \cap m$ in §5 and $(\mathfrak{Z} + m)/m \cong \mathfrak{Z}/\bar{m} \cong \mathfrak{Z}$ $F \subset \mathcal{U}(\mathfrak{g})/\mathfrak{m}$. If there exists a dependence relation of least degree with one term $a_i h_j^i \in \mathfrak{m}$ with $a_i (\neq 0) \in \mathfrak{Z}/\tilde{\mathfrak{m}}, \ j = \alpha_2, \ 2\alpha_1 +$ α_2 and $0 \le i \le p-1$, we observe that $\varphi(a_i) \ne 0$ becomes a contant in F and so we may assume that $h_i \in \mathfrak{m}$; in other words, $\varphi(a_i h_i^i) = \varphi(a_i) \varphi(h_i^i) \equiv 0 \pmod{\mathfrak{m}}$, where φ is the corresponding representation of the irreducible module $\mathcal{U}(\mathfrak{g})/\rho$, so that $\varphi(h_i^i) \equiv$ $0 \pmod{m}$ since $\varphi(a_i)$ is a nonzero constant by Schur's lemma. Evidently $i \geq 1$. But then $x_j h_i^i = (h_j - 2)^i x_j \in \mathfrak{m}$, $g_j h_j^i =$ $(h_j+2)^ig_j\in \mathfrak{m},\ x_{-j}h_j^i=(h_j+2)^ix_{-j}\in \mathfrak{m}\ \text{for}\ j=\alpha_2,\ 2\alpha_1+\alpha_2.$ By our hypothesis and [8], $\varphi(x_{\alpha_2}^p) \neq 0$ or $\varphi(x_{-\alpha_2}^p) \neq 0$ or $g_{\alpha_2}^p \neq 0$, i.e., there exists some invertible element among these in $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$ if $\xi_1 \neq 0$ or $\xi_2 \neq 0$ or $\xi_3 \neq 0$. Similar assertion is obtained for the other case. Note that we have chosen a composition series of S_j -module $\mathcal{U}(\mathfrak{g})/\rho$ if $\xi_1 = \xi_2 = 0$ for $j = \alpha_2$ and if $\xi_4 = \xi_5 = 0$ for $j = 2\alpha_1 + \alpha_2$ respectively. So applying some invertible element on the relations modulo m, we meet an equation with a lower degree with respect to h_i than the first one, a contradiction.

If there exists a dependence relation of least degree with more than one term, apply some invertible element as before on both sides and get a dependence relation of lower degree than the given one. So arises another contradiction.

PROPOSITION (6.2). Suppose that $\xi_1 \neq 0$; we have then a free F-module with rank p^8 in $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$, i.e., $\dim \mathcal{U}(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. We claim that we have a basis:

$$\{(a_1h_{\alpha_2} + b_1(c_1 + h_{2\alpha_1 + \alpha_2})) + x_{\alpha_2}\}^{i_1} \otimes$$

$$\{(a_2h_{\alpha_2} + b_2(c_2 + h_{2\alpha_1 + \alpha_2})) + h_{2\alpha_1 + \alpha_2}x_{\alpha_2}\}^{i_2} \otimes$$

$$\{(a_3h_{\alpha_2} + b_3(c_3 + h_{2\alpha_1 + \alpha_2})) + x_{2\alpha_1 + \alpha_2}\}^{i_3} \otimes$$

$$\{(a_4h_{\alpha_2} + b_4(c_4 + h_{2\alpha_1 + \alpha_2})) + h_{2\alpha_1 + \alpha_2}x_{2\alpha_1 + \alpha_2}\}^{i_4} \otimes$$

$$\{(a_5h_{\alpha_2} + b_5(c_5 + h_{2\alpha_1 + \alpha_2})) + x_{-2\alpha_1 - \alpha_2}\}^{i_5} \otimes$$

$$\{(a_6h_{\alpha_2} + b_6(c_6 + h_{2\alpha_1 + \alpha_2})) + x_{\alpha_1 + \alpha_2}\}^{i_6} \otimes$$

