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COMMON FIXED POINTS OF
®-CONTRACTIVE MAPPINGS

KaNG Hak KM, SHIN MIN KANG AND YEOL JE CHO

ABSTRACT In this paper, we give some common fixed point theorems
for compatible mappings 1n metric spaces, and also give an example
to 1llustrate our man theorems Our results extend the results of S
M Kang, Y. J Choand G Jungck [9].

1. Introduction

The most well-known fixed point theorem proved by S. Banach in
1922 is so called the Banach Contraction Principle, which asserts that
any contractive mapping from a complete metric space into 1itself has
a unique fixed point in a complete metric space. By using the more
generalized contractive condition, G. E. Hardy and T. D Rogers [4]
extended the Banach Contraction Prinéiple.

In 1976, G. Jungck [5] nitially proved a common fixed point theorem
for commuting mappings which generalizes the Banach Contraction
Principle

In 1982, S. Sessa {13] mtroduced a generalization of commuting map-
pings, which 1s called weakly commuting mappings, and proved some
common fixed point theorems for these mappings which generalize the
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results of K. M. Das and K. V. Naik {1]. Further, G. Jungck {6] intro-
duced the concept of more generalized commuting mappings, so called
compatible mappings, which is more general than that of weakly com-
muting mappings. The utility of compatibility in the context of fixed
point theory was initially demonstrated in extending a theorem of S.
Park and J S. Bae [12]. By employing compatible mappings instead of
commuting mappings and using four mappings instead of three map-
pings, G. Jungck [7] extended the results of M S. Khan and M. Imdad
{10], S. L. Singh and S. P. Singh {14] and also obtained an interesting
result in his consecutive paper [8].

Also, by using compatible mappings, S. M. Kang, Y. J. Cho and G.
Jungck [9] generalized the results of X. P. Ding [2], M. L. Diviccaro
and S. Sessa (3] and G. Jungck [7) in metric spaces.

In this paper, we give some common fixed point theorems for com-
patible mappings in metric spaces, and also give an example to illus-
trate our main theorems. Our results extend the results of S. M. Kang,
Y. J. Cho and G. Jungek [9].

2. Preliminaries

For some definitions and properties in this paper, we refer to G.
Jungck [6], {7].

DEeFINITION 2.1. Let A-and B be mappings from a metric space
(X, d) into itself. Then the mappings A and B are said to be compatible
if

limm d{ABz,,BAz,) =0

n—oc
when {z,} is a sequence in X such that hm,, o, Az, = litn, .o Bz, =
t for some t in X.

Now, we give some properties of compatible mappings in a metric
space for our main theorems:

PropPOSITION 2.1. Let A and B be compatible mappings from a
metric spece {X,d) wnto wtself. If At = Bt for some t m X, then
ABt = BBt = BAt = AAt.
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PROPOSITION 2.2. Let A and B be compatible mappings from a
metric space (X,d) into itself. If limy, oo AT = htliy—oo BT, =t for
some t wn X, then lim, o BAz, = At if A is continuous at t.

3. Fixed Point Theorems in Metric Spaces

Throughout this paper, let N and R* be the sets of all natural
numbers and non-negative real numbers, respectively.
Let p is a positive integer. Assume that ¢ . (RT)> — R* be a
function. We say that ¢ satisfies the conditron (®) if
(1) ¢ is upper-semicontinuous and non-decreasing in each coordi-
nate variables,
(ii) for each t >0,

‘P(f) = m&X{¢(0, 03 t’ tv t); ¢(t) t; t) 2pt7 0)1 ¢(t3 ta ts 01 2Pt)} < tl

where ¢ : RY — Rt is a real-valued function.

The above the condition (®) is considered by X. P. Ding [2]. We
denote d”(x,y) = [d(z, y)]P.

Let A, B, S and T be mappings from a metric space (X,d) into
itself such that

(3.1) A(X) CT(X), B(X)cS8X),
d?(Ax, By) < ¢(dP(Ax, Sz),d"(By, Ty),
" (Sz, Ty), d*(Az, Ty), d”(By, Sz))

forall z,y in X and p € N, where ¢ satisfies the condition (®). Then,
for any arhitrary point zg in X, by A(X) € T(X), we can choose a
point x; in X such that y; = Tz, = Azg and, for this point z,, by
B(X) C S5(X), we can choose a point z2 in X such that yy = Sz =
Bz and so on. Inductively, we can define a sequence {y,} in X such
that Y = TIE] = AiIIo,

(3.2)

(3 3) Yony1 = Tx2n+l == A$2na Yon = SmZn = Ban-—L
for every n € N.

