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ON THE STUDY OF AFFINE DIFFERENTIAL
GEOMETRY OF SURFACE S5; IN Aq

E. T. IvLev, O. V. ROZHKOVA AND Hal GoN JE

ABsTRACT In this paper, we investigate the existence of a two dimen-

sional surface 1n a four dunensional equiaffine space and characterize
that surface

1. Introduction

A two-dimensional surface S5 is viewed in a four-dimensional equiaffine
space A4. We shall mark through L, is a tangent plane to Sy in the
current point A, I, and Iy are focus lines of plane Lo; I'} and '] are
the focal (tangent) 3-planes in meaning {1}; gy (p2) is the charactenstic
element of 3-plane T'}(I'5) in the direction /»(1) Let’s consider points
X € Ay and X, = Pfr? X, Xo = Prrz X

The totahty of all points X € Ay, which are satisfied the paint A €
53, so that corresponding points X, and X, lic inside corresponding
characteristics hyperplanes I'} and T'%, forms a second order hypercone
K9 in A4 with the vertex at the point A

Let T's be the plane polary associated with the plane Ly and hyper-
cone K3 : 13 = py(N\T2.la = pa[T2. Then the plane Po = I3 J1, 1s
clothings plane of surface Sy at the point 4: Py Ly = A, Pyl Ly =
Ay. In conformity with [2], centre-affinity transformation ]f(z) of the
plane Ly in 1tself with center A replies of each point z € ['y. Non-
eigen points of the straight Wines I3 and {4 correspond centre-affinities
transformations [ [, and [[,, accordingly
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As remarked here affine-invariant geometric images take the possi-
bility to construct the canonical frame of surface Sg in A4, with the
help which succeed to separate and geometrically to characterize some
private classes of surfaces. One of such classes, which is characterized
from the following properties:

a) the hypercone K on a surface S, degenerated in two 3-planes
are going through a two-dimensional plane I's,

b) the straight line {; (I2) at the centre-affimty transfomation [ [4([],)
transfers in itself.

It’s found that the indicated class of a surface S, in A4 exists and
is determined with arbitrariness of six functions of one argument.

2. Invariant rationing of vectors €3 and é;

The equation of a tangent hyperquadric Qs in the local coordinates
can be expressed in the form

(2.1) 8y T %7 + 200,7° + ago = 0,
where
(22) Qyy = (gt * ét?)’ Gy, = (F* é"t‘)7 500 = (F* 7-:)

A condition for a point to belong to the hyperquadric surface will give
(23) agy = (7_"* 'F) = (.

A condition for all points to belong to the first differential vicinity (that
is a first-order tangency) can be accomplished by differentiating (2.3)
and reducing coefficients of independent forms w! and w? to zero.

We obtain (dF*7) = 0 < w! (€} *7) + «w?(&; * 7) = 0. Hence

(24} ag) = (??* 61) = 01 apgy = (T—"* 52] = ).

To support a second-order tangency, one should differentiate (2.4). We
obtain

(dif x &) + (Fxdé1) = 0, (drx &y) + (Fx déa) = 0.
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Inserting expressions dr’ and dé, with using of (3),(4},{8) and (13)
in {4], we can find equating coefficients by w! and w? :

(Ax&)+(E &) =0, (& +&) =0,
(25) (/T* €4) +(€2*€2) =0 &=

(2.6) apz +a11 =0, a1z =0, aps +agy =0

To support a third-order tangency, we differentiate (2.5). Taking
into consideration

3((?1 *€3) + E*(_/i‘* é.4) — 0-3(52 *54) +E(A-‘* é’s) — 0’
(27} (é'z * 63) + ((-3.1 *El) = O’ (é’l *5’4) + (6’2 *52) =

!

3013 + E*a04 = 0, 3(124 + ang = 0,
(2.8) az3 + a1 =0, a14 +ax =0

On supposing
(2.9) ay = a, ap =a’,

we can find from (2.6) and (2.7)

o3 = ~Q. agq = —a", a3 = —a, ayy = —a’,
Era* Ea
(210) aj3 = 3 . g = T

Substituting values of some coefficients a,x found from (3), (4), (8)
and (10) in [4], we obtain that all hyperquadrics in A4. which have a
third-oder tangency with the surface S;, are defined by the equation:

a(z')? + o*(z%)? - 20"z 2 - 20222 - 202% — 202

2 2 5 3
{2.11) +§E*a:c1:1:3 + gEaxz.'z:“ + adﬁm“:rﬂ =0.
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In view of (32) in [4], it is seen that polars of pownts ¢; and 71 in
(2.10) are defined by equations respectively:

1
ty: azl + 33-15""0/’:1:3 —a*z? =0,

1
(2.12) 1 a*z? 4+ §Ea$4 —oz® =0
If this system is considered regarding to a and o*, then we can
obtain that it will have non-trivial solutions according to o and a* if

and onty if

EE". B + E(93“)2 = 0.

