A NOTE ON MORLEY'S FORMULA

YOUNG JOON CHO, INHYOK PARK,
TAE YOUNG SEO AND JUNESANG CHOI

Abstract Morley provided an interesting identity about 20 years earlier before its more generalized form was given by Dixon. In this note some of its generalized forms and an application of Morley's formula are considered.

1. Introduction and preliminaries

In 1902, Morley [10] established an interesting identity:

\[(1.1) \ 1 + \sum_{n=1}^{\infty} \left\{ \frac{a(a+1) \cdots (a+n-1)}{n!} \right\}^3 = \cos \left(\frac{1}{2} \pi a \right) \frac{\Gamma \left(1 - \frac{3}{2} a \right)}{\Gamma \left(1 - \frac{1}{2} a \right)^3}, \]

where \(\Gamma \) is the well-known Gamma function whose Weierstrass canonical product form is

\[(1.2) \ \Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right)^{-1} e^{z/n}, \]

\(\gamma \) being the Euler-Mascheroni's constant defined by

\[(1.3) \ \gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \approx 0.577 215 664 901 532. \]

Received March 30, 1999 Revised June 2, 1999

1991 Mathematics Subject Classification Primary 40-00 Secondary 33B15, 33C05

Key words and phrases Polygamma functions, hypergeometric series, Stirling numbers
If we make use of the Pochhammer symbol (or the shifted factorial) defined by

\[(\alpha)_n := \begin{cases} \alpha(\alpha + 1) \cdots (\alpha + n - 1) & (n \in \mathbb{N} := \{1, 2, 3, \cdots \}) \\ 1 & (n = 0) \end{cases} \]

which, using the fundamental property of the Gamma function \(\Gamma(z + 1) = z\Gamma(z)\), is rewritten in the form:

\[(\alpha)_n = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)}, \]

and the generalized hypergeometric function notation \(pF_q\), we write the left member of (1.1) in the following form

\[1 + \sum_{n=1}^{\infty} \left\{ \frac{\alpha(\alpha + 1) \cdots (\alpha + n - 1)}{n!} \right\}^3 = 1 + \sum_{n=1}^{\infty} \left(\frac{(\alpha)_n}{n!} \right)^3 = 3F_2 \left[\begin{array}{c} \alpha, a, a; \\ 1, 1; 1 \end{array} \right]. \]

In 1922, Dixon evaluated a more general form of (1.6):

\[3F_2 \left[\begin{array}{c} \alpha, \beta, \gamma; \\ 1 + \alpha - \beta, 1 + \alpha - \gamma, \end{array} \right] = \frac{\Gamma(1 + \frac{1}{2} \alpha) \Gamma(1 + \alpha - \beta) \Gamma(1 + \alpha - \gamma) \Gamma(1 + \frac{1}{2} \alpha - \beta - \gamma)}{\Gamma(1 + \alpha) \Gamma(1 + \frac{1}{2} \alpha - \beta) \Gamma(1 + \alpha - \gamma) \Gamma(1 + \alpha - \beta - \gamma)}, \]

which, for \(\alpha = \beta = \gamma = a\), yields

\[3F_2 \left[\begin{array}{c} a, a, a; \\ 1, 1; 1 \end{array} \right] = \frac{\Gamma(1 + \frac{1}{2} a) \Gamma(1 - \frac{3}{2} a)}{\Gamma(1 + a) \Gamma(1 - a) \{\Gamma(1 - \frac{1}{2} a)\}^2}, \]

which is easily seen to correspond with the right member of (1.1) by using the following well-known identity:

\[\Gamma(1 + z) \Gamma(1 - z) = \frac{\pi z}{\sin(\pi z)}. \]
In this note we consider some more generalized forms of (1.6) and show how these kinds of summation formulas can be applied to evaluate certain infinite series.

