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Abstract Dimensions of irreducible sos (F)—modules over an algebraically
closed field F of characteristic p > 2 shall be obtained. It turns out that they
_should be coincident with p™, where 2m is the dimension of coadjoint orbits
of x € sos(F)* \ O as Premet asserted. But there is no subregular point for
g = spa(F') = s0s5(F) over F.

1. Introduction

In this paper, we let g := sos(F') over an algebraically closed
field F of characteristic p > 2, i.e., g = L(SOs(F)) which is the
Lie algebra of an algebraic group G = SOs(F); we are then mainly
concerned with dimensions of all irreducible g-modules.

We use most notations and nomenclature appearing in [5], [6].

In 1954, Zassenhaus proved that any specialization of 3 =
3(U(g)) onto an F-algebra A determines a specialization of U(g)
onto a finitely generated A-ring B, which is unique up to isomor-
phisms over A. Moreover, according to him, except for a subva-
riety of 3 characterized by the vanishing of the specialized dis-
criminant ideal of U(g) over 3, the classes of equivalent absolutely
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irreducible representations correspond to the specializations of the
center 3 into F and the degree of those representations equals p™
with [Q(U(g)) : Q(g)] = p*™. 3 becomes just a normal algebraic
variety of the same dimension as that of g over F and U(g) be-
comes a maximal order of a division algebra Q(I4(g)) of dimension
p?™ over Q(3) [10]. Such a variety is called a Zassenhaus variety.

Shafarevich and Rudakov showed in 1967 that there exists a
correspondence between irreducible p-dimensional S-representa-
tions of slz(F) and maximal points in Spec(3) provided the point
P of the manifold Spec,,(3) is not equal to (0,0,0,k2), k(# 0) €
F ; the points P = (0,0,0,k?), k # 0 correspond to two irre-
ducible p-representations of degree k and p — k ; (0,0,0,0) is just
the irreducible representation V(p — 1) [8]. Steinberg and Cur-
tis classified p-representations for simple modular Lie algebras,
but their dimension formulas are still under research by many Lie
algebraists.

In this paper, the usual basis of sl2(F) is denoted by {e, f, h}
with [eh] = —2e, [fh] = 2f, [fe] = —h; 3(sl2(F)) is then gen-
erated by £ = fP, y = eP, z = h?P — h, t = (h+ 1) + 4fe and
Specm(3) is defined by the algebraic equation 22 — [T5_g(t — k2) +
4zy = 0 defined in Flz,y, z,1] [8].

In §5, we shall define three kinds of points in the algebraic vari-
ety
Spec,,(3) from the standpoint of dimensions and characters of
their associated irreducible modules [5], [6].

Final results appear in §6, 7 stating that 3({/(g)) has no subreg-
ular point. It is well known that sl3(F) has no subregular point
as mentioned above.

2. Least upper bounds of dimensions

Let E;; denote an elementary matrix whose (i, j)-th entry is 1
with all others zero. The base of the root system ® of By = C»
consists of a long root ay, a short root ay and ®+ = {az, 20y +
oy, 01 + az,a1}, where 2a; + a2 is a maximal root as a short
root. A standard basis of g consists of : h,, := diag(1,0,—1,0),
h2a1+az = dia‘g(o’l’oa"l)7 Ly, = tE12 - tE43a Ta, = Ens,
Taytas = E1a + E23, T2a,4a; = E24, Ty = F12 — E43, T, =
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tFia, Teqy—ag = ‘B4 + ¢ Fas, T2¢y—ay = tFo4. Let O(Q) be the
p-center of U(g). Denote the basis of g by {u;|1 < i < 10} in
any fixed order. ‘An obvious filtration U*) .= F. 1@ ga .- - @ g~
exists for U(g). Noting that (ad u;)P = ad u? ! for some uEp e g,

P {p]

z; = u; —u; commutes with g elementwise, and hence z; €

3(U(g)). So u[p = ul — z; € UP~V. Following §7 Chapter V [3],
we see that all elements of the form 2;7' 277 - - - 2710 uf‘ll . :\1‘0" with
11 <1z <<y, 0j >20and 0 < )\ < p also constitute a basis
for U(g) a.nd that g becomes a restrlcted Lie algebra with respect
to the p-mapping. O(g) becomes a polynomial ring in 10-variables
and U(g) is just a free O(g)-module of rank p'°. Furthermore,
QU(g)) := (3(U(g)) \ 0}~ 'U(g) equals {O(g) \ 0}~'U(g) since
U(g) is a finitely generated O(g)-module (see §6.5 [9]). Hence
PP = dimoiuig)QU(8) < dimgoe)QU(g) = p°. So
m < 5 is obtained implying that p® is an upper bound for the di-
mensions of all irreducible g-modules. The next proposition shows
that p* is in fact the upper bound of these and so there exists
an irreducible g-module of dimension p* since F is algebraically
closed.

