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REGULARLY DISSIPATIVE OPERATOR
AND INTERPOLATION SPACES

JIN-MUN JEONG, D00-HoAN JEONG AND CHUL-YUN PARK

1. Introduction

Let H and V be complex Hilbert spaces such that the embedding
V C H is continuous. The inner product and norm in H are denoted
by (-,-) and | -| The notations || - || and || - ||« denote the norms of V
and V* as usual, respectively. Hence we may regard that

(L1) o < uf < Jlull, we V.

Let a{-,-) be a bounded sesquilinear form defined in V x V' and
satisfying Garding’s mequality

(1.2) Re a(u,u) > co|lull® — e |ul?, >0, ¢ >0.
Let A be the operator associated with the sesquilinear formy —a(-, )
(1.3) (Auw, v} = —a{u,v), u, veV.

The operator A defined by (1.3), using a bounded sesquilinear form
satisfying (1.2), 1s called a regularly dissipative operator

In this paper we will show that A generates an analytic sermigroup
S(t) = et in both H and V* and A is positive definite and self adjomnt
if a(u,v) is symmetric. Finally, we will deal with interpolation spaces
between the imitial Hilbert space H and the domain of the regularly dis-
sipative operator A by the J- and K-methods as in Butzer and Berens
[1] and {2](see also [4,5]). In [3,4], interpolation spaces generated by
Cp-semigroup and analytic semigroup operators were establislied
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2. Preliminaries

Let X and Y be two Banach spaces contained 1n a locally convex
linear Hausdorff space X’ such that the embedding mapping of both X
and Y in X is continuous. Let X NY be a dense subspace in both X
and Y. For 1 < p < 00, we denote by LE(X) the Banach space of all
functions t — u(t), ¢t € (0,00) and u(t) € X, for which the mapping
t — u(t) is strongly measurable with respect to the measure dt/t and
the norm |{u[|;7(x) is finite, where

) = { / o)l 2y,

For 0 < 8 < 1, set

o° dt . 1
ulazon = Puoii T,
I llzgny = 1 I 533
We now introduce a Banach space
V= {u:|[t®ullpx) < oo, [[t%]|Leyy < o0}

with norm
lullv = %l oy + 1184 | poyy-

DEFINITION 2.1. We define (X,Y)p,, 0<8<1,1<p< o0, tobe
the space of all elements u(0) where u € V, that is,

(X, Y)e,p = {U(O) u e V}

For 0 <f# <1land1 < p < oo, the space (X, Y)¢, is a Banach space
with the norm

llalle,p = inf{|ju|] : v €V, u(0)=a}.
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Furthermore, there 1s a constant Cy > 0 such that
. 6, 111—8 6
llallo p = Co inf{tull} ;0 1914y - u(0) =@, weE V]

as is seen 1 [2]. It is known that (X, X)g, = X for 0 < § < 1 and
1<p<oand

(X,Y)op C(X,¥)y,, 0<8<8 <1

where X C Y satisfying that there exists a constant ¢ > 0 such that
lully < clfullx.

Let X be a Banach space with norm ||-|| and 7'(t) be a Cyp-semigroup
with infinitesimal generator A. Then 1ts domamn D(A) is a Banach
space with the graph norm ||z||p4y = {|Az|| + ||z}l- The following
result is obtained from Theorem 3.1 n {3]

PROPOSITION 2.1. Let A be the generator of a Cy-semugroup T(t).
Then for 0 <6 <1, 1 < p < oo, we have that

(D(A), X)op = {z € X : /0 T T mn)v% < o0},

Let T(t) be an analytic semigroup with infimtesimal generator A.
We may assume that

el < M, AT <

for some positive constants M, K and t > 0 The following result is
obtained from Theorem 3.1 in [4].

PROPOSITION 2.2. Let A be the generator of an analytic semigroup
T(t). Then for 0 < 8 <1, 0 < t, we have

(D(A), X)pp = {z € X : /Dm(t"”AT(t)mn)r% < oo},
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3. Regularly dissipative operators and interpolation spaces

Let a{-,-) be a sesquilinear form defined in V' x V, that is, for each
u,v € V there corresponds a complex number a{u, v) which & hrear in
u and antilinear in wv:

a(u1 + usg, 'U) = a(ul,v) + G(U,g, U),
a{u,v1 + v2) = a(u,vy) + a(u, ve),
a(du,v) = da(u,v), alu, Av) = da(u,v).

