ON THE CHAIN CONDITIONS OF A FAITHFUL ENDO-FLAT MODULE

SOON-SOOK BAE

ABSTRACT. The faithful bi-module $_RM_{End_R(M)}$ with its endomorphism ring $End_R(M)$ such that $M_{End_R(M)}$ is flat (in other words, $End_R(M)$ -flat, or endo-flat) and with a commutative ring R containing an identity has been studied in this paper. The chain conditions of a faithful endo-flat module $_RM$ relative to those of the endomorphism ring $End_R(M)$ having the zero annihilator of each non-zero endomorphism are studied.

1. Introduction

The chain conditions of the endomorphism ring $End_R(M)$ and those of a flat module $_RM$ ([6]) were studied when $_RM$ is closedly quotient endo-flat. A left R-module $_RM$ is said to be closedly quotient endo-flat if for each closed submodule $N \leq M$, the quotient module M/N is endo-flat. Here, one of replacements of closedly quotient endo-flatness which can give clues to relationships between the chain conditions of the endomorphism ring and those of a module is found. In other words, one of the replacements of closedly quotient endo-flatness is that $End_R(M)$ has the zero left annihilator of each non-zero endomorphism.

The author investigates again the tools (used in [6]), a left ideal

$$I^L \ = \ Hom_R(M,L) \ = \ \{ \ f \in End_R(M) \ | \ Imf \le L \ \} \le_l End_R(M)$$

of $End_R(M)$ and a right ideal

$$I_N = \{ f \in End_R(M) \mid N \leq \ker f \} \leq_r End_R(M)$$

Received August 31, 1996. Revised October 9, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 16A33, 16A50, 16D40.

Key words and phrases: flat, self-generated, self-cogenerated, open submodule, closed submodule, fully-invariant.

of $End_R(M)$ for each submodules L, $N \leq M$. For a left (or right, or two-sided) ideal J of $End_R(M)$, we define the image and the kernel of J by

$$ImJ = \sum_{f \in J} Imf = MJ$$
 and $\ker J = \bigcap_{f \in J} \ker f$, respectively .

Assume that R is a commutaive ring with an identity. Because we are studying $_RM_{End_R(M)}$, the compositions of mappings will follow the direction of arrows:

$$fg: A \xrightarrow{f} B \xrightarrow{g} C$$
.

The following definition is one of the equivalent definitions of an endo-flat (or $End_R(M)$ -flat) module ([1],[2],[5]).

DEFINITION 1.1. A left R-module $_RM$ with its endomorphism ring $End_R(M)$, denoted by S briefly, is said to be endo-flat (S-flat, or flat over S) provided that for any left ideal J of S, there exists a \mathbb{Z} -isomorphism $\mu_J: M \otimes_S J \to MJ$ where μ_J is the restriction of μ to $M \otimes_S J$ for $\mu: M \otimes_S S \to M$ defined by $(m \otimes f)\mu = mf$ for all $m \in M$ and for all $f \in S$ and where \mathbb{Z} is the ring of integers. Note that we have the following commutative diagram:

$$\begin{array}{ccc} M \otimes_S J & \xrightarrow{\mathbf{1}_M \otimes \iota} & M \otimes_S S \\ & & \downarrow \mu & & \downarrow \mu \\ & M J & \xrightarrow{\hookrightarrow} & M S = M \end{array} \; .$$

with the inclusion mappings \hookrightarrow , ι , and the identity mapping 1_M on M.

For a commutative ring R, the abelian group ${}_RM \otimes_S S$ is an R-module. Now recall that a submodule K is said to be open if $K = K^o$ where $K^o = \cap \{N_\alpha \leq M \mid I^{N_\alpha} = I^K\}$ and a submodule N is said to be closed if $N = \overline{N}$ where $\overline{N} = \sum_\alpha \{N_\alpha \mid I_{N_\alpha} = I_N\}$.

A submodule $K \leq M$ is said to be generated by M if $K = \sum_{\alpha \in A} M f_{\alpha}$ = $\sum_{\alpha \in A} Im f_{\alpha}$, for some endomorphism f_{α} and for some index set A. The following lemma and theorem are well-known.

LEMMA 1.2 ([3]). A faithful module $_RU$ is flat over its endomorphism ring, if and only if, it generates the kernel of each homomorphism

$$d: U^{(n)} \to U \ (n=1,2,3,\cdots) \ ,$$

where $U^{(n)}$ denotes the direct product of n-copies of U.

