THE UNITS AND IDEMPOTENTS IN THE GROUP RING OF ABELIAN GROUPS $Z_2 \times Z_2 \times Z_2$ AND $Z_2 \times Z_4$

WON-SUN PARK

Dept. of Mathematics,

Chonnam National University, Kwangju 500-757, Korea.

E-mail: wspark@chonnam.chonnam.ac.kr.

Abstract Let K be a algebraically closed field of characteristic 0 and G be abelian group $Z_2 \times Z_2 \times Z_2$ or $Z_2 \times Z_4$.

We find the conditions which the elements of the group ring KG are unit and idempotent respecting using the basic table matrix of G. We can see that if $\alpha = \sum r(g)g$ is an idempotent element of KG, then $r(1) = 0, \frac{1}{|G|}, \frac{2}{|G|}, \cdots, \frac{|G|-1}{|G|}, 1$.

1. Introduction

Kaplansky and Zalesskii say that if $\alpha = \sum r(g)g \in KG$ is a nontrivial idempotent element, then r(1) is a rational number lying strictly between 0 and 1 when K is a field of characteristic 0 and G is any group.

Cliff and Sehgal say that if $\alpha = \sum r(g)g \in KG$ is a nontrivial idempotent element, then r(1) is a rational number such that $r(1) = \frac{r}{s}$ and (r, s) = 1 when K is a field of characteristic 0 and G is a polycyclic - by - finite group.

Sehgal and Zassenhaus say that the group ring RG has no nontrivial idempotent elements if the commutative ring R has nontrivial idempotent elements and every prime divisors of |G| is a non unit of R [6].

Received March 31, 1999.

¹⁹⁹¹ AMS Subject Classification: 20C05.

Key words and phrases: basic group table matrix, represented matrix.

In [3], [4] and [5], we found all idempotent elements in KG and thus we can see that if $\alpha = \sum^{|G|} r(g)g \in KG$ is an idempotent element, then $r(1) = 0, \frac{1}{|G|}, \frac{2}{|G|}, \cdots, \frac{|G|-1}{|G|}, 1$ when K is a algebraically closed field and G is a Klein's four group, finite cyclic group or $Z_n \times Z_n$.

In this paper, let K be a algebraically closed field of characteristic 0. We shall find the units and idempotent elements in the group ring KG and shall say that if $\alpha = \sum r(g)g \in KG$ is an idempotent element, then r(1) = 0, $\frac{1}{|G|}$, $\frac{2}{|G|}$, \cdots , $\frac{|G|-1}{|G|}$, 1 when G is an abelian group $Z_2 \times Z_2 \times Z_2$ or $Z_2 \times Z_4$.

Let R be a ring with unity and $G = \{g_0 = 1, g_1, g_2, \dots, g_{n-1}\}$ be a finite group. From the element $\alpha = \sum_{i=0}^{n-1} r(g_i)g_i$ of the group ring RG, we obtain a following matrix M_{α} by putting $r(g_i)$ in the place of g_i in the basic group table matrix of G.

$$M_{\alpha} = \begin{pmatrix} r(1) & r(g_1) & \cdots & r(g_{n-1}) \\ r(g_1^{-1}) & r(1) & \cdots & \ddots \\ \vdots & & \ddots & \vdots \\ r(g_{n-1}^{-1}) & \ddots & \cdots & r(1) \end{pmatrix}$$

2. $Z_2 \times Z_2 \times Z_2$

In abelian group $Z_2 \times Z_2 \times Z_2$, let $G_0 = (0,0,0), g_1 = (0,0,1),$ $g_2 = (0,1,0), g_3 = (0,1,1), g_4 = (1,0,0), g_5 = (1,0,1), g_6 = (1,1,0), g_7 = (1,1,1)$. Then the represented matrix M_{α} of the element $\alpha = \sum_{i=0}^{7} r_i g_i$ of the group ring $K(Z_2 \times Z_2 \times Z_2)$ is as following

$$M_{\alpha} = \left(\begin{array}{ccc} A & \vdots & B \\ \cdots & \cdots & \cdots \\ B & \vdots & A \end{array} \right)$$

where

$$A = \begin{pmatrix} r_0 & r_1 & r_2 & r_3 \\ r_1 & r_0 & r_3 & r_2 \\ r_2 & r_3 & r_0 & r_1 \\ r_3 & r_2 & r_1 & r_0 \end{pmatrix}, \quad B = \begin{pmatrix} r_4 & r_5 & r_6 & r_7 \\ r_5 & r_4 & r_7 & r_6 \\ r_6 & r_7 & r_4 & r_5 \\ r_7 & r_6 & r_5 & r_4 \end{pmatrix}.$$

And thus

$$M_{\alpha} = \begin{pmatrix} I & \vdots & I \\ \vdots & \vdots & I \\ I & \vdots & -I \end{pmatrix}^{-1} \begin{pmatrix} A+B & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & A-B \end{pmatrix} \begin{pmatrix} I & \vdots & I \\ \vdots & \vdots & \ddots & \vdots \\ I & \vdots & -I \end{pmatrix}.$$

Let ξ be a primitive 2th root of unity in K and $\bar{\xi}$ be conjugate to ξ in K.