PROPOSITION (2.1). [Q(U(g)): Q(3)] =

Proof. Consider the Q(3)-vector space generated by {zi} |0 <
11 <p~1}. Then Q(3)-1+Q(3)za+---+Q(3)2z2~! for any a € &
becomes a free Q(g)-module in Q(U(g)). For, if there is a linearly
dependent relation with the least number of terms, then by mul-
tiplying h, on both sides of this equation and by using hozr, =
Zo(2 + hy), we can make a shorter relation than the given one.
Next by the elementary theory for tensor products of free modules
and by the fact that O(g) is the Noether normalization of 3, we see
easily that {®7_) Q(3)z%} ®q(3 ) {@P25Q(3)2” .} becomes a free
Q(3)-module in Q(U(g)) with ba.313 {zh @', i 0<14,i < p- 1}.
By induction, we see easily that B={z} ® x__al ®zi2 ®:c__ao ®
56214_(12@93?01__02@:62&#(,2 ®5‘3——za1~a2 |0 <15, 4; < p-—-1}spansa

Q(3)-vector space with dlmensmn p®, which is Just Q(U(g)) since
[QU(g)) : Q(3)] = p*™ < pB holds clearly.
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CoroLLARY (2.2). [Q(3) : Q(O(9))] = p*.

Proof. Straightforward since p® = [Q(U(g)) : Q(O(g))] =
[QU(g) : RIQ(3) : Q(O(9))] = r®lQ(3) : Q(O(g))] by the

proposition.

REMARK (2.3). Evidently the above base B spans a free 3-
submodule M of U(g) with cardinality p®, while (3\0)"'M =
QRQ(3)®3 M = Q(3) ®3 U(g) = Q(U(g)) does not always mean
M =U(g).

3. Center 3 of U(g)

The natural representation ¢ : g — gl4(F) has a Casimir el-
ement s := (hg, + 1)% + (h2a, a3 + 1)? + 2ha, + 4(Z-0,T0a, +
T_2a1-azL201+az) + 2(T—0y ~asTas+az + Ta,T—a,) belonging to
3 = 3(U(g)). With respect to the nondegenerate symmetric bi-
linear form B(z,y) := tr(p(z)e(y)), we have dual basis as follows

Basis element(dual element) : z,, hq, Z20;+az
I 1 0
Dual element(basis element) : z_,, 27 he, T-2a;-a,
h2a;+a; Loy +az T
! I 3

-1 —~1 -1
2 h2a1+022 $~01“022 Loy

Now we shall show that s becomes an integral element over
O(g) of degree p?.

PROPOSITION (3.1). The following hold :

(i) dimg(3)Q(3)(ha,) (h2as+as) = P
(ii) Q(3)(ha, ) (P20, +a,) becomes a Galois field over Q(3).

Proof. (i) Since Q(3) is the center of the simple Artinian al-
gebra Q(U(g)), it becomes a central simple Q(3)-algebra. Since
Q(3)(hay)(h2a, +a, ) 1s a finite dimensional simple Q(3)-subalgebra
of Q(U(g)) containing Q(3), then by Skolem-Noether theorem,
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every automorphism of Q(3)(ha,)(h2a,+a,) extends to an inner
automorphism of Q(U(g)). By direct computation, we have

ha'a’(ma2x )(wzal'i"aZw 201—02) =
xazx-oaz (z201+azx—2al-a2)(h02 - 2(i - 1))7
h20‘1+a2 (xazxz—ag)(x201+02x?-—2a1-—a3) =

mﬂzxiag (x201+02m?—2a1-a;)(h2a1+02 - 2(] - 1))

for 1 < 4,5 < p. So conjugation by xazmiazxga”azx?;wraz in
Q(U(p)) gives p*-different values to Q(3) (hay, h2ay+a,) = Q(3)
(h‘az) (h‘201+02)' Hence we have {Q(s)(hafw h20!1+02) Q(3)] 2

(ii) is an immediate consequence of the proof of (i).

PROPOSITION (3.2). Q(O(g))(s) = Q(3) in Q(U(g)).

Proof. Since O(g) is a Noether normalization of 3(U(g)) and
since s € 3(U(g)) \ O(g), our assertion is straightforward. Specifi-
cally, recall that (A%, —ha,)?~TThzo{(ha; +1)?+42_ o, Ta, —k?} =
—4z? . % holds by virtue of [8]. Since (hq, +1)? + 42 _qa,Ta, =
s={(h2a1+a; +1)?+42 24, ~a;T201 +az +2hay + 220, ~az Tay +as T
2T4,%—q, }, we have

p~-1
(h%, — hay)? — H[S — {2ha, + (h20y4a; +1)°

k=0
+4r_20,-a3T2a14+as + 2Z 4 —azTay+ap T 2$a1$—a1} - kz]
+4z? 28 =0,

which is clearly an algebraic equation of s over the field Q(O(g))
(2h02 + (h20¢1+a2 + 1)2 + 4$—201~02m201+az + 21‘-—01-012370114”02 +
2%y, Z—q,). So if there exists an algebraic equation of s over
Q(O(g)), it should be of degree > p, i.e., of degree p? by Corollary
(2.2).

Noting that O(g) is a unique factorization domain and that 3
becomes integral over O(g), we have Irr(s, Q(O(g))) = Irr(s, O(g)).
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PROPOSITION (3.3). O(g)[s] = 3(U(g)) = 3 holds.

Proof. We see easily that Q(3) = Q{(O(g)[s]) by proposition
(3.2). Since 3 becomes a finitely generated O(g)-module and
O(g)(s] is completely closed in 3, i.e., any nontrivial quotients
of O(g)[s] is not contained in 3\ O(g)[s], our assertion holds. Ex-
plicitly, suppose that some u € 3\ O(g)[s] satisfies an equation

P . P - P

poa(xh,, o hh ~hay, e 2, 2B, 8) = B(ak,, 2P hE -

hays - ,a:’_'lm,a:{;l,s) with 8/a reduced, where a, 8 are distinct
. - p

polynomials in Fla?_,2? , k2 — hg,,---, 2z, 2% ,s] and p,s

must satisfy a nontrivial integral equation over O(g). Note that
28, a? .0 P8, = hay, -+, &%, , 28 are all algebraically inde-
pendent and so the above relation must be an identical equation
with respect to these variables. Now comparing degrees of both

sides yields a contradiction by P-B-W theorem.

