THE RADIUS OF CONVEXITY FOR THE CLASS $K^{(2)}$

TAE YOUNG SEO AND JINSOOK KANG

1. Introduction

Let S denote the class of functions f of a complex variable z, analytic and univalent in the open unit disk $\Delta = \{z : |z| < 1\}$, and normalized by $f(0) = f'(0) - 1 = 0$ and hence with the Taylor expansion

$$f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots, \quad z \in \Delta.$$

Let K denote the subclass of S consisting of functions f for which $f(\Delta)$ is a convex set. Furthermore, let $S^{(2)}$ denote the class of odd functions in S, i.e., the functions with the expansion

$$g(z) = z + c_3 z^3 + c_5 z^5 + \cdots + c_{2n+1} z^{2n+1} + \cdots, \quad z \in \Delta.$$

For each function $f \in S$, the square root transform

$$g(z) = \sqrt{f(z^2)} = z + c_3 z^3 + c_5 z^5 + \cdots$$

is an odd univalent function. Conversely, it is easy to see that every odd function $g \in S$ is the square-root transform of some $f \in S$. We define $K^{(2)}$ be the class of functions which are square-root transforms of functions in K.

The one of the geometric properties for the class S is that every $f(z)$ in S is not convex. Near the origin each function $f \in S$ is close to the identity mapping. It is to be expected that f will map small circles $|z| = \rho$ onto curves which bound convex domains.

Received August 22, 1998 Revised January 20, 1999
1991 Mathematics Subject Classification 30C45
Key words and phrases. Univalent function, radius of convexity, growth and distortion
Theorem 1.1. [1] For every positive number $\rho \leq 2 - \sqrt{3}$, each function $f \in S$ maps the disc $|z| < \rho$ onto a convex domain. This is false for every $\rho > 2 - \sqrt{3}$.

This number $\rho = 2 - \sqrt{3} = 0.267\ldots$ is called the radius of convexity for the class S. Let $h(z) = z(1-z)^{-1} \in K$. Then we have $\sqrt{h(z^2)} \notin K$, i.e., $K^{(2)}$ is not the subclass of K. Thus we would find the radius of convexity for the class $K^{(2)}$.

2. Preliminaries

Theorem 2.1. ([1], Growth and Distortion theorem) If $f \in S$ and $|z| = r < 1$ then

$$\frac{r}{(1 + r)^2} \leq |f(z)| \leq \frac{r}{(1 - r)^2}$$

and

$$\frac{1 - r}{(1 + r)^3} \leq |f'(z)| \leq \frac{1 + r}{(1 - r)^3}.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the Koebe function.

Theorem 2.2. [1] For each $f \in S$,

$$\frac{1 - r}{1 + r} \leq \left| \frac{zf'(z)}{f(z)} \right| \leq \frac{1 + r}{1 - r}, \quad |z| = r < 1.$$

For each $z \in \Delta, z \neq 0$, equality occurs if and only if f is a suitable rotation of the Koebe function.

Theorem 2.3. For odd functions $h \in S^{(2)}$

$$\frac{r}{1 + r^2} \leq |h(z)| \leq \frac{r}{1 - r^2}$$

and

$$\frac{1 - r^2}{(1 + r^2)^2} \leq |h'(z)| \leq \frac{1 + r^2}{(1 - r^2)^2}, \quad |z| = r < 1.$$

Proof. Let $h(z) = \sqrt{f(z^2)}$ for some $f \in S$, then

$$\sqrt{\frac{r^2}{(1 + r^2)^2}} \leq |h(z)| \leq \sqrt{\frac{r^2}{(1 - r^2)^2}}.$$
The radius of convexity for the class $K^{(2)}$.