9 3

We call Q2 the aggregate of all points (36) in [4] in A4, to each of
them corresponds the aggrega.te of such hyperquadric {2.10), according
to which pomts #; and 7, have the same polar. It follows from (2.11)
and (2.12) that Q2 is the hyperquadric in A4, defined by equation
(2.13).

Points with radius vectors

(213) Qy: z'x? —(1+ Yotrt + — (x3)2

t—;* == E‘l“ El,
7= A+ &,
which are symmetrical to points (32} in [4] on the corresponding straight
lines, are taken up. The point with the radius vector
e 1 — —
V=A + 5(61 +€2)

is the middle of the segment [£,*,7;*} In view of (17) in [4], it is seen
that the curve
K. =W, o*=0

on the surface 55 is geometrically characterized, because the point A
describes a line with the tangent along the curve, which paralicls to
the straight line Ay = (A4, €, + &;). From

(€1 + &) = () e + (.)%E + wiés + wyéy
(2.14) = ()M + ()% +wles + wiey,



ON THE STUDY OF AFFINE DIFFERENTIAL GEOMETRY 281

we notice that the straight line Ay. = (/‘f, €3 + &4) is the intersection
of the plane I's = (A4, &3, €y} with 3-dimensional plane passing through
Ly = (A,é],85) and the tangent linear subspace to the aggregate of
straight lines Ay along the curve K. .
Let us consider the point on the straight line I3 = (A, €3)
T:; = E + t€31
which is in direction Ay- projected at the point Ty = A + t& on the
straight line {4 = (A, &)
Let points T3 and Ty be such points that (a,ﬁ,Tg,ﬂ) =1, then
2 = 1. Consequently, on lmmes I3 and I4 points
G =A+ds & =A—¢&,
Ex=A+ &y, & =A -2y,
give the geometrical meaning of rationing of vectors €3 and €y. It follows

from (2.13) that the hyperplane I's = (4, €3, €4) and the hyperquadric
Q2 intersect 1n two straight lines:

Uy = (A, E*Ey + 383), i3 = (A, E€5 + 3¢&4).
Hence, invariants E and E* are geometrically characterized in fol-

lowing manner E = 3w, E* = 3w*
Here formulas

w = {(A4,&),13; (4,6 + é); (4,80},
w* = {(A, &), (4, & + &); d4; (A, &)},

are complex connections of the corresponding four straight lines passing
through the point A € S; 1n the plane 'y

3. Some affine-invariant geometrical images

For geometrical interpretation of some special classes of the surface
Sy in Ay, winch are to be discussed in the next section, in this section
let us consider some affine-invariant geometrical images associated with
the surface S, in Ay We shall conduct a research of these images, using
terms of the canonical frame built analytically in [4] and geometrically
in the preceding section.
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3.1. The diversity {L3,I's} is a two dimensional
diversity of pairs of planes 1, and I'»

3.1.1. Some affinities of the tangent plane L.
Let us take up the point in I's: Z = A+ z%€; € Ty.
We have: dZ = (...)%€ + 2% AZzwP Eq.
Therefore, to each point Z € T, corresponds the centre-affine into-
transformation of the plane L, with the vector A { (7} in [2]):

(3.1) II{z) = {65 + zé‘Agﬁ}.
This affinor transfers each direction

(3.2) z = (4" € Ly

to the following direction

y= (E? ga)ya €Ly, y= (z)m’
(3.3) y® = {65 + 2% A%4}4”,

thus y = Lo [ {{T2 N T(2,2)}.

Here, T(z,x) means the line described by the point Z €Ty in the
direction of z. It follows from (15) and (41} in [4] that there are two
invariant affinors I13 and I14 of the plane La, which are the affinor 11{z),
responding with non-eigen points of straight lines I3 and i4

(3.4) Iz = {AS;}, Iy = {Afs}.

We shall put the following geometrical images.

1.) The straight hne I* = {Z € I'y| terIl{z) = 0},

2.) The conic ¥] = {Z € Ty| terll?(z) = 0},

3.) The focus conic ¥ = {Z € Iy} detIl(z) = 0}.