$$\{(a_7h_{\alpha_2} + b_7(c_7 + h_{2\alpha_1 + \alpha_2})) + x_{-\alpha_1}\}^{i_7} \otimes$$

$$\{(a_8h_{\alpha_2} + b_8(c_8 + h_{2\alpha_1 + \alpha_2})) + (h_{\alpha_2} + x_{-\alpha_1 - \alpha_2}x_{\alpha_1 + \alpha_2} + x_{\alpha_1}x_{-\alpha_1})\}^{i_8}$$

with $0 \le i_i \le p-1$, where (a_i, b_i) are chosen so that $(a_i h_{\alpha_2} + b_i (c_i +$ $(h_{2\alpha_1+\alpha_2}))x_{\alpha_2} \not\equiv x_{\alpha_2}(a_ih_{\alpha_2}+b_i(c_i+h_{2\alpha_1+\alpha_2})) \pmod{\mathfrak{m}}, \ a_ih_{\alpha_2}+b_i(a_ih_{\alpha_2}+b_i(a_ih_{\alpha_2}))$ $b_i(c_i+h_{2\alpha_1+\alpha_2}) \not\equiv c(a_ih_{\alpha_2}+b_i(c_i+h_{2\alpha_1+\alpha_2}))$ for any $c \in F$ (which is possible considering $\mathbb{P}^1(F)$) and c_j is chosen in F so that c_j + $h_{2\alpha_1+\alpha_2}$ is invertible modulo m. Furthermore we choose (a_i,b_i,c_i) so that any three distinct (a_i, b_i, c_i) 's are linearly independent. We first show that $h_{\alpha_2} + x_{-\alpha_1-\alpha_2} x_{\alpha_1+\alpha_2} + x_{\alpha_1} x_{-\alpha_1} \notin \mathfrak{m}$. Suppose not; we have then $x_{-\alpha_1}(h_{\alpha_2}+x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1})-(h_{\alpha_2}+x_{\alpha_1}x_{-\alpha_1})$ $(x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1})x_{-\alpha_1}\in \mathfrak{m}, \text{ so } -x_{-\alpha_1}-2x_{-2\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}$ $+2x_{-\alpha_1-\alpha_2}x_{\alpha_2}+(h_{\alpha_2}-h_{2\alpha_1+\alpha_2})$ $x_{-\alpha_1}\equiv 0\pmod{\mathfrak{m}}$. Hence $x_{\alpha_2} \left(-x_{-\alpha_1} - 2x_{-2\alpha_1 - \alpha_2} x_{\alpha_1 + \alpha_2} + 2x_{-\alpha_1 - \alpha_2} x_{\alpha_2} + (h_{\alpha_2} - h_{2\alpha_1 + \alpha_2}) \right)$ $(x_{-\alpha_1}) \ x_{\alpha_2}^{-1} \equiv 2x_{\alpha_2} \ x_{-\alpha_1-\alpha_2} \ -2x_{-\alpha_1} \equiv 2(x_{-\alpha_1} \ -x_{-\alpha_1-\alpha_2} \ x_{\alpha_2})$ $-2x_{-\alpha_1} \equiv x_{-\alpha_1-\alpha_2} \ x_{\alpha_2} \equiv x_{-\alpha_1-\alpha_2} \equiv 0 \pmod{\mathfrak{m}}$, a contradiction since non-P-point always yields an irreducible g-module of dimension > p. Note that $h_{\alpha_2} + x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2} + x_{\alpha_1}x_{-\alpha_1}$ commutes with x_{α_2} .

Similarly we have $x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{\alpha_1}x_{-\alpha_1}\notin \mathfrak{m}$ as a byproduct.

Next, it is not difficult to show that $x_{-\alpha_1}$, x_{α_2} , $h_{2\alpha_1+\alpha_2}$ x_{α_2} , $x_{2\alpha_1+\alpha_2}$, $h_{2\alpha_1+\alpha_2}$, $x_{2\alpha_1+\alpha_2}$, $x_{-2\alpha_1-\alpha_2}$, $x_{\alpha_1+\alpha_2} \notin \mathfrak{m}$ and these commute with x_{α_2} . Here we observe that the above elements of the basis candidate are F-linearly independent by P-B-W theorem.