Thus

$$\frac{r}{1 + r^2} \leq |h(z)| \leq \frac{r}{1 - r^2}, \quad |z| = r < 1.$$

Since

$$\frac{1 - r}{1 + r} \leq \frac{|z f'(z)|}{f(z)} \leq \frac{1 + r}{1 - r}$$

and

$$\frac{zh'(z)}{h(z)} = \frac{z^2 f'(z^2)}{f(z^2)},$$

$$\frac{1 - r^2}{1 + r^2} \leq \frac{|zh'(z)|}{h(z)} \leq \frac{1 + r^2}{1 - r^2}$$

and

$$|h'(z)| = \left| \frac{z f'(z^2) h(z)}{f(z^2)} \right|, \quad |z| = r < 1.$$

Thus

$$\frac{1 - r^2}{(1 + r^2)^2} \leq |h'(z)| \leq \frac{1 + r^2}{(1 - r^2)^2}, \quad |z| = r < 1.$$

3. Main Results

Lemma 3.1. For each $f \in K$,

$$\frac{1}{(1 + r)^2} \leq |f'(z)| \leq \frac{1}{(1 - r)^2}, \quad |z| = r < 1.$$

For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the function $l(z) = z(1 - z)^{-1}$.

Lemma 3.2. For convex function $f \in K$,

$$\frac{r}{1 + r} \leq |f(z)| \leq \frac{r}{1 - r}, \quad |z| = r < 1,$$

with equality occurring only for functions of the form

$$f(z) = \frac{z}{1 - e^{i\varphi} z}, \quad 0 \leq \varphi \leq 2\pi.$$

The growth of $K^{(2)}$ would be obtained by the following theorem.
Theorem 3.3. For $h \in K^{(2)}$,
\[
\frac{r}{\sqrt{1 + r^2}} \leq |h(z)| \leq \frac{r}{\sqrt{1 - r^2}}, \quad |z| = r < 1.
\]

Proof. Let $h(z) = \sqrt{f(z^2)}$ and $f \in K$. Then by Lemma 3.2,
\[
|h(z)| = |\sqrt{f(z^2)}| \leq \sqrt{\frac{r^2}{1 - r^2}} = \frac{r}{\sqrt{1 - r^2}}
\]
and
\[
\frac{r}{\sqrt{1 + r^2}} \leq |h(z)|, \quad |z| = r < 1.
\]
If $h \in K^{(2)}$, then we have
\[
\frac{r}{1 + r} \leq \frac{r}{\sqrt{1 + r^2}} \leq |h(z)| \leq \frac{r}{\sqrt{1 - r^2}} \leq \frac{r}{1 - r}, \quad |z| = r < 1
\]
But $K^{(2)}$ is not the subclass of convex functions.

Lemma 3.4. For each $f \in K$,
\[
\frac{1}{1 + r} \leq \left| \frac{zf'(z)}{f(z)} \right| \leq \frac{1}{1 - r}, \quad |z| = r < 1.
\]
For each $z \in \Delta$, $z \neq 0$, equality occurs if and only if f is a suitable rotation of the function $l(z) = z/(1 - z)$.

Lemma 3.5. For each $f \in K$,
\[
-\frac{2r}{1 + r} \leq \Re \left\{ \frac{zf''(z)}{f'(z)} \right\} \leq \frac{2r}{1 - r}, \quad |z| = r < 1.
\]

Theorem 3.6. For every positive number $\sigma \leq \sqrt{5 - \sqrt{17}/2}$, each function $h \in K^{(2)}$ maps the disk $\Delta_\sigma = \{z : |z| < \sigma\}$ onto a convex domain and $\sqrt{5 - \sqrt{17}/2} > 2 - \sqrt{3}$

Proof. For each $f \in K$ and $h = \sqrt{f(z^2)} \in K^{(2)}$,
\[
\Re \left\{ 1 + \frac{zh''(z)}{h'(z)} \right\} = \Re \left\{ 2 + \frac{2zf''(z^2)}{f'(z^2)} - \frac{z^2f'(z^2)}{f(z^2)} \right\}
\]
and
\[\text{Re} \left\{ 1 + \frac{zh''(z)}{h'(z)} \right\} > 0, \quad |z| = r < \frac{\sqrt{5} - \sqrt{17}}{2} \]

by Lemma 3.4 and 3.5. Thus \(h \) maps such a disk \(\{ z : |z| < \sqrt{5 - \sqrt{17}} / 2 \} \) onto a convex domain.

Acknowledgements

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022 and this work was supported by Pusan National University Research Grant,1998.

References

Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail : tyseo@hyowon.pusan.ac.kr