Let
$$V = \frac{1}{\sqrt{2}}V(1\xi)$$
, $\bar{V} = \frac{1}{\sqrt{2}}V(1\bar{\xi})$, $P_1 = diag(p_1(1)p_1(\xi))$, $P_2 = diag(p_2(1)p_2(\xi))$, $H_1 = diag(h_1(1)h_1(\xi))$

and
$$H_2 = diag(h_2(1)h_2(\xi))$$
 where $V(1\xi)$ is a Vandermonde matrix, $p_1(x) = (r_0 + r_4) + (r_1 + r_5)x$, $p_2(x) = (r_0 - r_4) + (r_1 - r_5)x$, $h_1(x) = (r_2 + r_6) + (r_3 + r_7)x$ and $h_2(x) = (r_2 - r_6) + (r_3 - r_7)x$.

Then

$$A+B=\begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \dots & \dots & \dots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}^{-1}\begin{pmatrix} P_1+H_1 & 0 \\ \dots & \dots & \dots \\ 0 & \vdots & P_1-H_1 \end{pmatrix}\begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \dots & \dots & \dots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}$$

$$A - B = \begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \vdots & \ddots & \ddots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}^{-1} \begin{pmatrix} P_2 + H_2 & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \vdots & P_2 - H_2 \end{pmatrix} \begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \vdots & \ddots & \ddots & \ddots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}.$$

Thus $M_{\alpha} =$

$$\begin{pmatrix} \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \end{pmatrix}^{-1} \begin{pmatrix} P_1 + H_1 : & 0 & \vdots & 0 & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots P_1 - H_1 : & 0 & \vdots & 0 & \vdots \\ 0 & \vdots & 0 & \vdots P_2 + H_2 : & 0 & \vdots \\ 0 & \vdots & 0 & \vdots P_2 + H_2 : & 0 & \vdots \\ 0 & \vdots & 0 & \vdots P_2 - H_2 \end{pmatrix} \begin{pmatrix} \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar{V} \\ \vdots \\ \bar{V} : \bar$$

Since $det M_{\alpha} =$

 $[p_1(1)^2 - h_1(1)^2][p_1(\xi)^2 - h_1(\xi)^2][p_2(1)^2 - h_2(1)^2][p_2(\xi)^2 - h_2(\xi)^2],$ we have that M_{α} is a unit if and only if

$$p_1(1) \neq \pm h_1(1),$$
 $p_1(\xi) \neq \pm h_1(\xi),$ $p_2(1) \neq \pm h_2(1)$ and $p_2(\xi) \neq \pm h_2(\xi).$

Therefore we have the following Theorem.

THEOREM 2.1. Let $\alpha = \sum_{i=0}^{7} r_i g_i \in K(Z_2 \times Z_2 \times Z_2)$. α is a unit if and only if

$$(r_0 + r_1) + (r_2 + r_3) \neq \pm [(r_4 + r_5) + (r_6 + r_7)],$$

 $(r_0 + r_1) - (r_2 + r_3) \neq \pm [(r_4 + r_5) - (r_6 + r_7)],$
 $(r_0 - r_1) + (r_2 - r_3) \neq \pm [(r_4 - r_5) + (r_6 - r_7)]$ and
 $(r_0 - r_1) - (r_2 - r_3) \neq \pm [(r_4 - r_5) - (r_6 - r_7)].$