Now we have to show that they are linearly independent modulo m.

Suppose that we have a dependence equation which is of least degree with respect to h_{α_2} and the number of whose highest degree terms is also least. If there is an exponent ≥ 2 in any place of the dependence equation, then conjugation by x_{α_2} yields a nontrivial dependence equation of lower degree than the given one, a contradiction. So we assume that we have a dependence equation whose terms contain only one exponent. Suppose further that the highest degree terms are of degree ≥ 2 ; it should then contain terms of the form, say $\{(a_1h_{\alpha_2}+b_1(c_1+h_{2\alpha_1+\alpha_2}))+X_1\}\{(a_2h_{\alpha_2}+b_2(c_2+h_{\alpha_2}))\}$ X_2 { $(a_3h_{\alpha_2} + b_3(c_3 + h_{2\alpha_1 + \alpha_2})) + X_3$ } × some factors + { $(a_3h_{\alpha_2} + h_{\alpha_2})$ + $(a_3h_{\alpha_2} + h_{\alpha_2})$ $b_3(c_3+h_{2\alpha_1+\alpha_2}))+X_3$ { $(a_4h_{\alpha_2}+b_4(c_4+h_{2\alpha_1+\alpha_2}))+X_4$ }× some factors $+\{(a_1h_{\alpha_2}+b_1(c_1+h_{2\alpha_1+\alpha_2}))+X_1\}\{(a_4h_{\alpha_2}+b_4(c_4+b_{\alpha_2}))\}$ $(h_{2\alpha_1+\alpha_2})$) + X_4 } × some factors, i.e., some factor, say $(a_3h_{\alpha_2})$ + $b_3(c_3 + h_{2\alpha_1 + \alpha_2})) + X_3$ arises as aformer factor as well as a latter factor of some terms; otherwise conjugation by x_{α_2} leads to a contradiction, where $X_i \in \{x_{\alpha_2}, h_{2\alpha_1+\alpha_2}, x_{\alpha_2}, x_{2\alpha_1+\alpha_2}, h_{2\alpha_1+\alpha_2}\}$ $x_{2\alpha_1+\alpha_2}, x_{-2\alpha_1-\alpha_2}, x_{\alpha_1+\alpha_2}, x_{-\alpha_1}, h_{\alpha_2} + x_{-\alpha_1-\alpha_2}, x_{\alpha_1+\alpha_2} + x_{\alpha_1}$ $x_{-\alpha_1}$. But since $a_i h_{\alpha_2} + b_i (c_i + h_{2\alpha_1 + \alpha_2}) \not\equiv c(a_j h_{\alpha_2} + b_j (c_j + a_j))$ $h_{2\alpha_1+\alpha_2}$) for any $c \in F$ and $i \neq j$, the supposed linearly dependent equation reduces to a nontrivial linearly dependent one of lower degree than the first one as in proposition (6.1) if it is conjugated by x_{α_2} , a contradiction. So it remains to show that

$$\begin{split} W_1 &= d_1 x_{\alpha_2} + d_2 h_{2\alpha_1 + \alpha_2} x_{\alpha_2} + d_3 x_{2\alpha_1 + \alpha_2} + d_4 h_{2\alpha_1 + \alpha_2} x_{2\alpha_1 + \alpha_2} + \\ d_5 x_{-2\alpha_1 - \alpha_2} &+ d_6 x_{\alpha_1 + \alpha_2} + d_7 x_{-\alpha_1} + \\ d_8 (h_{\alpha_2} + x_{-\alpha_1 - \alpha_2} x_{\alpha_1 + \alpha_2} + x_{\alpha_1} x_{-\alpha_1}) \\ &\equiv 0 \pmod{\mathfrak{m}} \end{split}$$

with $d_i \in F \Rightarrow d_i = 0 \ \forall i$. We proceed in several steps:

(i) $d_1 = d_2 = 0$: Otherwise $W_2 = (h_{\alpha_2}W_1 - W_1h_{\alpha_2}) - \{h_{\alpha_2}(h_{\alpha_2}W_1 - W_1h_{\alpha_2}) - (h_{\alpha_2}W_1 - W_1h_{\alpha_2})h_{\alpha_2}\} \equiv d_1x_{\alpha_2} + d_2h_{2\alpha_1 + \alpha_2}x_{\alpha_2} \equiv 0 \pmod{\mathfrak{m}}; d_1 \neq 0, \ d_2 \neq 0 \text{ yields } x_{\alpha_2}x_{2\alpha_1 + \alpha_2} \equiv 0 \text{ from } x_{2\alpha_1 + \alpha_2}W_2 - W_2x_{2\alpha_1 + \alpha_2},$ a contradiction. So $d_2 = 0$, and hence $d_1 = 0$. (ii) $d_3=d_4=d_5=d_6=d_7=0$: Otherwise $W_3:=h_{2\alpha_1+\alpha_2}W_1-W_1h_{2\alpha_1+\alpha_2}$ yields $2d_3x_{2\alpha_1+\alpha_2}+2d_4h_{2\alpha_1+\alpha_2}x_{2\alpha_1+\alpha_2}-2d_5x_{-2\alpha_1-\alpha_2}+d_6x_{\alpha_1+\alpha_2}+d_7x_{-\alpha_1}\equiv 0$, so $h_{2\alpha_1+\alpha_2}W_3-W_3h_{2\alpha_1+\alpha_2}\equiv 4d_3x_{2\alpha_1+\alpha_2}+4d_4h_{2\alpha_1+\alpha_2}x_{2\alpha_1+\alpha_2}+4d_5h_{-2\alpha_1-\alpha_2}+d_6x_{\alpha_1+\alpha_2}+d_7x_{-\alpha_1}\equiv 0$. Subtracting the last two equations, we have $W_4:=d_3x_{2\alpha_1+\alpha_2}+d_4h_{2\alpha_1+\alpha_2}x_{2\alpha_1+\alpha_2}+3d_5x_{-2\alpha_1-\alpha_2}\equiv 0$. Suppose that $d_4\neq 0$; $x_{2\alpha_1+\alpha_2}W_4-W_4x_{2\alpha_1+\alpha_2}$ then yields $-2d_4x_{2\alpha_1+\alpha_2}^2+3d_5h_{2\alpha_1+\alpha_2}\equiv 0$. If $char\ F=p\neq 3$, then $x_{2\alpha_1+\alpha_2}(-2d_4x_{2\alpha_1+\alpha_2}^2+3d_5h_{2\alpha_1+\alpha_2})-(-2d_4x_{2\alpha_1+\alpha_2}^2+3d_5h_{2\alpha_1+\alpha_2})$ $x_{2\alpha_1+\alpha_2}\equiv 0$, so $d_5\equiv 0$ and so $d_4=0$ and $d_3=0$. If $char\ F=p=3$, we have $d_4x_{2\alpha_1+\alpha_2}^2\equiv 0$. If $d_4\neq 0$, then $x_{2\alpha_1+\alpha_2}^2\equiv 0$ yields

$$\begin{split} x_{-\alpha_1} x_{2\alpha_1 + \alpha_2}^2 &= (x_{\alpha_1 + \alpha_2} + x_{2\alpha_1 + \alpha_2} x_{-\alpha_1}) x_{2\alpha_1 + \alpha_2} \\ &= x_{\alpha_1 + \alpha_2} x_{2\alpha_1 + \alpha_2} + x_{2\alpha_1 + \alpha_2} (x_{\alpha_1 + \alpha_2} + x_{2\alpha_1 + \alpha_2} x_{-\alpha_1}) \\ &\equiv x_{\alpha_1 + \alpha_2} x_{2\alpha_1 + \alpha_2} \equiv 0 \, (\text{mod } \mathfrak{m}) \equiv x_{\alpha_1 + \alpha_2}^3 \equiv 0 \end{split}$$

since $x_{-\alpha_1}x_{2\alpha_1+\alpha_2}^2 \equiv x_{2\alpha_1+\alpha_2}x_{\alpha_1+\alpha_2} \equiv 0$.