4. Irreducible polynomial of s over O(g)

Here we want to find out the irreducible polynomial of s over
Q(O(g)), which is just the irreducible integral equation of s over
O(g) by the unique factorization domain property.

PROPOSITION (4.1). We have the following :
(i) Irr(s,O(g)) is obtained by expanding out

}Ot v} [+1 o
Ng((;})(t 2:12aq+ 2){8____ (hag + 1)2 . (h2a;+az + 1)2 “‘Zhaz}

Ihag 2o +a
e Ng((?s))( 210207 + 2){4(1»'_.02xa2 + (z“2h1~02$201+02)

+ 2(53*-01—012 Toy+az T Loy Toay )}

and its degree is p*.
(ii) s is separable over O(g) and so over Q(O(g)).

Proof. (i) Left hand side = P Fays? Tl apz_18 + Gp2
for some a; € Q(3)(hay, h2ay +a; ), S0 we show that a; € Q(O(3)).
For, choose any distinct p%-elements s; € O(g), and take norms
as :

h'a ’h oyt
NQQ((g))( e 2){81 - (h’az + 1>2 - (h2a1+a2 + 1)2 - 2haz}

ha ai “r (s 1
= Ng((g))( 2t 2){Si —s+ 4(33-“042:802 -+ ($—2a1-—azm2a1+a2)

+ 2(x~—a1-a2$a1+a2 + Lo, x~a1)} € Q(B)
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Since Q(3) is the center of the simple Artinian algebra Q(i(g)),
Q(U(g)) becomes a Q(3)-algebra. Since Q(3)(hay, h2a;+a2) is 2
finite dimensional simple Q(3)-subalgebra of Q(U(g)) containing
Q(3), then by Skolem-Noether theorem, every automorphism of
Q(3)(hay, h2a,+a, ) €xtends to an inner automorphism of Q(U(g)).
By direct calculation, we have

has (Tas T ay) (T201 4027”201 —ay)

= (Tag T 0;) (T201 403820, — ) (Baz — 2(6 = 1)),

haoy +az (:cazx'i_az)(:02014.021:1201_0!2)

= (T2 a,) (T2a1+02 7] 20, —a;) (h2a1 40z — 2(5 = 1))-
Hence conjugation by a," o T2a; +as T 24, —a, i QU(g)) gives

p?-distinct values to Q(3) (ha,, P2a,+az)- Next, since [Q(3) (ha,,
haartas) @ Q(3)] = [Q(O(8)) (Rass h2a1+as) = Q(O(9))] = P°

and since isomorphisms of Q(3) (ha,, h2a, +a,) OVer Q(3) are the
same as those of Q(O(g))(hay,s h2a,+a,) Over Q(O(g)) which are

- I3 » 7 j .
precisely conjugations by Z4,z’ ,,T20;+a;Z2 20, —a,» W ObtaIn

hao h2oy+a
Ng((g))( BT 2){3,' - (h’az + 1)2 - (h2a1+a2 + 1)2 - 2’202} =

O ’Ct 'h o [+ 3 2
Ng((o((ﬁg))))( e 2){'5'; - (haz + 1)2 - (h2(x1+az + 1)0 - 2’10:2}

€ Q(0(9)),

80 we see that Ngg))(h” haertes) {si =8 +4(T-0;Ta, +T_20,-a:

T2a;+as) +2T—a;-azTa;+az +2a; Toa, )} actually belongs to Q(O(g)).
On the other hand,

o ho Jh2a o
Ngio ) toahaerton) s, — (hay +1)? = (hoay 4as + 1)* = 2ha, }

= H(xa2x{a2$2m+ale_€_2m_az)"1{8,' - (haz + 1)2
ik

- (h2a1+02 + 1)2 - 2h02}(xazx{-agx2f11+azmlf—2al—ag)

= [I{s: = (Ras =205 = 1) + 1)? = (hzas+as — 2(k = 1) + 1)*
Ik
— 2(ha, — 2(j — 1))}

2 2
=i 8? +bis? TN by + by =k

1
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for some bi(l = 1,2, -+ ,p%) € Q(O(9))(Pags P2ay40,) and k; €
Q(O(g)). Hence there arises a linear system in indeterminates b,
of p*- equations with the determinant of coefficients

2
p~1
1 81 SRR 1
: ZII(SJ'—‘S;)#O,
2 gy
p—1 i<
1 sy - sh J

which is nothing but the well known Vandermonde determinant.
Hence by the Cramer’s method, we may obtain solutions b, €
Q(O(g)). But since b; = a; for i = 1,2,---,p%, we have a; €
Q(O(g))-

On the other hand, since s is integral over O(g), right hand

. : hag hzay +a
side of (i) = Nggay =2 ™12 {4(2_ 0,y + (220 -y P20y bauz)
2(T—ay—azZay+ap +TayT—a, )} also belongs to Q(O(g)). This is so

because of the following fact.