It follows from (3.1) that each of these geometrical images in I'z is
defined by equations respectively:

(35) i!; 1+ 2&0&26 =0, z% = g,
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(3.6) P 0 14 2a052% + adaz&zﬁ =0, 2% =40,
(3.7) 1[)12 © 14 2a952% + bdézé‘zﬁ =0, 2 =0,
where

doa = QAga, —.“ — _A(!ﬁAﬁ '

1
(3.8) b&é=§(A 1A, + AR AY, — AL AS — AS)A5,).

It follows from (3. 5) (3.7} that the straight line * is a polar of the

point A in the conic 1 or 7. Thus, to each point ZeTly correspond
centre~affinities II3 and I,

3.1.2. Afline connections (3 and (4

1). By analogy with [2] we shall consider the connection Ciz, which
15 the mapping of the adjoining plane sz onto the witial Lo in the
direction of plane T's.

This mapping is defined by forms w® and wﬁf, which, by virtue of
(2) and (3) in [4], satisfy structural equations

Dw® = o7 Awg,

P C I B 3 1A, 2
Duja—wa/\ww-{-Raww Aw”,

where curvature tensor components are defined by formulas, by virtue
of (8) and (14) in [4]:

Rll2 A327 R212 - A411

2
(3-9) Ruz A32’ Réu = "§Ai1-
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We shall call
(3.10) R, = {R5),}

the affine into-transformation of curvature of the plane Ly in the mean-
ing [3].
2). The connection Cs4 is the mapping of the adjoining plane I';

onto the initial I's in the direction of Ly [2].
This mapping is defined by forms wg, which, by virtue of (2) and

(3) in [4], satisfy structural equations

Do =} /\wfyi + RS Jwl Aw?,

&

where curvature tensor components are defined, by virtue of (8) and
(14) in [4], in formulas:

1 1
Rgm = —§A§2, Rim = §A311

1 1
(3.11) Rip = §A§1, R}, = “§Ai2~
We shall call
(3‘12) Ry = {Rglz}

the into-affinor of curvature of the plane I’y in the meaning [3]
3.2. The diversity {p;,p2} is a two—dimensional diversity
of pairs of planes p; = (A, éy,€3) and p; = (A, €3, €4)

1). The connection C3 is the mapping of the adjoining plane :’3'1 onto
the initial plane p; in the direction of p;. This mapping is defined by
forms w? (a.b,c = 1,3, a,b = 2,4), which satisfy structural equations

Du® = w¥ A W + R w? AW



ON THE STUDY OF AFFINE DIFFERENTIAL GEOMETRY 285
D & _ ¢ c b 1 2
W =wg Awy + Rypw’ Aw’,

where torsion curvature tensor components are defined by formulas:

y v 1 o 1 & EFE*
Rglz =0, R(IJIZ = _‘2‘1 Rilz = ‘§- Rgl? = _2—’
€ ) T ]‘ p *®
(3.13) R}, =0, Ryy = —§(A§2 — E*Ag).
we shall call
(3-14) Rl = {}?0’312,1?312}

the affine into—transformation of curvature of the plane p,.

2). The connection Chq 15 the mapping of the adjoining plane p;
onto the initial plane p; in the direction of p,.

This mapping is defined by forms wg, which satisfy structural equa-
tions

Z b o, pa b2
Du® = w” Aw] + Rgppw” Aw®,

Dol = wi A wi + RS qw! A WP,

where torsion curvature tensor components are defined in formulas :

” Ny R i & EFE*
R312 =0, thnz = 5: R%n = 5’ Rzm == 5 !
(3-15) Rgu =0, Rilz = é(Ah - EA%])-
We shall call
(3-16) jV%2 = {Rglzségw}

the affine into—transformation of curvature of the plane pa.
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3.3. The diversity {p],p5} is the two- dimensional diversity
of pairs of planes p] = (A, €1,€4) and p; = (A, é3,€3)

3.3.1. Affine connections (4 and Csg )
1). The connection Cy4 is the mapping of the adjoing plane p}
onto the initial plane p] in the direction of p. This mapping is de-
fined by forms wi (p,q,7r = 1,4; p,4,7 = 2,3), which satisfy structural
equations:
Dw® = w? Aw? + RE pw' A w?,
Duwf = wy, /\wq—}—qu wr AW,

where torsion curvature tensor components are defined 1n formulas :
" . 1 -
Rg1p =0, Ry = — Ruz =—50- Al), Rip =0;
. ~ 1 “ 1
(3.17) Rl = ‘2‘(A41 — EE"), Ry = “5(1432 + EAy)-
We shall call

(3-18) Rl = {ﬁgm, 1:3312}

the {linear) affine into-transformation of the plane pj}.