Now we introduce the Psi (or Digamma) function is defined as the logarithmic derivative of the Gamma function:

$$\psi(z) := \frac{d}{dz} \log \Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)}.$$

We give some well-known properties of the $\psi-$function (see [7]): For a positive integer n,

$$\psi(1) = -\gamma, \quad \psi(1/2) = -\gamma - 2 \log 2,$$

$$\psi(z + n) - \psi(z) = \sum_{k=0}^{n-1} \frac{1}{z + k}.$$

The Polygamma functions are defined by (see [7, p. 41])

$$\psi^{(n)}(z) := \begin{cases}
\frac{d^{n+1}}{dz^{n+1}} \log \Gamma(z) = \frac{d^n \psi(z)}{dz^n} & (n \in \mathbb{N}) \\
\psi(z) & (n = 0)
\end{cases}$$

from which it is easy to show that

$$\psi^{(n)}(z) = (-1)^{n+1} n! \sum_{k=0}^{\infty} \frac{1}{(k + z)^{n+1}} = (-1)^{n+1} n! \zeta(n + 1, z) \quad (n \in \mathbb{N}),$$

where $\zeta(z, a)$ is the generalized (or Hurwitz) zeta function defined by

$$\zeta(z, a) = \sum_{k=0}^{\infty} (k + a)^{-z} \quad (\text{Re}(z) > 1; \ a \neq 0, -1, -2, \ldots)$$

and $\zeta(z, 1) = \zeta(z)$ is the Riemann zeta function. It is not difficult to derive the following results (see [15, pp. 265-275]):

$$\zeta(z) = \frac{1}{1 - 2^{-z}} \sum_{k=1}^{\infty} \frac{1}{(2k - 1)^z} = \frac{1}{2^z - 1} \zeta\left(z, \frac{1}{2}\right) \quad (\text{Re}(z) > 1),$$

$$\zeta(z, a) = \zeta(z, n + a) + \sum_{k=0}^{n-1} (k + a)^{-z} \quad (n \in \mathbb{N}).$$
2. Generalized forms of (1.6)

Recall the formula [14, p. 251]:

\[
\begin{align*}
\genfrac{[}{]}{0pt}{}{5}{4} & \left[1 + a - b, 1 + a - c, 1 + a - d, 1 + a - e; 1 \right] \\
& = \frac{\Gamma(1 + a - c)\Gamma(1 + a - d)\Gamma(1 + a - e)\Gamma(1 + a - c - d - e)}{\Gamma(1 + a)\Gamma(1 + a - d - e)\Gamma(1 + a - c - d)\Gamma(1 + a - c - e)} \\
& \times \genfrac{[}{]}{0pt}{}{4}{3} \left[1 + \frac{1}{2}a - b, c, d, e; 1 \right] \\
& \times \genfrac{[}{]}{0pt}{}{4}{3} \left[1 + \frac{1}{2}a, c + d + e - a, 1 + a - b; 1 \right]
\end{align*}
\]

which is subject to the restriction that one of the parameters \(1 + \frac{1}{2}a - b, c, d,\) or \(e\) is a negative integer.

Taking the limit as \(b \to \infty\) in (2.1) with the help of the asymptotic formula

\[
\frac{\Gamma(z + \alpha)}{\Gamma(z + \beta)} = z^{\alpha - \beta} \left[1 + O \left(\frac{1}{z} \right) \right] \quad (z \to \infty; \quad |\arg z| < \pi),
\]

we obtain

\[
\begin{align*}
\genfrac{[}{]}{0pt}{}{4}{3} & \left[1 + a - c, 1 + a - d, 1 + a - e; 1 \right] \\
& = \frac{\Gamma(1 + a - c)\Gamma(1 + a - d)\Gamma(1 + a - e)\Gamma(1 + a - c - d - e)}{\Gamma(1 + a)\Gamma(1 + a - d - e)\Gamma(1 + a - c - d)\Gamma(1 + a - c - e)} \\
& \times \genfrac{[}{]}{0pt}{}{3}{2} \left[1 + \frac{1}{2}a, c + d + e - a; 1 \right]
\end{align*}
\]

If we take the limit as \(c \to \infty\) in (2.3) with the help of (2.2) and use Gauss summation formula

\[
\genfrac{[}{]}{0pt}{}{2}{1} \left[\begin{array}{c}
a, b; \\
c; \end{array} 1 \right] = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)},
\]

we obtain
we obtain Dixon's formula (1.7).