We assume that a(u,v) is bounded, i.e., there exists a constant M
such that

(3.1) la(w, v)| € M||ufiiloll, wveV

and satisfies Garding’s inequality

(3.2) Re a{u,u) > colu]|® - c1lul®, co >0, ¢ 0.

Let A be the operator associated with the sesquilinear form a(-, ):
(Au,v) =a(u,v), u, veV

When a(u, v} with u € V fixed is considered as a functional of v, 1t is

an element of V* . Therefore, using an element f € V*, we can write
Au = f in the sense of the following Lax-Milgram theorem.

LEMMA 31 Let X be a Hilbert space, whose inner product and
norm will be denoted by (-, -) and ||-||, respectively. Assume that b{u,v)
15 sesquilnear form defined on X x X and that there erists positwe
constants C' and ¢ such that

(3.3) 1b(w,v)] < Cliullliv]l
(3.4) 1b(u,u)[ > efull?
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for every u,v € X. Under these conditrons, +f f € X*, then there
uniquely exisis an element u € X such that f(v) = b{u,v) for every
veX.

The realization for the operator A in H, which is the restriction of
A to
(3.5) D(A)={ueV;Au e H},
is denoted by Agy.

In what follows we assume that (3.2) holds for ¢; = 0:

(3.6) Re a(u,u) > collul®, ¢ > 0.

Let f € V*, from (3 1), (3.6) and Lemma 3.1 it follows that there exists
av € V such that (f,v) = a{u,v) forallv e V,1e., f = Au, and hence
R(A) = V*. Combining this result with (3 5), we have R(Ay) = H
From (3.1) and (3 6}, we have that

(3.7) collull < [ Aull, < M]Ju].
Thus A 1s an isomorphism from V onto V*.

LEMMA 3.2. For ReA < 0 there emsts a bounded wuerse of A — A
which has various bounds for every f of H or V*:

(i) (A= X)71< MM HAL

(1) H(A = 27 il < MATHIALL,

where My = 1+ M/cg. Here, M and ¢ are the constants in (3.7) and
(8.6), respectively.

ProoOF. Tor u,v € V, put b(u,v) = ((A — Au,v) with Re X <0,
then

b(u,v) = a(u,v) — AMu,v), veV.
From (3.1) and (3 2) it follows
b(u, v)| < la(u, v}l + |A]|(u, v)]
< MiJuflfol] + [M|ullv]
<M A (A el if]ol]
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and
b(x, u)] > Reb(u,u) = Rea(u,u) — Re Alu|* > coljul]]?.

Hence, by Lemma 3.1 for every f € V* there uniquely exists u € V
such that

(f, ’U) = b(“?”) = ((A - ’\)u) T)))
ie., f=(A— Au. Since
(f,v) = alu,v) — AMu,v)

we have

(3.8) (f,u) = alu,u) - Aul?,
Re (f,u) = Rea(u,u) — Re Ajul*.

From (3.9) it follows
collul|® < {fl}ul,

and hence,
IMul? = |a(u, w) — (f,u)] < M|[ulf? + | fi]u]

< %vnm + 11l = (% = 1)1f]1ul.

It implies that ju} < MMt f| where My = M/e¢g + 1, which proves
(i).
From (3.9) we have

coflull® — Re Auf® < |[ £l I[ull,

thus

1
3- 0 L - * 3
(3.10) [l < c{)Ilfll
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from which it follows that

MG, o) < MJullifo]] + 1]
< Mg '|If[Lllll + 1111l

M
< (= + DI elt = My £l o]l
1€)]
for every v € V. It implies

i(ua 'v)| My

el .. veV
g =y v

i.e.,
M
flulle < !—/\T-Hfll*, veV.

The proof of (i1} is complete.
THEOREM 3 1. —A and —Apy generate analytic semigroups wn V*
and H, respectwely.

ProOF. The half plane {A . Re)l > 0} is contained in p(—A) from
Lemma 3.2 where p(—A) stands for the resolvent set of —A. Let Xy
be a complex number such that ReAg = 0 and ImAg > 0 Then if
|A = Aol < |Xo|/M) where M) is the constant in Lemma 3.2, from (ii)
of Lemma 3.2 we have

HO =20} — A7l < A - AO\ML.
{Aol
Note

A-A=AdA=- X+ X -4
= {I+ (A= 20)}{2o — A)7 "} Ao — A)
and

A=A =R — AT D (o= X" — AT
n=0
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Hence
= A7 < 1100 = A7 Y A= 2a™I(h0 — A7
n=0
M1 > ﬁff; Ml 1
< it A— n n -
n= ol
(Aol —]&{1]/\—/\()]'

It is a necessary and sufficient condition for A to generate an analytic
semigroup in V*(see Theorem 3.3.1 or Remark 3.3.2 of {7]). Since
Apu = Au for all u € D(Ap), from (i) of Lemma 3.2 we immediately
obtain that Ay generates an analytic semigroup in H.