For our main theorems, we need the following lemmas:
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LEMMA 3.1. {11] Suppose that ¢ : Rt — RY 15 upper-semicontin-
uous and non-decreasing. Then, for any t > 0, p(¢) < t +f and only +f
limy, oo @™ (t) = 0, where ™ denotes the n-times composition of @.

LEMMA 3.2. Let A, B, § and T be mappings from a metric space
(X,d) into itself satisfying the conditions (3.1) and (3.2). Then

lim d(ym yn+l) = Os
n—oo -

where {y.} is the sequence in X defined by (3.3).
ProoOF. By (3.2) and (3.3), we have

d” (Yon+1, Yany2) = A7 (Azgn, Bzopy1)
< ¢(dP(Az2n, Sx2n), dP(Bzany1, TTont1),
dP(S2n, T2on+1), & (Azapn, TT2n41), 3P (BToni1, ST2n))
= ¢(d”(Yan+1,¥2n)s A (Yoni2: Yon+1),s
@ (Y2n, Yon+1)s & (Y2r+1, Y2n+1), & (Y2n, Yon+2))
< {d” (Yan+1,¥2n), 3P (Yon+2, Yon+1);
@ (Yan, Yant1), 0, [d(¥2n, Yan41) + d(Y2nt1: Y2na2)l7)-

If d(y2n+1, Y2n+2) > d(Y2n, Y2n41) in the above inequality, then we have

d(Yan1, Y2nt2) < A" (Yons1, Yoni2) @ (Yon1, Yonta),
A" (Yon+1, Yon+2), 0, 22dP (Y2si41, Yon+2))
< p{dP (Yons1s Yont2))
< dP(Yan+1, Y2n+2)s

which is a contradiction. Thus 1t follows that
dP(Yons1, Yont2) < A(dP(Yan, Yant1), &P (Yan, Yon+1)s

(3.4) d"{yon. Yan+1), 0, 27dP (Y2, Yon+1))
S W(dp(yQ'n yYoant1 ))
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Similarly, we have

(35) dp(y2n+21 y2n+3) S Qo(dp(an-i— 1 y?n+2))-

It follows from (3.4) and (3.5) that

(Y, Ynt1) < @(dP(Yn-1,9n)) <+ < " HdP (Y1, 32)).

By Lemma 3.1, we obtain
hm d?(yn, yny1) = 0.
n— o0

This completes the proof.

LemMa 3.3. Let A, B, § and T be mappings from a metric space
(X,d) wnto wtself satisfying the conditions (3.1) and (3.2). Then the
sequence {yn} m X defined by (3.3) 1s a Cauchy sequence i X.

PROOF. In virtue of Lemma 3.2, it is sufficient to show that {ya,} is
a Cauchy sequence in X. Suppose that {y2,} is not a Cauchy sequence.
Then there 15 € > 0 such that, for each positive integer k, there exist
even integers 2m(k) and 2n{k) with 2m(k) > 2n(k) > 2k such that

(3.6) Yoy, Yon(hy) > €

For each positive mteger k, let 2m(k) be the least even integer exceed-
ing 2n(k) satisfying (3.6), that is,

(3.7) A(Yon(ky, Yamk)—2) < & dY2n(i), Yom(x)) > €-
Then, for each even integer 2k,

& < d(Yan(k) Yom (k)
< d(Yan(ky Yamk)-2) + AYamk)—2> Yamik)—1) T AY2mk)—1, Y2m (k) ) -

It follows from Lemma 3.2 and (3.7} that

{3.8) kli_{r;o d(y2n(k)ay2m(k)) =€
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By the triangle inequality,
14{Y2n (k) Yomx)—1) — L(W2n(k)> Yom))| < (Y2mk)—1) Yam(k) s

Id(yZn(k)-Hy yzm(k)-l) - d(yZn(k): y2m(k))l

< d(Yam(k)~11 Y2m(k)) + HY2n (k) Yon(e)+1)-
From Lemma 3.2 and (3.8), as k — oo,
(39)  d(¥2nx), Yoam@k)—1) =€ and  d(Yon(k)+1> Y2m@E)—1) = €
By (3.2), we have
& (Yon()s Yomk)) < 1d(Wancr), Yoniy 1) + A(¥onk)+1r Yame) 7
= A+ d”(Yan(k)+1, Yom(k))
= A+ d”(Azon(xy, BTam(x)-1)
< A+ A(d (Yon (k) +15 Yan(r))s B (Yam(k)s Y2m (k) —1)
& (Yon (k) Yom(k) -1 ) & (Y2n(k)+1> Yam(k)—1):
" (Yam(k}> Yon(k)))
where
A = dP (Yon(k) Yan(k)+1)