Exchanging \(b \) and \(e \), and then writing \(e = \frac{1}{2}(1 + a) \), we obtain a transformation formula for \(4F_3 \).

\[
\begin{align*}
{4}F{3} \left[\begin{array}{c}
1 + a - b, 1 + a - c, 1 + a - d, 1 \\
\end{array} \right] & \left[\begin{array}{c}
a, b, c, d; \\
\end{array} \right] \\
\Gamma(1 + a - b)\Gamma(1 + a - c)\Gamma(1 + a - d)\Gamma(1 + a - b - c - d) \\
\Gamma(1 + a)\Gamma(1 + a - b - c)\Gamma(1 + a - b - d)\Gamma(1 + a - c - d)
\end{align*}
\]

(2.5)

\[
\times _{4}F_{3} \left[\begin{array}{c}
\frac{1}{2}, b, c, d; \\
1 + \frac{1}{2}a, \frac{1}{2} + \frac{1}{2}a, b + c + d - a; \\
\end{array} \right] ,
\]

which is subject to the restriction that one of the parameters \(b, c, \) or \(d \) is a negative integer.

3. Infinite series

Many infinite series have been evaluated in terms of the Psi functions or the Zeta functions (see [8] and [9]).

Al-Saqabi et al. [1] presented a systematic account of several interesting infinite series expressed in terms of the Psi (or Digamma) functions. Aular de Durán et al. [2] examined rather systematically the sums of numerous interesting families of infinite series with or without the use of fractional calculus.

Shen [12] investigated the connections between the Stirling numbers \(s(n, k) \) of the first kind and the Riemann zeta function \(\zeta(n) \) by means of the Gauss summation formula for \(2F_1 \). In this line, various classes of infinite series have been evaluated by making use of known summation formulas for \(2F_1 \) and \(3F_2 \) (see [3], [4], and [5]).

In this section we also evaluate certain infinite series by using the formula (1.8).

For our purpose we introduce the Stirling numbers \(s(n, k) \) of the first kind defined by the following equation (see [6, pp. 204-218], [11],...
From the above definition of $s(n, k)$, the Pochhammer symbol (or the shifted factorial) can be written in the form:

\[(3.1) \quad (z)_n = z(z + 1) \cdots (z + n - 1) = \sum_{k=0}^{n} (-1)^n s(n, k) z^k\]

It is also not difficult to see that

\[(3.2) \quad (-1)^{n+1}s(n, 1) = (n - 1)!; \quad (-1)^n s(n, 2) = (n - 1)! \sum_{k=1}^{n} \frac{1}{k}; \quad (-1)^{n+1}s(n, 3) = \frac{(n-1)!}{2} \left\{ \left(\sum_{k=1}^{n-1} \frac{1}{k} \right)^2 - \sum_{k=1}^{n-1} \frac{1}{k^2} \right\}.\]

Replace a by z in (1.8) and set

\[f(z) := 1 + \sum_{n=1}^{\infty} \left(\frac{(z)_n}{n!} \right)^3\]

\[(A) \quad f(z) = \frac{\Gamma \left(\frac{1}{2} \right) \Gamma \left(1 - \frac{3}{2} z \right)}{\Gamma \left(1 + z \right) \Gamma \left(1 - z \right) \left\{ \Gamma \left(1 - \frac{1}{2} z \right) \right\}^2} =: \sum_{n=0}^{\infty} a_n z^n.\]

From (3.1),

\[(B) \quad (z)_n = \sum_{k=0}^{n} A_k z^k,\]
where

\[A_k = (-1)^{n+k} s(n, k). \]

We therefore have

\[
(C) \quad f(z) = 1 + \sum_{n=1}^{\infty} \left(\alpha_3 z^3 + \alpha_4 z^4 + \alpha_5 z^5 + \cdots \right),
\]

where

\[
\alpha_3 = \frac{A_1^3}{(n!)^3} = \frac{1}{n^3},
\]

\[
\alpha_4 = \frac{3A_1^2 A_2}{(n!)^3} = \frac{3}{n^3} \left(\sum_{k=1}^{n-1} \frac{1}{k} \right),
\]

\[
\alpha_5 = \frac{3 A_1 \left(A_1 A_3 + A_2^2 \right)}{(n!)^3} = \frac{3}{2n^3} \left[3 \left(\sum_{k=1}^{n-1} \frac{1}{k} \right)^2 - \sum_{k=1}^{n-1} \frac{1}{k^2} \right].
\]