Now $x_{-\alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}^3-x_{\alpha_1+\alpha_2}^3x_{-\alpha_1-\alpha_2}\equiv (h_{\alpha_2}+h_{2\alpha_1+\alpha_2}-2)x_{\alpha_1+\alpha_2}^2\equiv 0$ by easy computation, which yields $x_{\alpha_1+\alpha_2}^2\equiv 0$ by conjugation by x_{α_2} . Hence $(h_{\alpha_2}+h_{2\alpha_1+\alpha_2}-1)x_{\alpha_1+\alpha_2}\equiv 0$ is obtained, so $x_{\alpha_1+\alpha_2}\equiv 0$, a contradiction. So $d_4=0=d_3$; applying $h_{2\alpha_1+\alpha_2}$ to W_3 , we have $d_5=d_7=d_6=0$.

(iii) From the foregoing remark preceding (i), we finally have $d_8 = 0$.

Along the way we used the formula : $\forall \alpha \in \Phi, \ x_{\alpha}^{k} \in \mathfrak{m}(k \geq 1) \Rightarrow \{h_{\alpha} - (k-1)\}x_{\alpha}^{k-1} \in \mathfrak{m}.$

PROPOSITION (6.3). Suppose that $\xi_1 = \xi_2 = 0$, but $\xi_3 \neq 0$; we have then a free F-module with rank p^8 in $U(\mathfrak{g})/\mathfrak{m}$, i.e., $\dim U(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. We claim that we have a basis:

$$\begin{aligned} &\{a_1'h_{\alpha_2}+b_1'(c_1'+h_{2\alpha_1+\alpha_2})+g_{\alpha_2}\}^{i_1}\otimes\\ &\{a_2'h_{\alpha_2}+b_2'(c_2'+h_{2\alpha_1+\alpha_2})+h_{2\alpha_1+\alpha_2}g_{\alpha_2}\}^{i_2}\otimes\\ &\{a_3'h_{\alpha_2}+b_3'(c_3'+h_{2\alpha_1+\alpha_2})+x_{2\alpha_1+\alpha_2}\}^{i_3}\otimes\\ &\{a_4'h_{\alpha_2}+b_4'(c_4'+h_{2\alpha_1+\alpha_2})+\omega_{\alpha_2}\}^{i_4}\otimes\\ &\{a_5'h_{\alpha_2}+b_5'(c_5'+h_{2\alpha_1+\alpha_2})+x_{alpha_1+\alpha_2}x_{-\alpha_1-\alpha_2}+x_{\alpha_1}x_{-\alpha_1}\}^{i_5}\otimes\\ &\{a_6'h_{\alpha_2}+b_6'(c_6'+h_{2\alpha_1+\alpha_2})+x_{-alpha_1-\alpha_2}x_{\alpha_1+\alpha_2}+x_{-\alpha_1}x_{\alpha_1}\}^{i_6}\otimes\\ &\{a_7'h_{\alpha_2}+b_7'(c_7'+h_{2\alpha_1+\alpha_2})+x_{-2alpha_1-\alpha_2}\}^{i_7}\otimes\\ &\{a_8'h_{\alpha_2}+b_8'(c_8'+h_{2\alpha_1+\alpha_2})+h_{2\alpha_1+\alpha_2}x_{-2\alpha_1-\alpha_2}\}^{i_8} \end{aligned}$$