DEFINITION 3.1. Let A be a linear operator in a Hilbert space H
and its domain is assumed to be dense. The operator A is called a dis-
sipative operator if Re (Au,u) < 0 for all u € D(A). If Re (Au,u) >0
for all v € D(A), that is, —A 1s a dissipative operator, A is said to be
an accretive operator. A dissipative operator which extends a dissipa-
tive operator A is called a dissipative extension of A. An operator A 1s
said to be maximal dissipative if its any dissipative extension is A it-
self. Accretive extensions and maximal accretive operators are defined
sumilarly.

A sesquilinear form a*(u,v) defined by a*(u,v) = a{v,u) is called
an adyoint sesquilinear form If a(u,v) satisfied (3.1), (3.2) or (3.6), so,
correspondingly, does a*{u,v) . Let A’ and A’ be operators defined
by a*{u,v) i ways similar to A and Ay, respectively:

Let v € V. If there exists an f € V* such that o*(u,v) = (f,v)
all v € V, then u € D(A") and A'u = f. a*(u,v) = (A'u,v) for all
uw,v e V.

Assume again that (3.6) 1s satisfied. Then, as in the cases of Ay
and A, we have R(A%) = X and R(A’) = V* for Ay and A".

LEMMA 3.3. D(Ay) 1s dense mn V. Therefore, it is also dense mn
H.
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PrOOF. It is enough to show that f € V* and if (f,v) = Q for all
v € D(Ay), then f =0 Since R(A") = V*, there exists a u € V such
that f = A'u. If v € D{Ay), we have
(Agv,u) = a(v,u) = a*(u,v) = (Au,v) = (f,v) =0
This, together with R(Ay) = H, imphes « = 0. Hence, f = 0.

Since Re (Apu,u) = Rea(u,u) > coljul|? > 0 for any u € D(A4y),
the operator Ay is accretive.

DEFINITION 3 2. The operator A associated with a sesquilinear
form satisfying (3.1) and (3 6), is called a regularly accretive opera-

tor. If — Ay is regularly accretive, Ay is called a regularly dissipative
operator.

THEOREM 3.2. Let A}, be an adjownt of Ay when the latter 1s
viewed as an operator e H. Then Ay = A},

PROOF. Let u € D{Ay) and v € D(A)y). Then we find
(Apu,v) = a{u,v) = a*(v,u) = (A5v, u) = (u, Axv).

This shows A} C A}, Let u € D(A}) and put Ayu = f. Since
R(A%) = H, there exists a w € D(AY) such that f = Ajw. The
relation A, C A} wmplies f = Ajw. Since 0 € p(Ag) we have
0 € p(AY). Therefore, u = w € D(AY) and, hence, A} = Aj,.

From now on, both Ay and A are denoted simply by A. We also
denote A’ by A*. Therefore, for any u,v € V, we have

alu,v) = (Au,v), a"(u,v) = (A%u,v).

This notation will not cause any confusion

When a*(u,v) = a(u,v) holds for all v,v € V, the sesquilinear
form a(u,v) 15 said to be symmetric. In this case, by Theorem 3.2,
an operator A in X is self-adjoint. It 1s evident that a{u,u) is a real
number for each u € V. Since, by (3.6), we have

(Au,u) = a(u,u} > COIUF2

for all v € D(A), the operator A 1s bounded from below. In particular,
A is positive defimite if (3.6) 1s satisfied.
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THEOREM 3.3. Ifa(u,v) 15 a symmetric sesquilinear form satisfying
(3.1) and (5.6), then A 1s positwe definite and self-adjornt, D(A'/?) =
V and

(3.11) a(u,v) = (A2, AY?), w,veV.

