SOME THEOREMS ON RECURRENT FINSLER SPACES BY THE PROJECTIVE CHANGE

BYUNG-DOO KIM AND IL-YONG LEE

ABSTRACT If any geodesic on F^n is also a geodesic on \tilde{F}^n and the inverse is true, the change $\sigma : L \rightarrow \tilde{L}$ of the metric is called projective. In this paper, we will find the condition that a recurrent Finsler space remains to be a recurrent one under the projective change.

0. Introduction

It is known that the Douglas tensor and the Weyl tensor are invariant under any projective change. Moreover, h-curvature tensor in the Berwald connection BF is also invariant under a special projective change (Z-projective change). In the paper ([4]), M. Fukui and T. Yamada dealt with it and obtained some results. A Finsler space of zero curvature remains a space of zero curvature by the Z-projective change which is characterized as $Q_i = 0$.

In the paper ([3]), Bácsó, Illesvay and Kis investigated Finsler space F^n and \tilde{F}^n in which the $h(hv)$-torsion tensors coincide, that is, $\tilde{C}_{ijk} = C_{ijk}$. And they gave an example for this kind of spaces. Further, if the projective factor p satisfies $p_{ij} = 0$ ([4]), the hv-curvature tensor G is invariant under the projective change.

In this paper, we are devoted to H-recurrent space, C-recurrent space and G-recurrent space under the projective change.
1. A Berwald connection

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space, where M^n is a connected differential manifold of dimension n and $L(x, y)$ is the fundamental function defined on the manifold $T(M)/0$ of none-zero tangent vectors. We assume that L is positive and the fundamental metric tensor $g_{ij} = (1/2)\hat{\partial}_j \hat{\partial}_i L^2$ is positive definite, where $\hat{\partial}_i = \partial / \partial y^i$.

A geodesic on F^n is given by the differential equation

$$d^2 x^i / ds^2 + 2G^r_i (\hat{\partial}_r x^i) = 0,$$

where s is the arc-length of the curve. In the present paper, we are mainly concerned with the Berwald connection $B \Gamma = (G^i_j, G^i_j, 0)$, which is defined as: $G^r_j = \hat{\partial}_j G^r$, $G^r_j k = \partial_k G^r j$. For a Finsler tensor field X^i, the h-covariant derivative with respect to $B \Gamma$ is given by

$$(1.1) \quad X^h : i = \partial_i X^h - G^r_i (\hat{\partial}_r X^h) + X^r G^h r_i,$$

where $\partial_i = \partial / \partial y^i$.

For $B \Gamma$ we consider the torsion and curvatures. According to the theory of Finsler connection ([1],[5]), the (v)-torsion R^1 is the same with that of Cartan connection $C \Gamma$, because $B \Gamma$ and $C \Gamma$ have the common spray connection (G^r_j). And the h-curvature tensor R^2 and the hv-curvature tensor P^2 are usually written as $H = (H^i_j k)$ and $G = (G^i_j k)$ respectively. These tensors are written as

$$(1.2) \quad H^i_j k = U_{(jk)} \{\partial_k G^i_j - G^r_i (\hat{\partial}_r G^j_k) + G^r_j G^i_r k\},
\quad G^i_j k = \hat{\partial}_h G^i_j k,$$

where $U_{(jk)}$ means the interchange of indices j, k and subtraction.

Throughout the index 0 denotes the transvection by y^i ([1]), for example, $y^i F^h i = F^h 0$. For later use, we introduce the following relations ([8]):

$$(1.3) \quad (a) \quad H^0 j k = H^i j k, \quad (b) \quad H^0 i k = H^i k, \quad (c) \quad H^i j k = -H^k j i,
\quad (d) \quad H^i j k = (1/3) U_{(jk)} \{\hat{\partial}_j H^i k\}, \quad (e) \quad H^k j k = \hat{\partial}_h H^i j k.$$
2. Projective changes of metrics

We consider two Finsler spaces $F^n = (M^n, L)$ and $F^n = (M^n, \bar{L})$ on a common underlying manifold M^n. Let the change $\sigma : L \rightarrow \bar{L}$ be a projective. It is well known that σ is projective, if and only if there exists a $(1)p$-homogeneous Finsler scalar field $p(x, y)$ on M^n satisfying

\begin{equation}
\bar{G}^i = G^i + py^i, \quad p \neq 0,
\end{equation}

at any (x, y). This p is called the projective factor.

