ANTI FUZZY CHARACTERISTIC IDEALS OF A BCK-ALGEBRA

Won Kyun Jeong

The concept of fuzzy sets was introduced by Zadeh [8]. Since then these ideas have been applied to other algebraic structures such as semigroups, groups, rings, etc. Jun et al. [6] introduced the notion of fuzzy characteristic subalgebras/ideals of a BCK-algebra. They proved that a fuzzy ideal μ of a BCK-algebra is a fuzzy characteristic ideal if and only if each level ideal of μ is a characteristic ideal. S. M. Hong and Y. B. Jun [3] introduced the concept of fuzzy characteristic Γ-ideals of a Γ-ring, and they showed that a fuzzy characteristic Γ-ideal is characterized in terms of its level Γ-ideals. Recently, on the other hand, they also [2] defined the notions of anti fuzzy ideals of a BCK-algebra. The present author [5], modifying S. M. Hong and Y. B. Jun's idea, introduced anti fuzzy prime ideals of a commutative BCK-algebra, and proved that every anti fuzzy prime ideal of a commutative BCK-algebra is an anti fuzzy ideal.

In this paper, we define the notion of anti fuzzy characteristic ideals of BCK-algebras, and obtain some results about it.

We begin with several preliminaries definitions and propositions.

Definition 1. An algebra $(X, *, 0)$ of type $(2,0)$ is called a BCK-algebra if it satisfies the following axioms: for all $x, y, z \in X$,

(a) $((x * y) * (x * z)) * (z * y) = 0$,
(b) $(x * (x * y)) * y = 0$,
(c) $x * x = 0$,
(d) $0 * x = 0$,
(e) $x * y = 0$ and $y * x = 0$ imply $x = y$.

Received September 3, 1998. Revised January 9, 1999
1991 Mathematics Subject Classification: 06F35
Key words and phrases. Anti fuzzy ideal, anti fuzzy characteristic ideal, anti fuzzy subalgebra, BCK-algebra
A BCK-algebra can be (partially) ordered by $x \leq y$ if and only if $x * y = 0$. This ordering is called BCK-ordering.

Proposition 1. In any BCK-algebra X, the following hold: for all $x, y, z \in X$,

1. $x * 0 = x$,
2. $(x * y) * z = (x * z) * y$,
3. $x * y \leq x$,
4. $(x * y) * z \leq (x * z) * (y * z)$,
5. $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

Definition 2. [4] A non-empty subset I of a BCK-algebra X is called an ideal of X if

1. $0 \in I$,
2. $x * y \in I$ and $y \in I$ imply $x \in I$.

Definition 3. [8] Let S be a non-empty set. A fuzzy subset μ of S is a function $\mu : S \rightarrow [0, 1]$.

Definition 4. [1] Let μ be a fuzzy subset of S. Then for $t \in [0, 1]$, the level subset of μ is the set $\mu_t = \{x \in S \mid \mu(x) \geq t\}$.

Definition 5. [7] Let X be a BCK-algebra. A fuzzy subset μ of X is called a fuzzy subalgebra of X if

$$\mu(x * y) \geq \min\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.

Definition 6. [7] Let X be a BCK-algebra. A fuzzy subset μ of X is called a fuzzy ideal of X if, for $x, y \in X$,

1. $\mu(0) \geq \mu(x)$,
2. $\mu(x) \geq \min\{\mu(x * y), \mu(y)\}$.

Definition 7. [2] A fuzzy subset μ of a BCK-algebra X is called an anti fuzzy subalgebra of X if

$$\mu(x * y) \leq \max\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.
Proposition 2. [2] Let \(\mu \) be an anti fuzzy subalgebra of a BCK-algebra \(X \). Then \(\mu(0) \leq \mu(x) \) for every \(x \in X \).

Definition 8. [2] A fuzzy subset \(\mu \) of a BCK-algebra \(X \) is called an anti fuzzy ideal of \(X \) if

1. \(\mu(0) \leq \mu(x) \),
2. \(\mu(x) \leq \max\{\mu(x \ast y), \mu(y)\} \),

for all \(x, y \in X \).