with $0 \leq i_j \leq p-1$, where c_j' is chosen in F so that $c_j' + h_{2\alpha_1 + \alpha_2}$ is invertible modulo \mathfrak{m} and (a_i', b_i') are chosen so that $(a_i'h_{\alpha_2} + b_i'(c_i' + h_{2\alpha_1 + \alpha_2}))g_{\alpha_2} \not\equiv g_{\alpha_2}(a_i'h_{\alpha_2} + b_i'(c_i' + h_{2\alpha_1 + \alpha_2}))$ (mod \mathfrak{m}), and $a_i'h_{\alpha_2} + b_i'(c_i' + h_{2\alpha_1 + \alpha_2}) \not\equiv c'(a_j'h_{\alpha_2} + b_j'(c_j' + h_{2\alpha_1 + \alpha_2}))$ for any $c' \in F$ (which is possible considering $\mathbb{P}^1(F)$). Furthermore we choose (a_i', b_i', c_i') as in the proof of proposition (6.2). It is easy to show that g_{α_2} commutes with $h_{2\alpha_1 + \alpha_2}g_{\alpha_2}$, $x_{2\alpha_1 + \alpha_2}$, ω_{α_2} , $x_{\alpha_1 + \alpha_2}$ $x_{-\alpha_1 - \alpha_2} + x_{\alpha_1}$, $x_{-\alpha_1}$, $x_{-\alpha_1 - \alpha_2}$, $x_{\alpha_1 + \alpha_2} + x_{-\alpha_1}x_{\alpha_1}$, $x_{-2\alpha_1 - \alpha_2}$, and $h_{2\alpha_1 + \alpha_2}x_{-2\alpha_1 - \alpha_2}$ respectively. Here we should observe that the above elements of the basis candidate are F-linearly independent by P-B-W theorem.

Now we have to show that they are linearly independent modulo m. Suppose that we have a dependence equation which is of least degree with respect to h_{α_2} and the number of whose highest degree terms is also least. If there is an exponent ≥ 2 in any place of the dependence equation, then conjugation by g_{α_2} yields a nontrivial dependence equation of lower degree than the given one, a contradiction. So we assume that we have a dependence equation whose terms contain only one exponent. By virtue of [8], $\omega_{\alpha_2} \not\equiv 0 \pmod{m}$ and h_{α_2} commutes with it. So proceeding in the same spirit as in the proof of the preceding proposition (6.2), we should have a trivial dependence equation from scratch. Hence we have our assertion.

PROPOSITION (6.4). Suppose that $\xi_2 \neq 0$; we have then a free F-module with rank p^8 in $U(\mathfrak{g})/\mathfrak{m}$, i.e., $\dim U(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. Since there is a Lie algebra isomorphism induced from an isomorphism of ordered bases $\{\alpha_1 + \alpha_2, -\alpha_2\} \rightarrow \{\alpha_1, \alpha_2\}$, we have our assertion by virtue of proposition (6.2).

PROPOSITION (6.5). Suppose that $\xi_1 = \xi_2 = \xi_3 = 0$, but one of ξ_4 , ξ_5 , ξ_6 is nonzero; we have then $\dim \mathcal{U}(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. Since there is a Lie algebra isomorphism induced from an isomorphism of ordered bases $\{-\alpha_1, 2\alpha_1 + \alpha_2\} \rightarrow \{\alpha_1, \alpha_2\} \rightarrow \{\alpha_1 + \alpha_2, -2\alpha_1 - \alpha_2\}$, we have our assertion by virtue of propositions (6.2), (6.3), (6.4).

PROPOSITION (6.6). Suppose that $\xi_1 = \xi_2 = \xi_3 = \xi_4 = \xi_5 = \xi_6 = 0$, but $\xi_7 \neq 0$; we have then $\dim \mathcal{U}(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. We shall show that g_{α_2} is invertible in $\mathcal{U}(\mathfrak{g})/\mathfrak{m}$. Choosing new bases for S_{α_2} -irreducible modules in a composition series, we can make h_{α_2} diagonal in each irreducible block of $\varphi(\mathcal{U}(\mathfrak{g}))$ as in the form :

$$(\mathcal{U}(\mathfrak{g})/\mathfrak{m}\cong \varphi(\mathcal{U}(\mathfrak{g}))\ni)$$