We shall see how the torsion and curvature tensors are changed by a projective change. Let $BT = (G^i_j, \bar{G}^i_j, 0)$ be the Berwald connection on the space $\bar{F}^n = (M^n, \bar{L})$ obtained from $F^n = (M^n, L)$ by the projective change σ. Then, (2.1) immediately gives

\begin{equation}
\bar{G}^i_j = G^i_j + y^i_j p_j + \delta^i_j p,
\end{equation}

\begin{equation}
\bar{G}^i_j k = G^i_j k + y^i_j p_k + \delta^i_j p_k + \delta^k_j p_i,
\end{equation}

where we put $p_i = \hat{\partial}_ip$ and $p_{ij} = \hat{\partial}_ip_j$.

On the other hand, the $h\nu$-curvature tensor and the h-curvature tensor are given by

\begin{equation}
\bar{G}^h_{ij} k = G^h_{ij} k + y^h_{ij} p_{jk} + A_{(ij)k}\{\delta^h_{jk} p_k\},
\end{equation}

\begin{equation}
H^h_{ij} k = H^h_{ij} k + y^h_{ij} Q_{kj} + \delta^h_{k} Q_{ij} + U_{(ij)k}\{\delta^h_{jk} Q_k\},
\end{equation}

where we put $k = \partial_k, Q_i = p_{ij} - pp_i, Q_{ij} = U_{(ij)}p_{ij}, p_{ijk} = \hat{\partial}_i \hat{\partial}_j \hat{\partial}_k p$ and $A_{(ij)k}$ means cyclic permutation of the indices i, j, k and summation. If $Q_i = 0$, from (2.4) the h-curvature tensor H is invariant under the projective change. In the paper ([7]), S.C. Rastogi discussed the properties of the projective factor $p(x, y)$ satisfying the condition $Q_i = 0$. A projective change of a Finsler space of zero curvature is also a Finsler space of zero curvature if and only if the projective factor p satisfies the equation $Q_i = 0$.
Definition 2.1. ([4]) A projective change σ is called a \mathcal{Z}-projective change if $Q_1 = 0$.

S.C. Rastogi ([7]) proved the following

Lemma 2.1. If $Q_1 = 0$, then the scalar $p(x, y)$ and its derivative satisfy the equations:

\[(2.5) \quad (a) \quad p_r H_j^{\tau_1} = 0, \quad (b) \quad A_{(1j)k}(prk H_j^{\tau_1}) = 0.\]

3. A \mathcal{H}-recurrent space

In the paper ([2]), S. Bácsó defined an A-recurrent Finsler space that is, for a tensor $A'_{k} = H'_{k} - H h'_{k}$,

\[(3.1) \quad A'_{k,0} = \psi(x, y) A'_{k},\]

where $\psi(x, y)$ is a positively homogeneous function of degree one in x and h'_{k} is an angular metric tensor. Similarly we introduce \mathcal{H}-recurrent space as follows:

Definition 3.1. A Finsler space is called a \mathcal{H}-recurrent space ([6]) if its h-curvature tensor satisfies the relation

\[(3.2) \quad H_{h'_{j}k,m} = \phi(x, y) H_{h'_{j}k},\]

where $\phi(x, y)$ is a positively homogeneous function of degree one in y ([1]).

Meher's paper ([6]) was concerned with a symmetric Finsler space and obtained a relation of the Berwald's scalar curvature. Moreover he discussed a scalar function, which gives rise to the projective motion. A symmetric Finsler space is characterized by $H_{h'_{j}k;m} = 0$. Therefore a symmetric space is a \mathcal{H}-recurrent space with $\phi = 0$.