Clearly, every anti fuzzy ideal \(\mu \) of a BCK-algebra \(X \) is an anti fuzzy subalgebra of \(X \), but not conversely.

Definition 9. If \(\mu \) is a fuzzy subset of \(X \) and \(\alpha \) is a function from \(X \) into itself, we define a function \(\mu^\alpha \) from \(X \) into \([0, 1]\) by \(\mu^\alpha(x) = \mu(\alpha(x)) \) for every \(x \in X \).

Suppose that \(\mu \) is an anti fuzzy subalgebra of a BCK-algebra \(X \) and \(\alpha \) is an endomorphism of \(X \). Then

\[
\mu^\alpha(x \ast y) = \mu(\alpha(x \ast y)) \\
= \mu(\alpha(x) \ast \alpha(y)) \\
\leq \max\{\mu(\alpha(x)), \mu(\alpha(y))\} \\
= \max\{\mu^\alpha(x), \mu^\alpha(y)\},
\]

for all \(x, y \in X \) and

\[
\mu^\alpha(x) = \mu(\alpha(x)) \\
= \max\{\mu(\alpha(x)), \mu(\alpha(x))\} \\
\geq \mu(\alpha(x) \ast \alpha(x)) \\
= \mu(\alpha(x \ast x)) \\
= \mu^\alpha(0),
\]

for every \(x \in X \). Hence we have the following proposition.

Proposition 3. Let \(\mu \) be an anti fuzzy subalgebra of a BCK-algebra \(X \) and let \(\alpha \) be an endomorphism of \(X \). Then

1. \(\mu^\alpha \) is an anti fuzzy subalgebra of \(X \),
2. \(\mu^\alpha(0) \leq \mu^\alpha(x) \) for every \(x \in X \).
PROPOSITION 4. Let \(\mu \) be an anti fuzzy ideal of \(X \) and let \(\alpha \) be an endomorphism of \(X \). Then the following holds for all \(x, y, z \in X \),

1. if \(x \leq y \), then \(\mu^\alpha(x) \leq \mu^\alpha(y) \).
2. \(\mu^\alpha(x * y) \leq \max\{\mu^\alpha(x * z), \mu^\alpha(z * y)\} \).
3. if \(\mu^\alpha(x * y) = \mu^\alpha(0) \), then \(\mu^\alpha(x) \leq \mu^\alpha(y) \).
4. \(\max\{\mu^\alpha(x * y), \mu^\alpha(y)\} = \max\{\mu^\alpha(x), \mu^\alpha(y)\} \).
5. if \(X \) is bounded, then \(\max\{\mu^\alpha(x), \mu^\alpha(1 * x)\} = \mu^\alpha(1) \).
6. if \(x \leq y \), then \(\mu^\alpha(y) = \max\{\mu^\alpha(y * x), \mu^\alpha(x)\} \).

Proof. (1) If \(x \leq y \), then we have \(x * y = 0 \). Thus,

\[
\mu^\alpha(x) = \mu(\alpha(x)) \\
\leq \max\{\mu(\alpha(x) * \alpha(y)), \mu(\alpha(y))\} \\
= \max\{\mu(0), \mu(\alpha(y))\} \\
= \mu(\alpha(y)) = \mu^\alpha(y).
\]

(2) From (a) of definition of BCK-algebra and (1), we have that \(\mu^\alpha((x * y) * (x * z)) \leq \mu^\alpha(z * y) \). Thus,

\[
\mu^\alpha(x * y) = \mu(\alpha(x * y)) \\
= \mu(\alpha(x) * \alpha(y)) \\
\leq \max\{\mu((\alpha(x) * \alpha(y)) * (\alpha(x) * \alpha(z))), \mu(\alpha(x) * \alpha(z))\} \\
= \max\{\mu^\alpha((x * y) * (x * z)), \mu^\alpha(x * z)\} \\
\leq \max\{\mu^\alpha(z * y), \mu^\alpha(x * z)\}.
\]