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & & & & & & & & & \\ 0 & 1 & \cdots & 0 & & * & & & * & & \\ \vdots & \vdots & \ddots & \vdots & & & & & & \\ 0 & 0 & \cdots & p-1 & & & & & & \\ & & & 0 & 1 & \cdots & 0 & * & & \\ & & & 0 & 1 & \cdots & 0 & * & & \\ & & & & 0 & 0 & \cdots & p-1 & & & \\ & & & & & & \ddots & \vdots & & \\ & & & & & & & \ddots & \vdots & & \\ & & & & & & & & \ddots & \vdots & & \\ & & & & & & & & & & & \\ \end{pmatrix},$$

where short arrows denote S_{α_2} -irreducible parts and the long arrow denotes the irreducible \mathfrak{g} -module part. For, each irreducible block must have eigenvalues $0, 1, \dots, p-1$ of h_{α_2} from the equation $x_{\alpha_1+\alpha_2}^{-1}h_{\alpha_2}x_{\alpha_1+\alpha_2}=h_{\alpha_2}+1$. Hence g_{α_2} becomes invertible by virtue of [8]. But then proposition (6.3) ensures our assertion.

PROPOSITION (6.7). Suppose that $\xi_1 = \xi_2 = \cdots = \xi_7 = 0$, but $\xi_8 \neq 0$; we have then $\dim \mathcal{U}(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. This easily comes from the isomorphism of ordered bases : $\{-\alpha_1 - \alpha_2, 2\alpha_1 + \alpha_2\} \rightarrow \{\alpha_1 + \alpha_2, -\alpha_2\}.$

PROPOSITION (6.8). Suppose that $\xi_1 = \xi_2 = \cdots = \xi_8 = 0$, but either $\xi_9 \neq 0$ or $\xi_{10} \neq 0$; we have then $\dim \mathcal{U}(\mathfrak{g})/\mathfrak{m} = p^8$.

Proof. Also straightforward from isomorphisms of ordered bases

$$\{-\alpha_1, -\alpha_2\} \rightarrow \{\alpha_1 + \alpha_2, -\alpha_2\}, \{\alpha_1, \alpha_2\} \rightarrow \{-\alpha_1, -\alpha_2\}.$$

7. Conclusion

Recalling now our definitions in §5 and combining main results in §6, we have our conclusion which boils down to the next.

THEOREM. A point $(\xi_1, \dots, \xi_{10}, \xi_{11}) \in F^{11}$ with $\xi_i (1 \le i \le 10)$ not all zero corresponds in one to one fashion up to isomorphism to a p^4 -dimensional irreducible S-representation. In other words, there does not exist a subregular point for $\mathfrak{g} = sp_4(F)$ over an algebraically closed field F of characteristic p > 2.

References

- 1. E.M. Friedlander and B.J. Parshall, Modular representation theory of Lie algebras, American J. of Math. 110 (1988), pp1055-1094.
- 2. J.E. Humphreys, Introduction to Lie algebras and Representation theory, Springer- Verlag, 1980.
- 3. N. Jacobson, Lie algebras, Interscience Publishers, 1979.
- 4. J.C. Jantzen, Kohomologie von p-Lie algebren und nilpotente Elemente, Abh. Math. Sem. Univ. Hamburg Vol.56 (1989), pp191-219.
- Y. Kim, K. So, G. Seo, D. Park, and S. Choi, On subregular points for some cases of Lie algebra, Honam Mathematical Journal Vol.19, No.1 (1997), pp21-27.
- 6. —, Some remarks on four kinds of points associated to Lie algebras, Honam Mathematical Journal Vol.20, No.1 (1998), pp31-43.
- 7. A. Premet, Support varieties of nonrestricted modules over Lie algebras of reductive groups, Journal of the London Mathematical Society Vol.55, Part 2 (1997), pp236-250.
- 8. I.R. Shafarevich amd A.N. Rudakov, Irreducible representations of a simple three dimensional Lie algebra over a field of finite characteristic, Math. Notes Acad. Sci. USSR 2 (1967), pp760-767.

- 9. H. Strade and R. Farnsteiner, Modular Lie algebras, Marcel Dekker, 1988.
- 10. H. Zassenhaus, The representations of Lie algebras of prime characteristic, Proceedings of Glasgow Math. Assoc. No. 2 (1954), pp1-36.