+

p' -
(p — 1)!(’:;o (Yan(k)s Yan () +1) - AYzn (k) +10 Y2m(k))

p! -
+ md” 2 (Yonikys Yonre)+1) - 4 (Y2n (k) 410 Y2m(k))
+ “aen

- 1)|d(y2n(k)'y2n(k)+1) P yan (k) +1: Yam(r))-

Using Lemma 3.2, (3.8}, (3.9), since ¢ satisfies the condition (®), we
have
e’ < ¢(0,0,€7,e7,e7) < p(ef) < €7,

which is a contradiction Therefore, {y,} 18 2 Cauchy sequence 1 X.
This completes the proof.

Now, we are ready to give our main theorems:
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THEOREM 3.4. Let A, B, S and T be mappings from o complete
metric space (X, d) wnte self satisfinng the conditions (3.1) and (3.2).
Suppose that
(3.10) one of A, B, S and T is continuous,

(3.11) the two pawrs A, S and B, T are compatible mappings.
Then A, B, S and T have a unique common fized pownt wn X.

PROOF. Let {y,} be the sequence in X defined by (3.3). By Lemma
3.3, {yn} is a Cauchy sequence in X and hence it converges to some
point z m X. Consequently, the subsequences {Az2,}, {B%2n+1},
{Sz2,} and {T72,41} of {yn} also converge to the point z.

Now, suppose that S is continuous. Since A and S are compatible
mappings, it follows from Proposition 2.2 that

ASro,, SS9, — Sz asn— oco.
By (3.2), we have

dP (ASzan, Brant1) < d(dP(ASzay,, SSTan), & (Brant1, TTan+1),
dP(SSw2n, TTon41), @ (ASzon, Tony), dF (BTon1, S5Zan))-
By letting n — oo in the above inequality, we have
d?(Sz,z) < ¢p(d"(Sz,8z),d"(z,z), .
d?(Sz,2),dP(Sz, 2),d?(z,Sz))
= ¢(0,0,d"(Sz, z),d?(Sz, 2),d?(z,5z)) < dP(Sz, z),
which 1s a contradiction Thus we have Sz = 2 Again, from (3.2), we
obtain
dP(Az, Bxonyy)
< ¢(dP(Az,Sz2),d"(Bzony, Toonyr),
d?(Sz,Txony1), (A2, Txons1).d°(Bonts, Sz))-
As n — oo, we have
dP(Az, z) < $p(dP{Az,82),d°(z, z),
d?(Sz,z),d?{Az, 2),dP(z,57))
= ¢(dP(z, Az),0,0,dP(Az, 2),0) < d'{Az, z),



218 KANG HAK KIM, SHIN MIN KANG AND YEOL JE CHO

which implies that Az = 2. Since A(X) C T(X), there exists a point
u € X such that z = Az = Tu. Again, by (3.2), we have

d?(z, Bu) = dP{Az, Bu)
< ¢(dP(Az, Sz), dP(Bu, Tu),
dP(Sz, Tu), d°((Az, Tu), d”(Bu, Sz))
= ¢(0, d"(Bu, 2),0,0,d"(Bu, z))
< dP(z, Bu),

which implies that z = Bu. Since B and T are compatible mappings
and Tu = Bu = z, by Proposition 2.1, TBu = BT« and hence T2 =
TBu = BTu = Bz. Moreover, by (3.2), we have

dp(A.’Bgn, Bz) < ¢(dp(A$2n, ngn), d”(Bz,Tz),
dP(STan, T2), dP{ Azan, T2), d"(Bz, S72,)).

By letting n — oo in the above inequality, we obtain

dP(z, Bz} < ¢(0,0,d"?(z, Bz),d"(z, Bz),d?(z, Bz)}
< d%{z, Bz),

so that z = Bz. Therefore, 2 is a common fixed point of A, B, S and
T. Simularly, we can also complete the proof when T is continuous.