(3) Suppose that \(\mu^\alpha(x * y) = \mu^\alpha(0) \). Then

\[
\mu^\alpha(x) = \mu(\alpha(x)) \\
\leq \max\{\mu(\alpha(x) * \alpha(y)), \mu(\alpha(y))\} \\
= \max\{\mu(\alpha(x * y)), \mu(\alpha(y))\} \\
= \max\{\mu^\alpha(x * y), \mu^\alpha(y)\} \\
= \max\{\mu^\alpha(0), \mu^\alpha(y)\} \\
= \max\{\mu(\alpha(0)), \mu(\alpha(y))\} \\
= \max\{\mu(0), \mu(\alpha(y))\} \\
= \mu(\alpha(y)) \\
= \mu^\alpha(y).
\]
(4) Since \(x \ast y \leq x \), we have \(\mu^\alpha(x \ast y) \leq \mu^\alpha(x) \) by (1). On the other hand,

\[
\mu^\alpha(x) = \mu(\alpha(x)) \\
\leq \max\{\mu(\alpha(x) \ast \alpha(y)), \mu(\alpha(y))\} \\
= \max\{\mu(\alpha(x \ast y)), \mu(\alpha(y))\} \\
= \max\{\mu^\alpha(x \ast y), \mu^\alpha(y)\}.
\]

It follows that \(\max\{\mu^\alpha(x \ast y), \mu^\alpha(y)\} = \max\{\mu^\alpha(x), \mu^\alpha(y)\} \).

(5) If \(X \) is bounded, then by (1), \(\mu^\alpha(1) \geq \max\{\mu^\alpha(x), \mu^\alpha(1 \ast x)\} \).

On the other hand,

\[
\mu^\alpha(1) = \mu(\alpha(1)) \\
\leq \max\{\mu(\alpha(1) \ast \alpha(x)), \mu(\alpha(x))\} \\
= \max\{\mu(\alpha(1 \ast x)), \mu(\alpha(x))\} \\
= \max\{\mu^\alpha(1 \ast x), \mu^\alpha(x)\}.
\]

Hence (5) holds.

(6) is obtained from (1) and (4).

Proposition 5. Let \(\mu \) be an anti fuzzy ideal of \(X \) and let \(\alpha : X \rightarrow X \) be an onto homomorphism. Then \(\mu^\alpha \) is an anti fuzzy ideal of \(X \).

Proof. For all \(x \in X \), we have that

\[
\mu^\alpha(x) = \mu(\alpha(x)) \geq \mu(0) = \mu(\alpha(0)) = \mu^\alpha(0).
\]

Next for any \(x, y \in X \),

\[
\mu^\alpha(x) = \mu(\alpha(x)) \leq \max\{\mu(\alpha(x) \ast y), \mu(y)\}.
\]

Since \(\alpha \) is onto, there is \(z \in X \) such that \(\alpha(z) = y \). It follows that

\[
\mu^\alpha(x) \leq \max\{\mu(\alpha(x) \ast z), \mu(z)\} \\
= \max\{\mu(\alpha(x) \ast \alpha(z)), \mu(\alpha(z))\} \\
= \max\{\mu(\alpha(x \ast z)), \mu(\alpha(z))\} \\
= \max\{\mu^\alpha(x \ast z), \mu^\alpha(z)\}.
\]

Since \(y \) is an arbitrary element of \(X \), the above result is true for all \(z \in X \), i.e., \(\mu^\alpha(x) \leq \max\{\mu^\alpha(x \ast z), \mu^\alpha(z)\} \) for all \(x, z \in X \). Thus \(\mu^\alpha \) is an anti fuzzy ideal of \(X \).
Definition 10. An anti fuzzy subalgebra (ideal) \(\mu \) of \(X \) is called an anti fuzzy characteristic subalgebra (ideal) of \(X \) if \(\mu(\alpha(x)) = \mu(x) \) for all \(x \in X \) and all \(\alpha \in \text{Aut}(X) \).