2). The connection Cag is the mapping of the adjoning plane pgl
onto the initial plane p3 1 the direction of pj. This mapping is defined

by forms wp, which satisfy structural equations
Dw? = Wi A wg + Rgmwl Aw?,
DuJ‘i':w /\w +R 12w Aw?,

where torsion curvature tensor components are defined in the following
formulas :

Ro =0, Row =5 R212 - (1 - Ai;), Rgm =0,
(3.19)
1 * *
R312 = ‘§(A32 EE*), R312 = *(Aél + B* AL,).
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We shall call
the (linear) affine into—trasformation of the plane p}.

3.3.2. Focus conics ¢] and ¢; of the planes p] and pj

Focus conics ¢ and @3 of the planes pj and pj are defined by the
equations
o7 @+t + Aﬁzx’rc" — AilE(ss“)2 =0, 22 =0, 2% =0,
(3.21)
@y (@) + 2% + AL r%a® - ALE* (%) =0, 21 =0, 2% = 0.
The centres of these conics are points:
. 2BAy 4

Vig=A- e — €4,
H 4EAL + (A%,)? l 4EAL, + (A)? ¢

(3.22)

1—/23 — A‘ QE*A:]_);Q — Aél

-

— — €3.
4BTAL + (AL T aBr AL, + (43,

4. Invariant classes of the two dimensional surfaces S; in A4

With equiaffine-invariant geometrical images and connections taken
up 1n the preceding items let analytically characterize mmvariant classes
of the two-dimensional surfaces in A4. We point out some of them:

1). Consider the class

(4.1) E=0, E* =0.
In view of (13) n [4], it 15 seen that
wg =, wi ={.

Differentiating equations externally, we have convinced that along
the surface of class (4.1) in (13) from {4] correlations

(4.2) Agl =0, Ajy =0

are accomplished.
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THEOREM 1. The surface Sy 1 A4 of class (4.1) 15 sumultaneously
characterized by the follounng properties.

a) The conuc @} n the plane (A, &, &) disintegrates into two straight
lines

(A,€1) z' + AQrt+1=0, 22 =0, 2% =0,

b) The conic @3 in the plane (/-f, €y, €3) disintegrates into two straight
bines

(A, &) 2 + A5 23 4+1=0, 2! =0, 21 =0.

The proof of this theorem 1s immediately from (35), (18), {26) and
(38) in [4] with making allowance for {4.1).

From (4 2), taking into consideration (3.17), (3.24}, (3.26)—(3.34},
we conclude that the surface S5 in Ay of class (4.1} has the following
properties:

a) The straight line (/T, €1) under the affinity II3 transfers into the
hine (A, €) and the straight line (A, €2) under the affinity II3 transfers
into the line (A, €3).

b) Vectors €3 and €, are main directions under the affinity R,.

¢) The plane p; under the affinity R, transfers into the straight
line, which parallels to the straight line (4, €} + A§2€3),

and the straight line (4, & + A};&,) parallels to an image of the
plane ps under the affinity R,.

d) The hypercone K$ disintegrates into two hyperplanes L} and
I2.

THEOREM 2. The surface Sy in Ay of class (4.1) exists and 5 de-
fined wnth the arbitrariness of six functions of one argument.

PrOOF. From (15) and (16) in [4] and by virtue of (4.1) and (4.2),
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we obtain

A+ AL =1, AL+ AL, =1, A, =24b, -1, AS =243, — 1,
— 34}, — A3, +3=0, 342, +3- A, =0,
dAY Aw +dAY Aw? =
(24}, — A3, — 243, AL, — 24} AL, — 2AL AL YWt AW
dA Aw! +dA A2 =
(243, — A}, — 241, AT — 2A3, A}, — 243 AL)w0® AW
dAZ Aw? = (1 - 24}, + 241,45, + AR (1 — A7y — 443))
- A%l + Aél)wl Aw?,
dAj Aw' = (A — A5 (34}, + A5))w® AW,
dAL AWt +dAL, AW? =
(—14 A3, + A}, — Al — AL AL, + A5 AL),
(—1+ A3, — A% + A}, — A% A% + A3 AW AWl

Applying Bachvalov’s theorem to the above system | we obtain

r=10-4=6, 5y =6 =>r =35, =6.

Thus, the arbitrariness of the solution is equal to six functions of one

argument.

(1]
(2

(3]
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