LEMMA (4.2). Let s € 3(U(g)) =: 3 be as before and let s
satisfy an algebraic equation f(X) := XP 4o XPl 4
apz__.lX + ay2 € Q(B)[X] with a; € Q(@(g)) for1 < 5 < p2 -1
the same as in the above argument for the left hand side of (i);
we have then a,2 € Q(O(g)).

Proof. Since O(g) becomes the Noether normalization of 3, the
integral equation of s is itself Irr(s, Q(O(g))). Let Irr(s, Q(O(g)))
= XP" 4 by XP"1 4o bu X + by Put g = conju-
gation by o, 7, T2ai4az T 20, —a, f0F 1 < m, n < p. Then
$ > Tm,n(2ha, +(hay+1)? +(h2as+as +1)?) +0ms 0 (4(Z-a;Ta;
201 —a; T201+a2) F2T—a1-as%ar+ar FEayT-ay)) for 1 < m,
n, m’, n’ < p yields an isomorphism of Q(O(g))(hazs h2a;+a2)(S)
over Q(O(g)). Hence Irr(s,Q(O(g))) |f(X), and so f(X) =
Irr(s,Q(0(g))) ¢(X) for some unique g(X) := Xxr'-r*
o XPP P 4 +ep2_ph 1 X +cpzpr With ¢; € Q(3). Since
cg-s are uniquely determined only by the coefficients of Irr(s, Q(O(g)))
and those of terms X?°, X?P°~1 ... XxP"'+1 X?* in f(X) and
since these coefficients belong to Q(O(g)), we have our assertion.

Returning to our main proof, we have to show that the algebraic
equation of s obtained above is just the Irr(s, Q(O(g))), which is
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also the integral equation of s over O(g). Such a fact is due to the
following lemma.

LEMMA (4.3). Let E be a finite extension of F' with char-
acteristic p and let «, B8, v be in E\ F with [F(a)(y) : F] =
p*. Let f(X) = Irr(a, F) = (X — o1(a)) - - (X — opm (a)) for
some distinct o;(a) € F(a), i = 1,2,---,p™ < p" with 0; €
{isomorphisms of E over F'} and let § = a+y be an element such
that (3 satisfies 0;(8) = 3 for all ;. Suppose that nf;nl oi(v) € F
and g(X) := f:l (X —oi(a)) —[TP-, 0i(7) € F[X]. We have then
g(X) = Irr(B, F) and is separable over F.

Proof. We see easily that v € F(a) and so at least p™** distinct
isomorphisms of F(a)(v)(3 ) over F exist.
Now consider a field lattice diagram :

F(a)(v) 28

Tat least p—dimensional

F(a) Zv

‘[p"‘ ~dimensional

F‘!
Then for any nontrivial isomorphism 7 of F(a)(y) over F(a),
T(8) = T(oi(a) + 0i(7)) = 1(0:(a)) + 7(0:i(7)) = oi(a) + 7(v)
holds for some isomorphism 7 of F(a)(y) over F(a) and for all ¢
with 1 <1 < p™. Hence there are at least p™-distinct conjugates
of @ over F since F(ca) is a Galois extension of F. But since
deg g(X) = p™ and since g(8) = 0 obviously, Irr(8, F) = g(X)

should hold.
Finally to complete our proof of the proposition (4.1), put

F =Q(0(g)),

B =s,

o = (haz + 1)2 + (h2¢11+a2 + 1)2 + 2h0‘2’
Y= 4(:13._0,2330,2 + $~2a1~agm2a1+a2)

+ 2(T—a;~arTar ez T Loy Teay)
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and use the proof of proposition (3.1), where isomorphisms of
F(a) over F are well specified. Evidently, (ii) is obtained from
Lemma (4.3).

COROLLARY (4.4).

Q(O(g))(hazv h201+02) =
Q(O(8))((hag +1)* + (h2a14az + 1)* + 2ha,).

Proof. Straightforward from isomorphisms of Q(O(g)) (ha,,
h2a, +az) over Q(O(g)).

REMARK. From the proof of proposition (4.1), we must see
that Q(3)(haz, h2ai+a,) I8 8 Galois extension of Q(3) and that the
division algebra Q(U(g)) is a crossed product of Q(3) (hay, P2ey+asz)
(xazz*az“*' Z2a;+a; T—201-a2t Taj+az T—ar~az +x~'01$01)'

5. Points in the Zassenhaus Variety

Let V be any finite dimensional irreducible g-module, i.e. Vv (7#
0) € V, U(g)v = V. By virtue of [1], its irreducible representation
¢ : U(g) = Endp(U(g)v) is uniquely determined up to isomor-
phisms by 3/(Ker ¢ N 3) and by 1-dimensional representation of
a Cartan subalgebra. Note that for A = Cgpa,(v)(0U(8))), ¢(U(g))
is dense in Enda(V). Since A = F by Schur’s lemma and since
[QU(8)) : Q(3)] = p® by proposition (2.1), we have Enda (V) =
Endp(V) & F,, for n < p* as F-algebras, where F,, = M,(F),
which boils down to ¢(U(g)) = F,, after all. Furthermore, the ir-
reducible representations of the same dimension are equivalent so
long as their kernels meet 3 in the same part and dimp(U(g)v) =
dimV = p* [10].