THEOREM 1.3 ([5]). A module M_S is flat if and only if for every relation

$$\sum_{j=1}^{n} v_{j} g_{j} = 0 \ (v_{j} \in M, \ g_{j} \in S)$$

there exist elements $u_1, \dots, u_m \in M$ and elements $f_{ij} \in S$ $(i = 1, \dots, m, j = 1, \dots, n)$ such that

$$\sum_{i=1}^{m} u_i f_{ij} = v_j \ (j=1,\cdots,n) \ \ \text{and} \ \ \sum_{j=1}^{n} f_{ij} g_j = 0 \ \ (i=1,\cdots,m) \ .$$

For any commutative ring R, we have the R-isomorphism $\mu: M \otimes_S S \to M$ defined by $(m \otimes f)\mu = mf$ for every $m \in M$ and every $f \in S$.

If two left (or right, or two-sided) ideals J and J' of S have the same image, then we will call J and J' similar. And if their kernels are identical, then we will call J and J' cosimilar. Furthermore similarity and cosimilarity on the lattice of all submodules are equivalence relations. sim_{\sim} denotes the "similarity" and $cosim_{\simeq}$ denotes the "cosimilarity". A submodule $N \leq {}_R M$ is said to be fully invariant if $Nf \leq N$ for any endomorphism f.

We notice that for any left ideal $J \leq_l S$, $\ker J = \cap_{f \in J} \ker f$ is always a *closed fully invariant* submodule of M, and for any right ideal $J \leq_r S$, ImJ is an *open fully invariant* submodule of M.

2. Relationships between similarity and cosimilarity

In this section we only consider the relationships between the similarity and the cosimilarity of left ideals of the endomorphism ring S in which the left annihilator of each non-zero endomorphism is the zero.

For a fully invariant submodule $N \leq M$, M/N is a right S-module and $M/N \otimes_S J$ is a left R-module for any left ideal $J \leq_l S$. And for any

left ideal $J \subseteq_l S$, $M/\ker J \otimes_S J$ is well-defined and is a left R-module because $\ker J$ is a *closed fully invariant* submodule of M.

For an endo-flat module M, we define a mapping

$$\rho_J: M/\ker J \otimes_S J \to MJ$$

by $((m+\ker J)\otimes f)\rho_J=mf$ for every $((m+\ker J)\otimes f)\in M/\ker J\otimes_S J$. Then ρ_J is an R-isomorphism.

Let $\pi_J:M\to M/\ker J$ be the natural (canonical) projection defined by $m\pi_J=m+\ker J$, for each $m\in M$ and let $1:S\to S$ be the identity function. Define

$$\pi$$
, $\otimes 1: M \otimes_S J \to M/\ker J \otimes_S J$

the tensor product of π_j and 1. Then

$$\pi_{J}\otimes 1=\mu_{J}{\rho_{J}}^{-1}\ :M\otimes_{S}J\stackrel{\mu_{J}}{\rightarrow}MJ\stackrel{\rho_{J}^{-1}}{\rightarrow}M/\mathrm{ker}\,J\otimes_{S}J$$

is an R-isomorphism.

REMARK 2.1. For any faithful endo-flat module $_RM$ if every non-zero endomorphism g in $End_R(M)$ has the zero left annihilator, i.e.,

$$Ann_l(q) = \{ f \in End_R(M) \mid fg = 0 \} = 0,$$

then it follows that $MJ \cap \ker J = 0 = MI^{MJ} \cap \ker J$ for every left ideal $J \leq_l End_R(M)$ which are obtained immediately from Theorem 1.3.

Therefore we obtain the following theorem.

THEOREM 2.2. If a left R-faithful module $_RM$ is endo-flat and if its endomorphism ring $End_R(M)$ has the zero left annihilator of each non-zero endomorphism, then we have the following:

For left ideals J, J' of $End_R(M)$, if J and J' are similar, then J and J' are cosimilar.