Applying the logarithmic derivative to (A) leads immediately to

\[
(D) \quad \frac{f'(z)}{f(z)} = \frac{1}{2} \psi \left(1 + \frac{1}{2} z \right) - \frac{3}{2} \psi \left(1 - \frac{3}{2} z \right)
\]

\[- \psi(1 + z) + \psi(1 - z) + \psi \left(1 - \frac{1}{2} z \right). \]

The application of (1.13) to (D) yields

\[
(E) \quad \frac{f'(z)}{f(z)} := \sum_{n=0}^{\infty} c_n z^n,
\]

where \(c_0 = 0 \) and

\[
(F) \quad c_n = \left[\frac{(-1)^{n+1} - 2}{2n+1} + (-1)^n - 1 + \left(\frac{3}{2} \right)^{n+1} \right] \zeta(n+1) \quad (n \in \mathbb{N}).
\]
From (A) and (E), we have

\[f'(z) = \sum_{n=0}^{\infty} (n + 1)a_{n+1}z^n \]

\[= \frac{f'(z)}{f(z)} \cdot f(z) = \left(\sum_{n=0}^{\infty} c_n z^n \right) \left(\sum_{n=0}^{\infty} a_n z^n \right) \]

\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_{n-k}c_k \right) z^n, \]

which, upon equating the coefficients of \(z^n \), yields

\[(G) \quad (n + 1)a_{n+1} = \sum_{k=0}^{n} a_{n-k}c_k \quad (n \in \mathbb{N}). \]

Note also that

\[(H) \quad a_1 = \frac{f'(0)}{1!} = \frac{f''(0)}{f(0)} = c_0. \]

Now, using (F) to (H), we obtain \(\alpha_2 = 0 \), and

\[(I) \quad a_3 = \zeta(3), \quad a_4 = \frac{3}{4} \zeta(4), \quad a_5 = \frac{3}{2} \zeta(5), \ldots. \]

Finally, from (C) and (I), we have

\[(3.3) \quad \sum_{n=1}^{\infty} \frac{1}{n^3} \left(\sum_{k=1}^{n} \frac{1}{k} \right) = \frac{5}{4} \zeta(4), \]

which was evaluated in an elementary way by using the formula (1.6) (see Morley [10, p. 402, Eq.(6)]);

\[(3.4) \quad \sum_{n=1}^{\infty} \frac{1}{n^3} \left[3 \left(\sum_{k=1}^{n-1} \frac{1}{k} \right)^2 - \sum_{k=1}^{n-1} \frac{1}{k^2} \right] = \zeta(5). \]
Or, equivalently, (3.4) is rewritten in the form

\[
(3.5) \quad \sum_{n=1}^{\infty} \frac{1}{n^3} \left[3 \left(\sum_{k=1}^{n} \frac{1}{k} \right)^2 - \sum_{k=1}^{n} \frac{1}{k^2} \right] = 6 \sum_{n=1}^{\infty} \frac{1}{n^4} \left(\sum_{k=1}^{n} \frac{1}{k} \right) - 3\zeta(5).
\]

Acknowledgments

The first and third-named authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022.

References

[10] F. Morley, *On the series* \(1 + \left(\frac{x}{2} \right)^3 + \left[x(x+1) \right]^3 \), Proc. London Math. Soc. (1) 34 (1902), 397–402.

[12] Li-Chien Shen, Remarks on some integrals and series involving the Stirling numbers and $\zeta(n)$, Trans Amer Math Soc. 347 (1995), 1391-1399

Young Joon Cho, Inhyok Park and Tae Young Seo
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: tyseo@hyowon.pusan.ac.kr

Junesang Choi
Department of Mathematics
Dongguk University
Kyongju 780-714, Korea
E-mail: junesang@email.dongguk.ac.kr