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FIXED POINT THEOREMS FOR MFIRMLY
NONEXPANSIVE MAPPINGS IN METRIC
SPACES OF HYPERBOLIC TYPE

TAE Hwa KiM*, EuN Suk KM anND SUNG Heg KiMm

ABSTRACT In this paper, we prove that any A-firmly nonexpansive
mapping (0 < A < 1) T - C — C has a fixed point in C' whenever C
1s a fimite umon of nonempty, bounded, closed and convex subsets of
a metric space of hyperbolic type

1. Introduction

We suppose that (M, d) 1s a metric space containing a family L of
metric lines such that distinct points z,y € M lie on exactly one num-
ber I(x,y) of L. This metric line determines a unique metric segment
joming x and y. We denote this segment by S[z,y]. For cach a € [0,1]
there is a unique point z 1n Sz, y} for which

d(z,z) = ad(z, y) and d(z,y} = (1 — a)d(z,y)
Adopting “the notation of [8] or [17], we shall denote this point by
(1~a)z®ay.
We shall say that A, or more precisely (M,d, L), 158 a hyperbolic
space if

1 1 1 1 1
A=z ® =y -zd®-2) < =d
(2w@ 59157 ® 2z) <3 (y,z)
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for all z,y and z in M.

In section 2 of this paper, we propose the various classes of metric
spaces, especially, metric spaces of pre-hyperbolic type. We <hall find
the equivalent convexity condition for a complete metric space of pre-
hyperbolic type (see Proposition 2.1}. In section 3, we prove that any
A-firmly nonexpansive mapping (0 < A < 1) T : C — C has a fixed
point in C whenever C is a finite union of nonempty, bounded, closed
and convex subsets of a complete metric space of pre-hyperbolic type
(see Theorem 3.2).

2. Spaces of hyperbolic type

DEFINITION 2.1. A metric space M 1s said to be of pre-hyperbolic
type if for each z,y € M there is a specified metric segment S|z, y]|
joining = and y, which has the property that if p € M and if m is the
point of S{x,y] which satisfies d(z, m) = ad(z,y), then

(A) d{p,m) < (1 - a)d(p, z) + ad(p, y).

DEFINITION 2.2. A metric space M is said to be of hyperbolic type
if for each z,y € M there is a specified metric segment S{z,y] joining
x and y for which the following property holds: Let p,q.r € M and
a € (0,1), and suppose m; and may are points of Slp,r] and Slp. ¢
respectively, which satisfy

d(m1,p) = ad(p,7) and d(ma,p) = ad(p,q).
Then
(H) d(my, my) < ad(r,q).
Obviously, (H) implies (A) (¢f [13]). There is an umportant con-
sequence of condition (H). If M 1s of hyperbolic type and if m; =

(I1-o)pdagand ma = (1 ~a)s@ar, for p,q,r,s € M and a € (0, 1),
then (H) in fact implies

(H') d(my,ma) < (1 — a)d(p, s) + ad(q,r}.

The following lemma was mentioned in [13].
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LEMMA 2.1. Let (M,d) be a metric space of hyperbolic type Then
(H) s equivalent to the follounng property

1 1 1 1 1
_ P _ < Zdir
(Ho) d(2p® 5T 5P® 2q) < 2d(r,q)

for allp,r and ¢ m M.

We remark that the term ’hyperbolic type’ 1s used 1n the above
context because condition (H) with strict incquality is characteristic of
hyperbolic geometry (see {23]). At the same time, all normed linear
spaces are of hyperbolic type. (As a matter of fact, if equality always
holds in (H), then the resulting condition characterizes normed lincar
spaces among an appropriate class of metric spaces ({1])). So are all
Hadamard manifolds, that is, all imte-dimensional connected, simply
connected, complete Riemannian manifolds of nonpositive curvature
(cf., [4, pp. 305]). An infinite-dimensional example is provided by the
Hilbert ball equipped with the hyperbolic metric (see (8, pp, 104]). For
other results in this setting we refer, for example, to Reiwch {18] {(and
citations theremn), Shafrir [20] and Reich and Shafir [17].

DEFINITION 2.3. A metric space M is strongly conver provided that
for any two pomts z,y € A there 1s only one pomnt z € A such that

d(z,z) =d(y,z) = %d(:r:,y).

Such a z will be called a strong midpoint of x and y

Obviously, every strongly convex complete metric space (A, d} yields
a unque metric segment S{x,y] for each z,y € M. Therefore, every
hyperbolic metric space 18 strongly convex. For a characterization of
the metric space of pre-hyperbolic type, we need the following stronger
concept.