PROOF. Let S denote the endomorphism ring $End_R(M)$ of RM. Since the left ideals J, J' are similar and since J, I^{MJ} are also similar, it suffices to show that J and I^{MJ} are cosimilar because if once it were proven then the fact $I^{MJ} = I^{MJ'}$ would induce cosimilarity of J and J'. Since ker J, ker I^{MJ} are fully invariant, the tensor products

 $M/\ker I^{MJ} \otimes_S J$, $M/\ker J \otimes_S J$, $M/\ker J \otimes_S I^{MJ}$, and $M/\ker I^{MJ} \otimes_S I^{MJ}$

are well-defined and they are R-modules. Since $J\subseteq I^{MJ},\ \ker J\supseteq \ker I^{MJ}$ follows.

Let's consider the mappings

$$j: M/\ker I^{MJ} \to M/\ker J$$

defined by $(m + \ker I^{MJ})j = m + \ker J$, for every element $m + \ker I^{MJ}$ in $M/\ker I^{MJ}$,

$$\rho_{IMJ} : M/\ker I^{MJ} \otimes_S I^{MJ} \to MI^{MJ} = MJ$$

defined by

$$((m+\ker I^{MJ})\otimes f)
ho_{_{I^{MJ}}}=mf$$
 for every $(m+\ker I^{MJ})\otimes f\in M/\ker I^{MJ}\otimes_S I^{MJ}$,

and

$$\rho_{\scriptscriptstyle J} \,: M/{\rm ker}\, J \otimes_S J \to MJ \,$$
 defined by $((m+{\rm ker}\, J) \otimes h) \rho_{\scriptscriptstyle J} = mh$,

for every $(m+\ker J)\otimes h\in M/\ker J\otimes_S J$. In fact, $\rho_{_{IMJ}}$ and $\rho_{_J}$ are R-isomorphisms.

We can consider the following diagrams (1*) and (2*) in which mappings j, π_J , $\pi_{_{IMJ}}$, $\mu_{_J}$, $\mu_{_{IMJ}}$, $\rho_{_J}$, and $\rho_{_{IMJ}}$ are involved.

Since $(\pi_{_{IMJ}}\otimes 1_J)(1\otimes \iota)\rho_{_{IMJ}}=\mu_{_J}$ which is an R-isomorphism, $\pi_{_{IMJ}}\otimes 1_J$ is an R-monomorphism and thus $\pi_{_{IMJ}}\otimes 1_J$ is an isomorphism. Because of the facts that

$$j \otimes 1_J = (\pi_{{}_IMJ} \otimes 1_J)^{-1} \mu_{J} \rho_{J}^{-1}$$

and that

$$1 \otimes \iota = (\pi_{_{IMJ}} \otimes 1_J)^{-1} \; \mu_{_J} \mu_{_{IMJ}}^{} ^{-1} \; (\pi_{_{IMJ}} \otimes 1_J) \; = (\pi_{_{IMJ}} \otimes 1_J)^{-1} \; \mu_{_J} \; \rho_{_{IMJ}}^{},$$

it follows that

$$j \otimes 1_J : M/\ker I^{MJ} \otimes_S J \to M/\ker J \otimes_S J$$

with the identity mapping $1_J: J \to J$ and

$$1 \otimes \iota : M/\ker I^{MJ} \otimes_S J \to M/\ker I^{MJ} \otimes_S I^{MJ}$$

are R-isomorphisms also. In the diagram (2*):

$$M/\ker I^{MJ}\otimes_S I^{MJ}$$
 $\searrow_{J\otimes 1}$
 $\downarrow_{I^{MJ}}\swarrow M/\ker J\otimes_S J$
 $M/\ker J\otimes_S I^{MJ}\stackrel{\otimes}{\leftarrow} M/\ker J\times I^{MJ}$
 $\downarrow_{I^{MJ}}$
 $\downarrow_{I^{MJ}}$

 (2^*)

for an S-balanced mapping

$$\beta: M/\ker J \times I^{MJ} \to MI^{MJ}/(\ker J \cap MI^{MJ})$$
 defined by

 $(m+kerJ,g)\beta=mg+\ker J\cap MI^{MJ}$ for every element $(m+\ker J,g)$ in $M/\ker J\times I^{MJ}$, there is a unique