Let p be a (regular) left maximal ideal of U(g) and put (p :
U(g)) := {z € U(g)|z-U(g) C p}. Then the annihilator A(U(g)/p)
= (p : U(g)) becomes the largest two sided ideal contained in p,
and so a maximal ideal m of U(g). Hence using the above notation,
we have p(U(g)) = U(g)/m.
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Furthermore,

p 2 AU(g)/p) D U(g)(ah, — &)

+U(g) (20, — &) + UB)(hE, — hay — £3) +U() (250, 10y — E4)
+ UGN 2010y — &) +U(B)(Pha, 1o, — P20y +0s — &6)
+U(G)(ah, o, — &) +UB) (24, o, — E8)

+U(g)(ah o, — &o) +U(g)(xh, — E10) + U(g)(s — £11)

holds, where &;(: = 1,2,---,10) is an independent value in F for
the corresponding indeterminate and &y, - - - , €10, £11 must satisfy
Irr(s,0(g)); AU(g)/p)N3 = (28, —&1)+3(22 ,, —&2) +3(RP, —
haz - ‘53) + 3($12)a1+az - ‘54) + S(m?—Za;*aﬁ - 55) + 3(hgal+rxg -
h20¢1+042 - 66) + 3(9:(’;1-{-:12 - 57) + s(mgap»ag - 68) + 3($€a1 -
o) + 3(x% — &10) + 3(s — £11) becomes a maximal ideal of 3 by
going-up theorem in [9].

So, if mMN 3 = m corresponds to (&3, - ,£10,&11) in the Zassen-
haus variety, dimpl(g)/p may be easily computed through in-
dependence of some elements of U(g)/p. It is noteworthy that a
character x : 3 — F is given if and only if (&1, -, &19,&11) is
given.

By the way, [5] and [6] say that any maximal ideal m of U(g)
must contain some {}:,121 U(g)(zh - :CEPJ - &)} +U(g)(s — &),
where z; ranges over {Za,, T—a,, lay) L201+azr L2001 —az, Roay +az)
Tay+azr Tear—azr Tmayr Tay | and dimpl(g)/m < p*>** considering
proposition (2.1).

PROPOSITION (5.1). Suppose that all £, = 0 for 1 < i < 10;
then for all left maximal ideals m; containing Z:ﬂﬂl(g)(:ﬁ -

w£p]) +U(g)(s—£&11), U(g)/m; become irreducible p-representation
modaules.

Proof. 1t is well known that the associated representations y;
with
U(g)/m; satisfy ¢;(zlPl) — p,(z)? = S;(z)P - Id for some S; g
and for all x € g [9]. But then z¥ = 0 = ¢,(0) — p;(z;)? =
@j(z:)? = 0(mod m), and «f — 2, = 0 = @;(z;) — p;(z;)? =
0 (mod m) for 1 < i < 10, where m is the maximal ideal contained
in m; for a fixed j. So we have S;(z) = 0 Vz € g.
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In our situation, we encounter 3 possible cases of (¢1,--- , &1o,
£11) € F11 as follows :

(I) all & = 0 for 1 < 7 < 10 : There may exist finitely many
left maximal ideals m; containing {312 U(g)(a? — = — &)} +
U(g)(s — &11) so that U(g)/m; become p-representation modules
for g with dimension < p* in view of proposition (5.1) and [10].
Here we suggest that we call such a point (£, -, €10, &11) € F11
p-point ; in particular, we mean, by a regular p-point, that it is a
p-point and its associated irreducible module has dimension p?.

(I not all & =0 for 1 < < 10

(i)For any left maximal ideals m; containing {3, U(g)(z? —
x,[" ] —&)}+U(g)(s—£€11) , U(g)/m; may all become p*-dimensional
S—representation modules for g and are isomorphic. Since F' is
algebraically closed of characteristic p > 2, such a module must
necessarily exist [9]. We shall call such a point (&1, , €10, &11)
in F'! a regular point.

(ii)For all left maximal ideals m; containing {3_.2, U(g)(z? —
x?’] - &)} + U(g)(s — &11) , U(g)/m; may have F-dimension <
p* and are possibly nonisomorphic and are possibly of different
dimensions. So, we call in this case such a point (&1, -+, £10,¢11) €
F! 3 subregular point.

Note that we have an obvious surjective mapping v : Specm(3)
—» {Irreducible L — module classes}, where Specm(3) denotes the
maximal spectrum of 3.

PROPOSITION (5.2). There exists no subregular point for siz(F).

Proof. See §1. Introduction of this paper.

6. Main result

We want in this section to show that there is no subregular
point for g = spy(F) like sl2(F'). For this, we should like to find
out dimensions for irreducible g-modules corresponding to points
(€1, €10,611) € Y o {302, 3(a? - xE”] ~ &)} + 3(s — &n)
which are maximal ideals of 3.

Let ¢ be a finite dimensional irreducible representation of g as
before. Let {Z,,¥Ya, ha} be a standard basis corresponding to a
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root o which spans a copy of sly(F), i.e., [Zo¥a] = ha, [ha)Tal =
24, [haYa) = —2yq- For g = spy(F), we have 4 kinds of such
subalgebras corresponding to 4 positive roots oz, 2a; + g, a; +
02, Zq,. Specifically, they are respectively

Sa, = Fagq, + Fz_qo, + Fhg,,
S20y+az = FTaa, 4as + FT_20,-a; + Fhog, tas,
Sortar = FZay4a; + FT_ai—a; + F(ha; + h2a,+as)s
Say = Fr_oq, + Fro, + F(ha, — h2ay+a,)-
Now put
Way = (Rag +1)2 + 42 _q,Ta,,
Woay+az = (R2ar4as +1)° + 4T 20, -0, T20; 402>
Wayt+az = (Bay + P2aytaz + 1)+ 4T 0, —asTa, +az)
Wa; = (hay — P2ar+ag + 1)? +424,7_q,
and put
Ja, = xﬂ;I Ty