THEOREM 2.2. Let $\alpha = \sum_{i=0}^{7} r_i g_i \in K(Z_2 \times Z_2 \times Z_2)$. Then α is an idempotent element if and only if

$$(r_0+r_1)+(r_2+r_3)+(r_4+r_5)+(r_6+r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0+r_1)+(r_2+r_3)-(r_4+r_5)-(r_6+r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0+r_1)-(r_2+r_3)+(r_4+r_5)-(r_6+r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0+r_1)-(r_2+r_3)-(r_4+r_5)+(r_6+r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0-r_1)+(r_2-r_3)+(r_4-r_5)+(r_6-r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0-r_1)+(r_2-r_3)-(r_4-r_5)-(r_6-r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0-r_1)-(r_2-r_3)-(r_4-r_5)+(r_6-r_7)=0 \quad \text{or} \quad 1,$$

$$(r_0-r_1)-(r_2-r_3)-(r_4-r_5)+(r_6-r_7)=0 \quad \text{or} \quad 1.$$

Proof. Since $\alpha = \sum_{i=0}^{n} r_i g_i \in K(Z_2 \times Z_2 \times Z_2)$ is an idempotent element if and only if $M_{\alpha}^2 = M_{\alpha}$, we have that α is an idempotent

element if and only if

$$p_1(1) + h_1(1) = 0 \quad \text{or} \quad 1,$$

$$p_1(1) - h_1(1) = 0 \quad \text{or} \quad 1,$$

$$p_1(\xi) + h_1(\xi) = 0 \quad \text{or} \quad 1,$$

$$p_1(\xi) - h_1(\xi) = 0 \quad \text{or} \quad 1,$$

$$p_2(\xi^2) + h_2(\xi^2) = 0 \quad \text{or} \quad 1,$$

$$p_2(\xi^2) - h_2(\xi^2) = 0 \quad \text{or} \quad 1,$$

$$p_2(\xi^3) + h_2(\xi^3) = 0 \quad \text{or} \quad 1 \quad \text{and}$$

$$p_2(\xi^3) - h_2(\xi^3) = 0 \quad \text{or} \quad 1.$$

where $p_1(x) = (r_0 + r_4) + (r_1 + r_5)x$, $p_2(x) = (r_0 - r_4) + (r_1 - r_5)x$, $h_1(x) = (r_2 + r_6) + (r_3 + r_7)x$, $h_2(x) = (r_2 - r_6) + (r_3 - r_7)x$ and ξ is a primitive 2th root of unity in K.

From theorem2.2 we have the following theorem.

THEOREM 2.3. Let $\alpha = \sum_{i=0}^{7} r_i g_i \in K(Z_2 \times Z_2 \times Z_2)$. Then if α is an idempotent element, then

$$r_0=0,\frac{1}{8},\frac{2}{8},\cdots,\frac{7}{8},1$$

3. $Z_2 \times Z_4$

In $Z_2 \times Z_4$, let $g_0 = (0,0), g_1 = (0,1), g_2 = (0,2), g_3 = (0,3), g_4 = (1,0), g_5 = (1,1), g_6 = (1,2), g_7 = (1,3)$, then the represented matrix M_{α} of the element $\alpha = \sum_{i=0}^{7} r_i g_i$ of the group ring $K(Z_2 \times Z_4)$ is an following

$$M_{\alpha} = \begin{pmatrix} A & \vdots & B \\ \dots & \dots & \dots \\ B & \vdots & A \end{pmatrix}$$

where

$$A = \begin{pmatrix} r_0 & r_1 & r_2 & r_3 \\ r_3 & r_0 & r_1 & r_2 \\ r_2 & r_3 & r_0 & r_1 \\ r_1 & r_2 & r_3 & r_0 \end{pmatrix}, \quad B = \begin{pmatrix} r_4 & r_5 & r_6 & r_7 \\ r_7 & r_4 & r_5 & r_6 \\ r_6 & r_7 & r_4 & r_5 \\ r_5 & r_6 & r_7 & r_4 \end{pmatrix}.$$

$$\begin{split} A &= \frac{1}{2}V(1\xi\xi^2\xi^3)diag(p(1)p(\xi)p(\xi^2)p(\xi^3))\frac{1}{2}V(1\bar{\xi}\bar{\xi}^2\bar{\xi}^3) \\ B &= \frac{1}{2}V(1\xi\xi^2\xi^3)diag(h(1)h(\xi)h(\xi^2)h(\xi^3))\frac{1}{2}V(1\bar{\xi}\bar{\xi}^2\bar{\xi}^3) \end{split}$$

where ξ is a primitive 4th root of unity in K, $\bar{\xi}$ is conjugate to ξ in K, $V(1\xi\xi^2\xi^3)$ is a Vandermonde matrix, $p(x) = r_0 + r_1x + r_2x^2 + r_3x^3$ and $h(x) = r_4 + r_5x + r_6x^2 + r_7x^3$.