Definition 11. [2] Let \(\mu \) be a fuzzy subset of a BCK-algebra \(X \). Then for \(t \in [0,1] \), the set

\[
\mu^t := \{ x \in X \mid \mu(x) \leq t \}
\]

is called the lower \(t \)-level cut of \(\mu \).

Proposition 6. [2] Let \(\mu \) be a fuzzy subset of a BCK-algebra \(X \). Then it is an anti fuzzy ideal of \(X \) if and only if for every \(t \in [0,1] \), \(t \geq \mu(0) \), the lower \(t \)-level cut \(\mu^t \) is an ideal of \(X \).

Proposition 7. Let \(\mu \) be an anti fuzzy characteristic subalgebra of a BCK-algebra \(X \). Then each lower \(t \)-level cut of \(\mu \) is a characteristic subalgebra of \(X \).

Proof. Let \(t \in \text{Im}(\mu) \), \(\alpha \in \text{Aut}(X) \) and \(x \in \mu^t \). Since \(\mu \) is an anti fuzzy characteristic subalgebra of \(X \), we have \(\mu(\alpha(x)) = \mu(x) \leq t \). It follows that \(\alpha(x) \in \mu^t \) and hence \(\alpha(\mu^t) \subseteq \mu^t \). To show the reverse inclusion, let \(x \in \mu^t \) and let \(y \in X \) be such that \(\alpha(y) = x \). Then \(\mu(y) = \mu(\alpha(y)) = \mu(x) \leq t \), so \(y \in \mu^t \). It follows that \(x = \alpha(y) \in \alpha(\mu^t) \). Hence \(\mu^t \subseteq \alpha(\mu^t) \). Thus \(\mu^t \) is a characteristic subalgebra of \(X \), for each \(t \in \text{Im}(\mu) \).

The proof of the following lemma is obvious, and we omit the proof.

Lemma 1. Let \(\mu \) be an anti fuzzy subalgebra (ideal) of \(X \) and let \(x \in X \). Then \(\mu(x) = t \) if and only if \(x \in \mu^t \) and \(x \not\in \mu^s \) for all \(s < t \).

Now we consider the converse of Proposition 7.

Proposition 8. Let \(\mu \) be an anti fuzzy subalgebra of \(X \). If each lower \(t \)-level cut \(\mu^t \) is a characteristic subalgebra of \(X \), then \(\mu \) is an anti fuzzy characteristic subalgebra of \(X \).

Proof. Let \(x \in X \), \(\alpha \in \text{Aut}(X) \) and \(\mu(x) = t \). Then \(x \in \mu^t \) and \(x \not\in \mu^s \) for all \(s < t \), by Lemma 1. Since \(\alpha(\mu^t) = \mu^t \) by hypothesis, we have \(\alpha(x) \in \mu^t \). Hence \(\mu(\alpha(x)) \leq t \). Let \(s = \mu(\alpha(x)) \). We now show that \(s = t \). Indeed, suppose that \(s < t \). Then \(\alpha(x) \in \mu^s = \alpha(\mu^s) \).
Since α is one-to-one, we have $x \in \mu^\alpha$. This is a contradiction. Thus $\mu(\alpha(x)) = t = \mu(x)$. It follows that μ is an anti fuzzy characteristic subalgebra of X.

The proofs of the following propositions are similar to those of Propositions 7 and 8.

Proposition 9. If μ is an anti fuzzy characteristic subalgebra of X, then each lower t-level cut of μ is a characteristic ideal of X.

Proposition 10. Let μ be an anti fuzzy ideal of X. If each lower t-level cut of μ is a characteristic ideal of X, then μ is an anti fuzzy characteristic ideal of X.

References

Department of Mathematics
College of Natural Science
Kyungpook National University
Taegu 702 - 701, Korea