Let $B\Gamma$ be the Berwald connection on the space \tilde{F}^n obtained from F^n. Then, from (1.1) the covariant derivative of the h-curvature tensor in \tilde{F}^n is given by

\[(3.3) \quad \tilde{H}_{h'_{j}k;m} = \delta_{m} \tilde{H}_{h'_{j}k} - \delta_{a} \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m} + \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m} - \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m} - \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m} - \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m} - \tilde{H}_{h'_{j}k} \tilde{G}^{a}_{m}.\]
where $(;)$ denotes the h-covariant derivative with respect to $B\tilde{\Gamma}$. The h-curvature tensor is invariant under the \mathcal{Z}-projective change. Paying attention to (2.2), we get

\[H^i_{jk;m} = H^i_{jk;m} + A_{(jk)m} \{ H^i_{jk}p_m \} - p\partial_m H^i_{jk} \]

\[+ H^a_{jk}p_am + H^a_{jk}\delta^i_m p_a - H^i_{jk}p_k \]

\[- H^i_{jk}p_h - 3H^i_{jk}p_m + U_{(jk)} \{ H^i_{k0}p_jm \}. \]

Since $p(x, y)$ and $R^2(x, y)$ are homogeneous functions of degree one and zero in y respectively, we find

\[p_0 = p, \quad p_{m0} = 0, \quad \partial_0 H^i_{jk} = 0. \]

We assume that a \mathcal{H}-recurrent space F^n is transformed into another \mathcal{H}-recurrent one \tilde{F}^n by the \mathcal{Z}-projective change. And transvecting (3.4) with y^m and y^h, from (1.3), (2.5) and (3.5) we have

\[(\phi - \phi + 3p)H^i_{jk} + U_{(jk)} \{ H^i_{k0}p_j \} = 0. \]

Further, transvecting this with y^k, we obtain $(\phi - \phi + 4p)H^i_{k} = 0$, which implies $\phi = \phi + 4p$ by virtue of $H^i_{k} \neq 0$.

Summarizing up the above, we have the following

THEOREM 3.1. Let a F^n and a \tilde{F}^n be \mathcal{H}-recurrent spaces with the function ϕ and $\tilde{\phi}$ respectively. If a F^n is transformed into a \tilde{F}^n by the \mathcal{Z}-projective change, then we have the relation $\phi = \tilde{\phi} + 4p$, where p is the projective factor.

4. A C-recurrent space

DEFINITION 4.1 A Finsler space F^n is called a C-recurrent if the $h(hv)$-torsion tensor C satisfies the following condition

\[C_{ijk,0} = \psi(x, y)C_{ijk}, \]

where $\psi(x, y)$ is a positively homogeneous function of degree one in y.

\[(4.1) \]
In the paper ([3]), authors discussed pairs of Finsler spaces F^m and $ar{F}^m$ in which the $h(hv)$-torsion tensors coincide, that is,
\begin{equation}
\bar{C}_{ijk} = C_{ijk}.
\end{equation}
They also gave an example for this kind of spaces.

Let's assume that Finsler spaces F^m and \bar{F}^m which satisfy (4.2). In $B\bar{\Gamma}$ of \bar{F}^m, from (1.1) and (2.2) we have
\begin{equation}
C_{ijk,m} = C_{ijk,m} - p\hat{\partial}_m C_{ijk} - C_{ijk}p_m - \Omega_{(ijklm)}\{C_{ijk}p_m\},
\end{equation}
where $\Omega_{(ijklm)}$ means cyclic permutation of the indices i, j, k, m and summation.

Let's consider the projective change $\sigma : L \rightarrow \bar{L}$, where F^n is an arbitrary Finsler space but \bar{F}^m is a C-recurrent Finsler space, that is,
\begin{equation}
\bar{C}_{ijk,0} = \bar{\psi}(x, y)\bar{C}_{ijk},
\end{equation}
where $(\bar{\cdot})$ denotes the h-covariant derivative in $B\bar{\Gamma}$.

Transvecting (4.5) with y^m, we obtain
\begin{equation}
C_{ijk,0} = (\bar{\psi} + p)C_{ijk}.
\end{equation}
Putting $\psi = \bar{\psi} + p$, we find that F^n is also \mathcal{W}-recurrent.