Now, suppose that A is continuous. Since A and S are compatible,
it follows from Proposition 2.2 that

SAzng,, AAzgy, — Az asn — oo.
By (3.2}, we have

dp(AA-T2n) B$2n+l)
< ¢(dP(AAxy,,SAzTe,), P (Brons1, TTont1),
d?(S AT, Toon 1), P (AAxen, Tron41)), dP(B2ant1, SAZ2,).
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By letting n — oo, we have

&7 (Az,2) < $(0,0,d(Az, z),d°(Az, ), dP(z, Az))
< dP(Az, z),
which is a contradiction. Thus we have Az = z. Hence A(X) C T'(X),

there exists a point u € X such that z = Az = Tu. By using (3.2), we
have

d?(AAzs,, Bu)
< p(dP{AAzxos, Ston), dP(Bu, Tu),
dP?(SAzo,, Tu),d?(AAza,, Tu), d"(Bu, SAzan)).

By letting n — o0, we obtain
d?(z, Bu) < ¢(0, d?{Bu, 2),d?(z, Tu),d"{z, Tu), d(Bu, z))
< d*(z, Bu),

which mmplies that z = Bu. Since B and T are compatible mappings
and Tu = Bu = z, by Proposition 2 1, TBu = BT« and hence Tz =
TBu = BTu = Bz. Moreover, by (3.2), we have
dP(Azan, Bz) < ¢(dP (Azgn, Sxon ), d?(B2,Tz),
dP(Sxon, T2), dP{Az9n, T'2), dP(Bz,Sxn})-

By letting n — oc, we obtain
dP(z, Bz} < ¢(0,0,d?(z,T%2),d?(Tz,z),d?(Bz,z}) < d’(z, Bz},

which means that z = Bz. Since B(X) C S(X), there exists a pomnt
v € X such that z = Bz = Sv. By using (3.2), we have
dP(Av, z) = dP{Av, Bz)
< ¢{dP(Av, Sv),d?(Bz, Tz),
dP(Sv,Tz),d?{Av, Tz}, d?(Bz, Sv))
= ¢(dP(Av,2),0,0,dP(Av, 2),0) < dP{Av, 2),
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so that Av = z. Since A and S are compatible and Sv = Av = z,
by Proposition 2.1, SAv = ASv and so Az = ASv = S.n - 2.
‘Therefore, z is a common fixed point of A, B, § and T. Sinulai, we
can also complete the proof when B is continuous.

In order to prove the uniqueness of the point z, suppose tha' = aad
w (z # w) are common fixed points of A, B, § and T. Then hyv (3.2)
we have

‘dP(z,w) = d?(Az, Bw)
< ¢(dP(Az, Sz), dP(Bw, Tw),
d?{(Sz,Tw), d?(Az, Tw),d?(Bw, Sz})
= ¢(0,0,d"(z,w), d?(z,w), d?(z,w)) < d’(z, w),

which is a contradiction. Therefore 2 = w. This completes the prf,

THEOREM 3.5. Let A, B, S and T' be mappings from u comnlete
metric space (X,d) wnto itself satisfying the conditions (317 15 2),
(3.10) and (3.11), where ¢ satisfies (i) and (1i1):

(iii) for each t > 0,

max{#(t, t,t,t,1), ¢(t,¢,¢2°¢,0), o(t,1,60,2°¢8)} < ¢

Then A, B, S5-and T have a unique common. fized pownt mn X.

REMARK 3.1. In Theorems 3.4 and 3 5, if we put p = 1, we have
the results of 3. M Kang, Y. J. Cho and G. Jungck [9].

Finally, we show the existence of the common fixed point for com-
patible mappings in Theorems 3.4 and 3.5.

ExampLE 3 1. Let X = [0,1] with the Euclidean metric d. Define
A, B, Sand T by

1 1 1
Ap = ~gl/2 — 172 — .1/2 — - ..1/2
’E4£E,BS: 8x,S:1:x,T:J: 5"
for all z in X, respectively. Then A(X) = [O, 1 c [0, %J = T(X).
Similarly, B(X) C S{X). Moreover, it is easy to show that the pairs
A,S and B, T are compatible.
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Consider a function ¢ : (RT)3 = R defined by
d(t1,t2,t3,t4,t5) = hmax{t1, t2,¢3, 14,85}

for all t;,tp,t3,%4 and £5 in R*, where ()" < h < (3)". Then ¢
satisfies the condition (®) and the condition (ii). Furthermore, wc
obtain

d?{Az, By) = (i)pd”(&c, Ty)

< ¢(d”(Az, Sz), d?(By, Ty),
d?(Sz,Ty),d"(Az, Ty), d*(By, Sx))

for all z,y w X. Thus, all the hypotheses of Theorems 3.4 and 3.5 are
satisfied. Further, zero 1s a unique common fixed point of A, B, § and

T.
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