— Pl
92a1+a2 = Togy 4a, ~ T-2a1-asz>

— pp-1
Jai+as; = Tayta; ~ T-aj—az»

Ja, = :E’;:l ~Teay-

Let U(g)/p for a left maximal ideal p of U(g) be an irreducible g-
module; then for each positive root §; € {as,2a1+0a2, a1+az, a1},
we have an irreducible Sg,-module V3, in U(g)/p. By choosing an
appropriate basis of 1{/(g)/p, we see by virtue of [8] that ws, €
3(U(Ss,)) acts on V3, as a constant matrix respectively, where §;
represents any of positive roots.

We note here that the equations

hazgag = 9oy hag - 290&2 = gaz(hag - 2),

h201+0292(¥1+02 - 92a1+a2 hzm 4o 7T 29201-}-02

= 9201 +ax (h201+02 - 2)7
(haz + h'2a1+az )gari'az = Gay+as (h‘aa + h2a1+a2) - 29a1+a2,
(haz — h2ai+a2)901 = oy (Ray — P2cy 4as) — 290,
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are obtained without difficulty and that g,, is invertible in #/(g)/m
if £&1 = & = 0 but {3 # 0; similarly g24, +4, is also invertible in
U(g)/m if €4 = & = 0 but & # 0.

PROPOSITION (6.1). Suppose that &, #0 or &y # 0 or &3 #0;
P F(hy,+m) becomes then a free F-submodule of U(g)/m.

Suppose similarly that £, # 0 or &5 # O orég # 0; .77 F(hb, +a,

1=

+m) becomes then a free F-submodule of U(g)/m.

Proof. We recall that i := 3Nmin §5 and (3+m)/m & 3/m =
F C U(g)/m. If there exists a dependence relation of least degree
with one term a,:h;'- € m with a;(# 0) € 3/m, j = az, 207 +
az and 0 < 7 < p— 1, we observe that ¢(a;)(# 0) becomes a
contant in F' and so we may assume that h; € m; in other words,
cp(aihj) = ¢(a;)p(h%) = 0 (mod m), where ¢ is the corresponding
representation of the irreducible module U(g)/p, so that ¢(h}) =
0 (mod m) since p(a;) is a nonzero constant by Schur’s lemma.
Evidently ¢ > 1. But then z;h} = (h; — 2)'z; € m, g;h} =
(hj +2)'g; € m, z_;h} = (h; + 2)'z_; € mfor j = a3, 201 + .
By our hypothesis and [8], ¢(z%,) # 0 or p(z” ,,) # 0 or g&, # 0,
i.e., there exists some invertible element among these in U(g)/m
if £ # 0 or €3 # 0 or 3 # 0. Similar assertion is obtained for
the other case. Note that we have chosen a composition series of
S;-module U(g)/p if &1 = & =0 for j = ay and if €4 = & = 0 for
j = 20 + a4 respectively. So applying some invertible element on
the relations modulo m, we meet an equation with a lower degree
with respect to h; than the first one, a contradiction.

If there exists a dependence relation of least degree with more
than one term, apply some invertible element as before on both
sides and get a dependence relation of lower degree than the given
one. So arises another contradiction.

PROPOSITION (6.2). Suppose that £, # 0 ; we have then a free
F-module with rank p® in U(g)/m, i.e., dimU(g)/m = pB.
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Proof. We claim that we have a basis :

{(a1ha, + bi(c1 + h2ay4a;)) + Tay }1®

{(a2ha, + ba(c2 + haay+a2)) + 2oy +asTas } 2 ®
{(asha, + b3(c3 + hoay+as)) + T2o, 4+, 12 ®
{(a4ha, + ba(cs + haa,+a2)) + P20y +ar T20r 402 }4®
{(ashay +bs(cs + hzay+a2)) + T-2a1 -0z }*®
{(asha, + be(cs + haa, +a;)) + Tay 40, }°®

{(arha, + br(cr + h2ay+as)) + Toay }7®

{(asha, + bs(cs + h2a,+a2))

+ (haz + Zoay—a;Tar+as T Tay Teay )}is

with 0 < ¢; < p—1, where (a;, b;) are chosen so that (a;ha, +b;(c;i+
h2a1+02))x02 7#— Lo, (aihaz + bi(ci + h201+02)) (mOd m)v aiha: +
bi(ci+haa, +a;) Z ¢(ajha, +b;(c;+h2a, +a,)) for any ¢ € F (which
is possible considering P!(F)) and c; is chosen in F so that c; +
h2ay+a, i8 invertible modulo m. Furthermore we choose (a;, b;, ¢;)
so that any three distinct (as, b;,¢;)’s are linearly independent.
We first show that hq, +Z_ 0, ~asTay+a; +Tay, T—a, § M. Suppose
not; we have then _,, (Ao, +T—ay~asTar+as T TayLoa; ) = (Ray +
Toay-arZartaztTa; Ty )‘E—%n €M, 80 T 4 ”23:—201—023301 +oz
+22 g —a3;Taz +{Pay —P20q+as) Tea, = 0 (mod m). Hence
Loy (~T-a, —2%-201~as Tay+az T2T—a;—az Taz +(Ray —h20;+az)
Toay) Toy = 2Way Toay—as ~2T-ay = 2(To0, ~Toar-as Ta)
—2Z_o, = Teay—az Lag = Logy—a, = 0 (mod m), a contradiction
since non-P-point always yields an irreducible g-module ofdimen-
sion > p. Note that hge, + T_ay-a;Tay+as + LayT—a, COmMmutes
with z,,.