DEFINITION 2.4 A metric space {M.d) 15 said to have strongly
convex ball intersections if for each z,y € AM

ﬂ B{u; %d(:r,-u) + %d(y,u)) # 0.
uweM



328 TAE HWA KIM, EUN SUK KIM AND SUNG HEE KIM

It is easy to see that all z € Nyear B(u, 3d(x, u)+5d(y, u)) are strong
midpoints of x and y. Also, every metric space of pre-hyperbolic type
has strongly convex ball intersections. It is natural to ask whether the
converse holds or not. The following gives an affirmative answer if M
is complete.

PROPOSITION 2.1. Let (M,d) be a complete metric space. Then M
has strongly convez ball intersections if and only if it is of pre-hyperbolic

type.

Proor. It suffices to show “only if’. Let zg,z; € M, 29 # .
Since M has strongly convex ball intersections, zg and = have a strong
midpoint T1, Le.,

1 1
Ty € m B{u, §d(x0,u)+ §d($1,u))-
ueM

Similarly, there exists points z; /4, 3/4 which are respective strong mid-
points of (:z:g,a:%) and (x%,xl). Note that if p € M and if ¢ = 1,3 then

7
d(p,.74) < (1 = 1 )d(p, 70) + 5 d(p, 1)

The idea 1s proceed by induction. Letting p = d{zq, z1) and mimicking
the proof of {7; pp.25--26] (only replaced d by p in (7]}, we know that
the closure of the set

o0

U {zejon i1 <k <2" ~1})

n=1
1s the desired metric segment S[zg, 1] joining z¢ and z;, which clearly
satisfies (A).

3. Fixed point theorems

Let {M,d) be a metric space of hyperbolic type. The modulus of
converity 6 : (0,00) x (0,2] — [0,1] of M is defined by setting

&(r,€) = inf{l - %d(a, %a: ® —;—y)}
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where the infimum 1s taken over all points a, « and y satisfying d(a, ) <
7, d{a,y) < r and d(z,y) > re. We say that M is uniformly convex
if § 15 always positive. Several examples of uniforinly convex metric
spaces of hyperbolic type are given in [8] and [17]. In particular the
infinite dimensional complex Hilbert unit ball is a uniformly convex

metric spaces of hyperbolic type. In this space, we know [8, pp.107]
that

8(r,e) =1— %tan"l [sinh(r(1 + 6/2)208$(r(1 — ¢/2))]*/2

Therefore, 6(r, €) is continuous on (0,c0) x (0,2]. For our argument
of the general metric space of pre-hyperbolic type, throughout this
section, we assume that 6(r,¢) is also continuous on (0,0c) x (0,2].
The fixed point theory on metric spaces of hyperbolic type have been
studied widely (see [8],[12],{13]). We will say that a subset C of a
metric space M of pre-hyperbolic type is converif S{z, y] C C whenever
z,y € C.

Let {z,} be a bounded sequence in a metric space (M, d), and let C
be a closed convex subset of M. Consider the functional f : C' — [0, 0o)
defined by

(3.1) f(z) = limsup d(z,, x)
for all x € M.

The infimum of f(z) over C is called the asymptotic radius of {z,}
with respect to C. A point z in C 1s called the asymptotic center of
{z,} with respect to C if

f(2) =inf{f(x) : z € C}

The set of all asymptotic center is denoted by A(C, {zn})

We can obtain the following lemma with a similar rpanner of um-
formly convex Banach space (see Theorem 4.1 and Proposition 18.1 of

(81)-
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LEMMA 3.1. Let (M, d) be a uniformly convexr complete metric space
M of pre-hyperbolic type. Then every bounded sequence in M has a
unique asymplotic center with respect to any closed convex subset of

M, re. A(C,{zn}) = {2}.

The following useful result is a direct consequence of Lemma 3.1.
This is a natural hyperbolic metric version of Corollary 1 of {16] in a
uniformly convex Banach space.

LEMMA 3.2. Let (M, d) be a uniformly convex complete metric space
M of pre-hyperbolic type. Let {x,} be a bounded sequence wn a closed
convez subset C of M and A(C, {z,}) = {z}. Then

{ym} CC and m!lmoof(ym) = f(C,{z,}) = Jim gy, =z,

where f(C,{x,}) means the asymptotic radius of {x,} with respect to
C.