Let $V = \frac{1}{2}V(1\xi\dot{\xi}^2\dot{\xi}^3)$, $\bar{V} = \frac{1}{2}V(1\xi\bar{\xi}^2\bar{\xi}^3)$, $P = diag(p(1)p(\xi)p(\xi^2)p(\xi^3))$ and $H = diag(h(1)h(\xi)h(\xi^2)h(\xi^3))$. Then

$$M_{\alpha} = \begin{pmatrix} VP\bar{V} & \vdots & VH\bar{V} \\ \dots & \dots & \dots \\ VH\bar{V} & \vdots & VP\bar{V} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \vdots & \ddots & \ddots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}^{-1} \begin{pmatrix} P+H & \vdots & 0 \\ \vdots & \ddots & \ddots \\ 0 & \vdots & P-H \end{pmatrix} \begin{pmatrix} \bar{V} & \vdots & \bar{V} \\ \vdots & \ddots & \ddots \\ \bar{V} & \vdots & -\bar{V} \end{pmatrix}$$

Since

Since
$$P \pm H = \begin{pmatrix} p(1) \pm h(1) & 0 & 0 & 0 & 0 \\ 0 & p(\xi) \pm h(\xi) & 0 & 0 & 0 \\ 0 & 0 & p(\xi^2) \pm h(\xi^2) & 0 & 0 \\ 0 & 0 & 0 & p(\xi^2) \pm h(\xi^2) & 0 \\ 0 & 0 & 0 & p(\xi^3) \pm h(\xi^3) \end{pmatrix}$$

$$det M_{\alpha} = |P + H||P - H|$$

$$= [p(1)^{2} - h(1)^{2}][p(\xi)^{2} - h(\xi)^{2}][p(\xi^{2})^{2} - h(\xi^{2})^{2}][p(\xi^{3})^{2} - h(\xi^{3})^{2}]$$

Therefore we have the following theorems.

THEOREM 3.1. Let $\alpha = \sum_{i=0}^{7} r_i g_i \in K(Z_2 \times Z_4)$. Then α is a unit if and only if

$$p(1) \neq \pm h(1),$$

 $p(\xi) \neq \pm h(\xi),$
 $p(\xi^2) \neq \pm h(\xi^2)$ and
 $p(\xi^3) \neq \pm h(\xi^3),$

where ξ is a primitive 4th root of unity in K, $p(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3$ and $h(x) = r_4 + r_5 x + r_6 x^2 + r_7 x_3$.

THEOREM 3.2. Let $\alpha = \sum_{i=0}^{7} r_i g_i \in K(Z_2 \times Z_4)$. Then α is an idempotent element if and only if

$$p(1) + h(1) = 0 \quad \text{or} \quad 1,$$

$$p(1) - h(1) = 0 \quad \text{or} \quad 1,$$

$$p(\xi) + h(\xi) = 0 \quad \text{or} \quad 1,$$

$$p(\xi) - h(\xi) = 0 \quad \text{or} \quad 1,$$

$$p(\xi^2) + h(\xi^2) = 0 \quad \text{or} \quad 1,$$

$$p(\xi^2) - h(\xi^2) = 0 \quad \text{or} \quad 1,$$

$$p(\xi^3) + h(\xi^3) = 0 \quad \text{or} \quad 1 \quad \text{and}$$

$$p(\xi^3) - h(\xi^3) = 0 \quad \text{or} \quad 1,$$

where ξ is a primitive 4th root of unity in K, $p(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3$ and $h(x) = r_4 + r_5 x + r_6 x^2 + r_7 x_3$.

From Theorem3.2, we have the following theorem.

THEOREM 3.3. If $\alpha=\sum_{i=0}^7 r_ig_i\in K(Z_2\times Z_4)$ is and idempotent element, then $r_0=0,\frac{1}{8},\frac{2}{8},\cdots \frac{7}{8},1$.

References

- 1. G.H.Cliff and S.K.Sehgal, On the trace of an idempotent in group ring, Proc. Amer. Math. Soc. 62 (1977), 11-14.
- D.S. Passman, The Algebraic Structure of Group Rings, J. Weley, New York, 1977.

- 3. Won-Sun Park, On the group ring of Klein's four group, Comm. Korean Math. Soc. 11 (1996), 63-70.
- 4. Won-Sun Park, The units and idempotents in the group ring of a finite cyclic group, Comm. Korean Math. Soc. 12 (1997), 815-864.
- 5. Won-Sun Park and Bok-Hee Im, *Idempotents in the Group Ring* $K(Z_n \times Z_n)$, Korean Ann. Math. 15 (1998), 23-31.
- 6. S.K. Sehgal and H.J.Zassenhaus, Group rings without nontrivial idempotent, Arch Math. 28 (1997), 378-380.
- 7. S.K. Sehgal, Topics in Group Rings, M. Dekker, New York, 1978.