Similarly we have z_4, —a,%a,+a; + Ta; T—a, ¢ M as a byprod-
uct.

Next, it is not difficult to show that x_,,, Za,, h2a,+az Tass
L2ay+az, h201+azx2a1+a2, Tw20y~azr Laytas ¢ m and these com-
mute with z,,. Here we observe that the above elements of the
basis candidate are F-linearly independent by P-B-W theorem.
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Now we have to show that they are linearly independent modulo
m.

Suppose that we have a dependence equation which is of least
degree with respect to h,, and the number of whose highest degree
terms is also least. If there is an exponent > 2 in any place of the
dependence equation, then conjugation by z,, yields a nontrivial
dependence equation of lower degree than the given one, a contra-
diction. So we assume that we have a dependence equation whose
terms contain only one exponent. Suppose further that the high-
est degree terms are of degree > 2; it should then contain terms of
the form, say {(aiha, + b1(c1 + h2ay+a,)) + X1 H(a2ha, +b2(c2 +
hoay+az)) + X2} x some factors + {(azha, + ba(cz + h2a,+as)) +
XoH(ashay +b3(c3 + h2ay+as)) + X3} X some factors + {(azhq, +
b3(63 + h2a1+az)) +X3} {((1,4]'1.@2 +b4(C4 +h201+a2)) +X4}>< some
factors +{(airha, + bi(c1 + h2a;,4a,)) + X1}{(asha, + bs(cs +
hoay+a;)) + X4} X some factors, i.e., some factor, say (agh,, +
bs(cs + hza,+a;)) + X3 arises as aformer factor as well as a lat-
ter factor of some terms; otherwise conjugation by z,, leads to
a contradiction, where X; € {Za,, h20,+a2Tas> L201+a2> P20y +a2
T2ai+az) T—2a1~az) Tar+azs T—ayyr Raz +Toay—ar Taytar +Tay
T—_q, ). But since ajhq, + bi(ci + ho2ay4a,) F ¢(@jha, + bj(c; +
hoay+a,)) for any ¢ € F and i # j, the supposed linearly de-
pendent equation reduces to a nontrivial linearly dependent one
of lower degree than the first one as in proposition (6.1) if it is
conjugated by z,,, a contradiction. So it remains to show that

Wi = diTa, + d2hog, +a;Tay, + d3T20;,+a; + dah2a, +a,T2a;,+a, +
d5T 20, ~a; + A6Tor+a; + d7$..a1+

ds(ha; + T—oy—azTas+as + TayTeay )

= 0 (mod m)

with d; € F = d; = 0 Vi. We proceed in several steps :
(i)di=dy=0:

Otherwise Wy = (ho,W1 — Wiha,) = {hay(ha, W1 — Wih,,) —

(hazwl——Wlhaz)haz} = d1$02+d2h201+a2$az =0 (mod m) ydy #

0, d2 # 0 yields z,,%20,+a, = 0 from Z2q, 40, W2 — WaZ2q,+a,,

a contradiction. So do = 0, and hence d; = 0.
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(ii) d3 = d4 = ds = dg = dy = 0 : Otherwise W3 := h201+az W,—
Wihza, +a, Yields 2d3224, +a, +2d4h20, +ar T20, +a2 205 20, ~a,+
d6Ta, +a, +d77_q, = 0,50 h2a1+a2 W3—-Wihaa, 4o, = 4d3T24, o, +
4d4h201+02$2a1+02 +4d5h_2a1..0,2 +d6$al+a2 +d7SL'_.01 = 0. Sub-
tracting the last two equations, we have Wy = d3T24,+a, +
dahoa, +a;T2a1+a; + 35T _20,-a, = 0. Suppose that dy # 0;
201+ W4’W4.’L‘201+a2 then yields -2d4x%al+a2 +3d5h2a1+02 =
0. If char F = p # 3, then Z2a,+4a, (—2ds23,, 14, +3d5h20,40a,)
"(_2d41“§a1+az +3d5h20¢1+02) L2014+, = d5x201+02 =0,s0ds =
0 and so d4 = 0 and d3 = 0. If charF = p = 3, we have
ds%3s, 40, =0. If dg #0, then x3, |, = 0 yields

2 —
Ty P20y +ag — (ma1+az + x2a1+a3$—-m)m2ax+az

= TaytazL2a14+az T T2 +ay (max +ap T m2al+agw-—a1)

- - = .3 —
= Loy tas@2a1t+a; =0(modm) =z, ., =0

. 2 — =
SINCe T L3, 4y = L201+azLar+az = 0.

3 3 _
Now Toay~azloy+a; ~ Taj+agf—ar—az = (haz + h2a1+02 -
2)z% ,,, = 0 by easy computation, which yields z% ,,, = 0 by

conjugation by z,,. Hence (ho, + P20, +a; — 1)Ta;+a, = 0 is ob-
tained, 80 Zq,+a, = 0, a contradiction. So d4 = 0 = d3; applying
h2ay+a, to W3, we have ds = dy = dg = 0.