PROOF. According to this assumption, for each u € D{A) we have
(3.12) collull? < a{u,v) = (Au, u) = A %%

Let u be an arbitrary element of D(A'/2). For each natural number n
we put u, = (1+n"'4)~lu. Then u, € D(A) and we can show by the
using the spectral resolution that

Up — U

and
AV = (14 n~ A) 1AV 2y — AV

in H as n — oo. By applying (3.12) to u, — us, it is found that
{un} is a Cauchy sequence in V. Smce u, — u in H, so it does in V’
; hence, D(A'/?) C V. Applying (3.12) to u, and let n — oo, then
we obtain cpl|ul|2 < |A'/2u|?. On the other hand, if we let u € V, by
Lemma 3.3 there exists a sequence {u,} of elements of D(A) such that
le, — «)] — 0. Simnce

|Al/2(uJ — 'u,k)|2 = a(u, — ug, v, —ug) < Mju, — uk||2,

{AY24,} is a Cauchy sequence in H. Since A!/2 is a closed operator,
u € D(AY2) and thus we have obtained D(A'/2) = V. Equation (3.11)
can be easily verified

REMARK. For ¢; > 0, replace a(u,v) by a{u,v) + c1{(u,v) and A by
A + ¢, respectively, then the conclusion of Theorem 3.3 still holds.

Let Hy, and H, be Hilbert spaces with inner products (-,-}; and
(+»-)2, respectively. Their norms will be denoted by || - ||; and || - ||,
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respectively. Assume that H) is dense subspace in Hy and the injection
of H; into Hs is continuous.

Now we can apply the previous Theorem to the case with H;, Hy
and {-,-); in place of V, H and a(, -) respectively. Therefore, if we put
(Au-, U)g = ('ll,, 1’)1
then A is positive definite and self adjoint on Hy, D(AY?) = H, and
(’U,, ’U)l = (Alﬂu, AI/Q’U)Q, u,v e H,.

THEOREM 3.4. Put A = AY? Then A 15 positive definite and self
adjoint on Hy, D(A) = Hy, and

(1,v)y = (Au,Av)s, w,v € H).

Furthermore,

(3.13) (H\,Hz)eo = D(AY79), 0<8<1.
PrOOF. We know that —A generates analytic semigroup and if
o
A= / ME()
Jo
is the spectral resolution of the self adjoint operator A then
fo o)
et = / e NE(N).
0
By Proposition 2 2, it holds that

(Hy,Ha)pa = (D(A), Hy)o2

={r e Hy :/Om(tOHAe_mng)?%E} < 0.
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The proof of (3.13) is a consequence of following inequality
° dt  [® .
| @S = [T e tiaethala

0 t 0
_ ] £20-1) / e AdE(A)|dt
0 (¢}
[o ] o0
= / $20-1 / e #AQ| E(X)xl|3dt
0 0
(v o} o0
= f A2 f 129 1e= 22 ged)| | E(N)x |2
0 0
e et dt
— 32 20—yt B8 2
[ [ gpete grdieeall
o0 o0
= j AZ(2x)~2% / ¥ te~tatd]| E(\)z||3
0] 4]

=272 [ AR )R
¢
— 27T (g)[|A 2,

where the I' is the Gamma function.

REFERENCES

[1] P. L Butzer and H Berens, Semegroup of Operators and Apprommation,,
Springer-Verlag Berlin Heidelberg New York, 1967

{2] D H Jeong and 3 M Jeong, Bounded hnear operator on interpolation sjnces
12 (2) (1996), Pusan Kyongnam Math J, 167-174

[8] D H Jeong, D H Kim and J M Jeong, Interpolation spaces generat.d by
Co-semigroup operator. 13 (1) (1997), Pusan Kyongnam Math J

[4] D. H Jeong, J M Jeong and D W. Kim, Interpolation spaces gencrate. by
analytic semagroup operator. 14 (2) (1998), Pusan Kyongnam Math ]

[5) J L. Lions and J. Peetre, Sur une classe d’espaces dinterpolation, Insi H - ites
19 (1064), 5-68

(6] H Triebelng, Interpolation Spaces, Funciion Spaces, Dufferential Oper.tors,
North-Holland Publ

[7] H. Tanabe, Functional analyses II, Jikko Suppan Publ. Ca., Tokyo, 1431



REGULARLY DISSIPATIVE OPERATOR AND -

Jin-Mun Jeong and Chul-Yun Park
Division of Mathematical Sciences
Pukyong Natioual University

Pusan 608-737, Korea

E-mail: jmjeong@dolphin.pknu.ac kr

Doo-Hoan Jeong
Dongeui Institute of technology
Pusan 614-053, Korea

245


mailto:jmjeong@dolphin.pknu.ac