Thus we have the following

Theorem 4.1. Let F^n and \bar{F}^m be two Finsler spaces which are related by the condition (4.2). If a Finsler space F^n can be transformed into a C-recurrent Finsler \bar{F}^m with the function $\bar{\psi}$ by the projective change, then F^n is also a C-recurrent with the function $\psi = \bar{\psi} + p$.

A Finsler space is called a Landsberg space ([1]), if the Berwald connection $B\Gamma$ coincides with the Rund connection $R\Gamma$. It is well known that a Finsler space is a Landsberg space if and only if $C_{ijkl} = 0$ or $B\Gamma$ is h-metrical. Transvevecting (4.3) with y^m and using the relation $g_{ijk} = -2C_{ijk,0}$, we get $pC_{ijk} = 0$, which implies that the space is a Riemannian by virtue of $p \neq 0$. Thus we have

Corollary 4.2. Let F^n and \bar{F}^m be two Finsler spaces which are related by the condition (4.2). If a Landsberg space F^n can be transformed into another Landsberg space by the projective change, then the space is a Riemannian.
5. A G-recurrent space

Now we consider the case of the hv-curvature tensor, which is given by (2.3). A Finsler space is called a Berwald space, if the connection coefficients G_{jk}^i of $B\Gamma$ are functions of position x alone, in any coordinate system, that is, the $G_{jk}^i = 0$

Next, similarly to the C-recurrent case, we can define the G-recurrent space

Definition 5.1. A Finsler space F^n is called G-recurrent if the hv-curvature tensor satisfies the following condition

\[(5.1)\]

\[G_{jk}^i = \varphi(x, y)G_{jk}^i,\]

where $\varphi(x, y)$ is a positively homogeneous function of degree one in y.

From (2.3), if $p_{ij} = 0$, the hv-curvature tensor is invariant. The projective change is called a B-projective ([4]) if $p_{ij} = 0$. Therefore, we can see that a Berwald space remains to be a Berwald one by the B-projective change. Since the hv-curvature tensor is a positively homogeneous function of degree -1 in y, we find $\hat{\partial}_0 G_{jk}^i = -1$. And it satisfies the identities ([1], [8]):

\[(5.2)\]

\[G_{0jk} = G_{h0}^i = G_{h0}^i = 0\]

We are concerned with the projective change $\sigma : L \rightarrow \tilde{L}$, where F^n is an arbitrary but \tilde{F}^n is D-recurrent. From (1.2) and (2.2) we get

\[(5.3)\]

\[G_{hjk} = G_{hjk}^i - p\hat{\partial}_m G_{hjk}^i + G_{hjk}^i + G_{hjk}^i \hat{\partial}_m \Delta^i - \hat{\partial}_m G_{hjk}^i = 0.\]

Suppose that the projective factor satisfies a condition $G_{hjk}^r p_r = 0$, which we denote by G-condition. Transvecting (5.3) with y^m and taking account of $\hat{\partial}_0 G_{hjk}^i = -1$, we obtain

\[(5.4)\]

\[G_{hjk}^i = \varphi G_{hjk}^i.\]

Putting $\varphi = \varphi$, we find that F^n is also G-recurrent.

Conversely, if \tilde{F}^n and F^n are G-recurrent spaces with the function $\varphi = \varphi$, then from (5.3) we get $G_{hjk}^r p_r = 0$.

Thus we have the following;
Theorem 5.1. If a Finsler space F^n can be transformed into a G-recurrent Finsler space \tilde{F}^n with the function $\tilde{\varphi}$ by the projective change, then F^n must be G-recurrent one with the function $\varphi = \tilde{\varphi}$, if and only if the projective factor p satisfies G-condition.

References

Byung-Doo Kim
Department of Mathematics
Kyungil University
Kyungsan 712-701, Korea

Il-Yong Lee
Department of Mathematics
Kyungsung University
Pusan 608-736, Korea

E-mail iylee@star.kyungsung.ac.kr