(iii) From the foregoing remark preceding (i), we finally have
ds = 0.

Along the way we used the formula : Va € @, zF € m(k >
1) = {hu — (k- D)}zk-1 € m.

PROPOSITION (6.3). Suppose that §; = & = 0, but & #
0: we have then a free F-module with rank p® in U(g)/m, i.e.,
dim U(g)/m = p.
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Proof. We claim that we have a basis :

{atha, + b1(c) + haaitaz) + Gas } 1 ®

{abha, + bo(ch + h2a, +as) + h2ar+as9as } 7 ®

{a5ha, + b5(ch + h2as+as) + T2ag+ay } B O

{aha, + by(ch + P2y +as) + Way 11 ®

{akha, + b5(Ch + h2a, +az) + T alphar+asT—ai—as T TasT—oy } 5@
{akha, + b5(ch + ha2a;+az) + T alphar—asTay+az + T—ay Tay } 0@
{a7hq, + b7(c7 + h2a,+a,) + T2 alpha;—a; }ﬁ@

{a;ahaz + b:a (Cg + h2a1+az) + h2al+az$-2a1~az}i8

with 0 < i; < p—1, where c;- is chosen in F so that c;- + haay +a,is
invertible modulo m and (a}, b}) are chosen so that (ajhq, +
b:(c: + h201+02))gaz # Jog (aiha;& + b;(c; + h2a‘1+az)) (mOd m))
and ajhq, + bi(c; + h2ay+as) ZE ¢ (jha, + bj(c; + h2ay+a,)) for
any ¢’ € F (which is possibleconsidering P!(F)). Furthermore we
choose (al, b, c;) as in the proof of proposition (6.2). It is easy to
show that g,, commutes with Ran, +a39as) T201+a2r Wass Tay+as
Teay—a; tTay Toayy Toay—as Toy+ay TT—ayTars T—20;—ags and
R2ay+a3 T~2a, ~ay Tespectively. Here we should observe that the
above elements of the basis candidate are F-linearly independent
by P-B-W theorem.

Now we have to show that they are linearly independent mod-
ulo m. Suppose that we have a dependence equation which is of
least degree with respect to h,, and the number of whose highest
degree terms is also least. If there is an exponent > 2 in any
place of the dependence equation, then conjugation by g,, yields
a nontrivial dependence equation of lower degree than the given
one, a contradiction. So we assume that we have a dependence
equation whose terms contain only one exponent. By virtue of [8],
Wa, Z 0 (mod m) and h,, commutes with it. So proceeding in the
same spirit as in the proof of the preceding proposition (6.2), we
should have a trivial dependence equation from scratch. Hence
we have our assertion.
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PROPOSITION (6.4). Suppose that &5 # 0; we have then a free
F-module with rank p® in U(g)/m, i.e., dimU(g)/m = pB.

Proof. Since there is a Lie algebra isomorphism induced from
an isomorphism of ordered bases {a; + ag, —a2} — {1, a3}, we
have our assertion by virtue of proposition (6.2).

PROPOSITION (6.5). Suppose that £, = £, = £€3 = 0, but one
of &4, &5, &6 is nonzero; we have then dimU(g)/m = p®.

Proof. Since there is a Lie algebra isomorphism induced from
an isomorphism of ordered bases {—aj, 2a; + as} — {a1,az} —
{a1 + @2, —2a1 — a2}, we have our assertion by virtue of propo-
sitions (6.2), (6.3), (6.4).

PROPOSITION (6.6). Suppose that §; = & = £3 = & = &5 =
&6 = 0, but & # 0; we have then dimlU(g)/m = pb.

Proof. We shall show that g,, is invertible in U(g)/m. Choos-
ing new bases for S,,-irreducible modules in a composition series,
we can make h,, diagonal in each irreducible block of ¢(U(g)) as
in the form :

(U(g)/m = (U(g)) 3)

o 0 - 0
( 0o 1 - 0 « * ) T T
0 0 p—'~1 ~|L |
0 0 0 + },
0 1 0 x |
0 : : .
0 0 p—1 o
-l

U S

where short arrows denote S,,-irreducible parts and the long ar-
row denotes the irreducible g-module part. For, each irreducible
block must have eigenvalues 0,1,--- ,p — 1 of h,, from the equa-
tion a:;}+az ha;Ta;+a, = ha, + 1. Hence g,, becomes invertible
by virtue of [8]. But then proposition (6.3) ensures our assertion.
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PROPOSITION (6.7). Suppose thaté; =&y = - =&y =0, but
s # 0; we have then dimU(g)/m = p8.

Proof. This easily comes from the isomorphism of ordered bases
: {-*011 — ag, 201 + ag} - {011 + g, -—az}.

PROPOSITION (6.8). Suppose that§; =€ =---=§€3 =0, but
either £9 # 0 or €19 # 0; we have then dimU(g)/m = p&.

Proof. Also straightforward from isomorphisms of ordered bases
{—o1, —a2} = {1 + az, a2}, {a1, 2} = {~e1, —aq}.

7. Conclusion

Recalling now our definitions in §5 and combining main results
in §6, we have our conclusion which boils down to the next.

THEOREM. A point (61, <o ,610,511) € F!! with f,'(l << 10)
not all zero corresponds in one to one fashion up to isomorphism
to a p*-dimensional irreducible S-representation. In other words,
there does not exist a subregular point for g = sps(F') over an
algebraically closed field F' of characteristic p > 2.
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