Let (M,d) be a metric space and C C M. Let T : C — C be a
self-mapping of C. There appear in the literature two definitions of
an asymptotically nonexpansive mapping. The weaker definition (cf,,
Kirk {15]) requires that for each z € C lim,,_, o, ¢,(z) = 0, where

cn () := max{0,sup[d(T"z,T"y) — d{z, )]}
yeC

Such a mapping is later said to be of asymptotically nonexpansive
type. The stronger definition (briefly called asymptotically nonexpan-
swe as in [5]) requires each iterate T to be Lipschitzian with Lipschitz
constants L, — 1 as n» — 00. Every nonexpansive mapping is asymp-
totically nonexpansive. All asymptotically nonexpansive mappings are
Lipschitzian, but mappings of asymptotically nonexpansive type is not
Lapschitzian.

We obtain the following theorems with the similar manner. The fol-
lowing results are well-known facts in uniformly convex Banach spaces.
Compare Theorem 5.2 of [8] for nonexpansive mappings, and Theorem
1 of {10] for asymptotically nonexpansive mappings.
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THEOREM 3.1. Let C be a closed and convex subset of a unaformly
convex complete metric space (M, d) of pre-hyperbolic type. If T : C —
C' 18 a continuous mapping of asymptotically nonexpanswe type. Then
T has a fived pownt of and only if there exists a pownt x € C such that
the sequence of iterates {T™z} 1s bounded.

PrROOF. The proof is mimicking the lines of the proof of [10{ by
using Lemma 3.1 and 3.2. Since the necessity follows easily, 1t suffices
to show "if*. Assume zg € C is such that the sequence {z, = T"xo} is
bounded, and let A(C, {z,}) = {z}. Let {ymm = T™z}. We shall show

f(Ym) = hmsup d{zp, ym) — F(C,{zn}) =7 as m — oo.

n-—+ca

By lemma 3.2, this would imply ¥, — 2 as m — 20, and because T' is
continuous

hm 77l = 2.
T~ 00

Tz=T( im TTMz) =

mM—CO
For two integers n > m > 1 we have
d(()?n, ym) = d(Tm-anm| Tmz) < Cm(z) + d(xn—ma Z).

Taking msup as n — oc on both sides, this inplies v < f(ym) <
cm(z) + f(z) = cm(z) + r and so hiy oo fym) =7

The following 15 a natural partial metric version of (10, Theorem 1]
in a Banach space.

COROLLARY 3.1 Let C be a closed and conver subset of a uniformly
convex compleie meirie space (M,d) of pre-hyperbolic type. If T : C —
C 15 a asymplotically nonexpansive mapping Then the following are
equivalent

(a) T has a fized pownt.

(b} There emsts a pownt z € C such that the sequence of iterates
{T"zx} 1s bounded.

(¢c) There exists a bounded apprommating sequence {z,} for T.
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DEFINITION 3.1. Let C be a nonempty subset of a metric space
{M,d) of hyperbolic type, and let A € (0,1). Then T : ' — M is said
to be A-firmly nonexpanswe if

d(Tz,Ty) <d((1 - ANz ® ATz, (1 - Ny d A\Ty)

for all z,y € C.

See [8] in a Banach space case. It is easily seen that A-firmly nonex-
pansive is nonexpansive. Conversely, to each nonexpansive T : C' — C
one can associate a firmly nonexpansive mapping with the same fixed
point set whenever C' is closed and convex {cf., see [8,pp. 124] in the
Hilbert ball with the hyperbolic metric) Moreover, from the point
of view of fixed point theory for the class of all closed convex subsets
C, firmly nonexpansive mappings T : ¢ — C do not exhibit better
behavior than nonexpansive mappings in general [7]. However, this
behavior is completely different in the class of nonconnected subsets C
in a Banach space setting (cf.,[21]).

For our further argument, we suppose M satisfies the following prop-
erty:

(S) If d(a, x} = d(a,y) ==+ > 0 and if @ € S{uy, vy] for some A € (0,1),
then either a € S{x,y] or z = y, where uy := (1 - A)a ® Az and
va =A@ (1l - Ay

It is easy to see that if X is a strictly convex Banach space, the
above property (S) is easily satisfied.

THEOREM 3.2. Let (M,d) be a uniformly conver complete metric
space of hyperbolic type with the property (S). Let C' = UR_,Cy be a
unton of nonempty bounded, closed conver subsets Cy of M. Suppose
T :C — C s A-firmly nonexpanswe for some X € (0,1). Then T has
a fized point i C.

PROOF. The idea follows the proof of [21]. Let z € C, and let z) be
the asymptotic center of sequence {T"z} with respect to the bounded,
closed, convex subsets Cr {1 < k < n). From Lemma 3.1, the pont z
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is uniquely determined by the identity

3.2 = i T

(32) fla) = inf f(z),
where the functional f : M — {0, 00) defined by f(z} = limsup d(T"z, x).
Since T' is nonexpansive, we have d(Tzy, T""2) < d{zx,T"2). Hence

(3.3) HTze) < flze),

for all k. Now, If Tz € Cy. for some k, then the uniqueness of asymp-
totic center of z;, in conjunction with (3.2} and (3.3) yelds Tz = =y,
which completes the proof. Otherwise, Tz ¢ C for all k, then there
exist integers {ny,ng, - ,nm} C {1,2,---,n} (m > 2} such that
Tzn, € Cryy (k= 1,2,---m—1) and T, € C; Clearly, with-
out loss of generality, one can rearrange the sequence Cy, in such a way
that ng = & for all k. Then we have Tz, € Cryy (K =1,2,---m —1)
and Tz,, € Cy and z; € Cy for all k. Hence , one can combine (3.2)
and (3.3) in order to get

@) € f(Tam) < flzm) < f(Tom-1)
S f(@m-1) <+ £ flxa) < f(Tm) < flan).

Thus we have f(Txy) = f(zgxy1) which, in view of the uniqueness of
asymptotic center zy vield

(3.4) Tyt =T (k=1,2,---,m),

where we have denoted 2,17 = o; for the latter simplicity. Hence we
readily derive

d(zlsmm) = d(.‘l’m+],$m) = d(Tmm, T«Tm—l) < d(xmumm—l)
- d(Tmm—lm T‘~'Bm—2) < d(xmhluxm—2) = - < d(.’I?Q, xl)
- d(TfE]_,T.’L‘,n} < d(ﬂ,‘l, -Tm)-.

and

(38) d(zyi,z)=d(za,23) = =d(zm_1,Tm) = d(xm,x;) ‘= 7.
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Clearly, if v = 0, then 2, = z9 = Tz, by (3.4). Hence the proof
is complete. On the other hand, since T is A-firmly nonexpansive it
follows from (3.4) that

v = d{(zk41, k) = A(Txr, TTp_y)
< d((]. - A).Tk ® ATz, (1 - )\).’x‘ik_l & )\T.'Ek_l)
<d((1 = X)zk @ Axppy, (1 — Nk B Axk)
S (1 - A)d(a:k xk_1) + Ad(mk+l,xk) =Y

fork=2,3,--- ,m.

Let uy := (1 = N)zx @ Azgyy and vy := (L — A)zp—1 @ Azk. Since
d(:rk,'u»‘) = /\d(u,\,v,\) and d(xk,v,\) = (I—A)d(ug,v,\), T S[u,\, ¢ ,\].
By property (S), either z € Sfei—1, Tk41] OF Zk—1 = Tp1.

Casel. xy € Slzg—1,zk41]. Inthis case, since d(zg, Th—1) = d(k, 7k +1),
zy is a midpoint of S[zx_1,Tr41), L., Tk = 2Tp1 B FTaqr (2K <
M, Tmy1 = T1). Note that xp € S[zy,zn) for k =2,3,.-- ,m -1
and (3.5) again yields vy = d(z1,2m) = d{z1,z2) + -+ d{tm-1,2m) =
(m — 1)y. Since m > 2, this yields v = 0 and also 1 = 73 = Tz by
{(3.4).

Case 2. xp_1 = Zp41. We claim that d(ag, (1 — Aok ® dziy) =
0. Then zx = (1 — A)zg @ Azg—; and so this with (3.5) gives zx =
Tp-1 = Tip1 = Txp. Hence T is a fixed pomnt z;. Suppose that
d(xp, (1 — X)zg B Azp_1) > 0. Since

d(zr-1,2) = d(zp 1, (1 = Aoy & Azy)
+d{{(1 = Nzp_1 D Axk, (L — Nz & Azp—y)
+d({(1 - Nz @ Azgp_y, 2h),
we have
d((l - )\).’Itk_l B Az, (1 - )\).’L‘k o] /\.’E}g_l} < d(.’lfk_11 ;T?k).
Smee T is A-firmly nonexpansive, this implies
d(zg, Te1) = d(@k, Toyr) = AT g1, Ty

<d{(1- M Tp-1 ® AT, (1 = A)xg & ATzi)
< d((l - /\)I;CAI & Az, (1 — /\).’I:k & }\mk—l) < d(.’l:k, xk—l)-
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This is a contradiction. This contradiction proves our claim.

As a direct consequence of Theoremn 3.2, we have the following.

COROLLARY 3.2 [21]. Let X be a umformly convex Banach spuce,
let C = U;_,Cy be a union of nonempty bounded, closed convex subsets
Cy of X. Suppose T : C — C 15 Mfirmly nonezpansive for some
A€ (0,1). Then T has a fized point in C.
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