R – homomorphism $\eta: M/\ker J \otimes_S I^{MJ} \to MI^{MJ}/(\ker J \cap MI^{MJ})$ such that $\otimes \eta = \beta$. By Remark 2.1, for any element

$$\sum_{1}^{k}m_{i}f_{i}+\ker J\cap MJ=\sum_{1}^{k}m_{i}f_{i}+0\in MJ/(\ker J\cap MJ)=MJ/0\;,$$

we can define

$$\phi: MJ/0 \rightarrow M/\ker J \otimes_S J$$
 by

$$\left(\sum_1^k m_i f_i + 0\right) \phi = \sum_1^k (m_i + \ker J) \otimes f_i \; ,$$

from which, we have that

$$\phi \ : MJ/(\ker J \cap MJ) = MJ/0 \to M/\ker J \otimes_S J$$

is clearly well-defined and is an R-monomorphism since the restriction of β to $M/\ker J \times J$ induces a unique R-homomorphism

$$\zeta : M/\ker J \otimes J \to MJ/0 = MJ/(\ker J \cap MJ)$$

such that $\phi\zeta=1_{MJ/(\ker J\cap MJ)}$. Hence $(j\otimes 1)$ η ϕ $\rho_J=\rho_{I^{MJ}}$ is an R-isomorphism, from which we have an R-monomorphism $j\otimes 1$. By combining this with the surjectivity of $j\otimes 1$, $j\otimes 1$ becomes an R-isomorphism. And also the homomorphism

$$1_{M/\ker J} \otimes \iota : M/\ker J \otimes_S J \to M/\ker J \otimes_S I^{MJ}$$

is an R-isomorphism since $1_{M/\ker J} \otimes \iota = (j \otimes 1_J)^{-1} (1 \otimes \iota)(j \otimes 1)$ is the composition of isomorphisms.

It remains to show that $\ker J \subseteq \ker I^{MJ}$. For each $m \in \ker J$, the fact of

$$(m + \ker J) \otimes g = 0_{M/\ker J \otimes I^{MJ}}$$
, for every $g \in I^{MJ}$

says that mg=0 always for each $g\in I^{MJ}$. Thus $\ker J\subseteq \ker I^{MJ}$ follows. Therefore the *cosimilarity* of J and I^{MJ} follows. Hence the proof is completed.

REMARK 2.3 ([6]). For an *endo-flat* module $_RM$, we have the following:

- (1) For an open submodule L and a submodule L', $I^L = I^{L'}$ implies that $L \leq L'$.
- (2) For a closed submodule N and a submodule N', $I_N = I_{N'}$ implies $N' \leq N$.
- (3) But the converse of the above Theorem 2.2 doesn't hold, in general. A left \mathbb{Z} -module itself $\mathbb{Z}\mathbb{Z}$ tells immediately that the *cosimilarity* doesn't imply the *similarity*, where \mathbb{Z} is the ring of integers.
- (4) On an endo-flat module M, for each left ideal $J \leq_l End_R(M)$, the closed submodule ker J is open by Lemma 1.2. Hence we have that

$$\{ H \leq M \mid H \text{ is a closed submodule of } M \}$$

 $\subseteq \{ K \leq M \mid K \text{ is an open submodule of } M \}.$

The items of the following Remark 2.4 proved in [6] are restated for good insights of relationships of chain conditions.

REMARK 2.4. ([6]) Let [J] be the equivalence class containing J in the set $\{J \leq_l End_R(M)\}/_{sim}\sim$.

(1) If an endo-flat module M is self-generated, then we have one-to-one correspondences between the following sets:

$$\{ J \leq End_R(M) \mid J \leq_l End_R(M) \}/_{sim\sim} = \{ [J] \mid J \leq_l End_R(M) \}$$

$$\stackrel{1-1}{\longleftrightarrow} \{ A \leq M \}$$

$$\stackrel{1-1}{\longleftrightarrow} \{ I^A \mid A \leq M \}.$$

(2) If an endo-flat module M is self-cogenerated, then we have the following:

$$\left\{ L \leq M \right. \} \quad = \left. \left\{ \right. A \leq M \mid A \text{ is open} \right\}$$

$$= \left. \left\{ \right. B \leq M \mid B \text{ is closed fully invariant } \right\}.$$

(3) Let (J) be the equivalence class containing J in the set $\{J \leq_l End_R(M)\}/_{cosim\simeq}$.

If an endo-flat module M is self-cogenerated, then there are one-to-one correspondences between the following sets:

$$\{J \leq_l End_R(M)\}/_{cosim\simeq} = \{ (J) | J \leq_l End_R(M) \}$$

$$\stackrel{1-1}{\longleftrightarrow} \{ B \leq M | B \text{ is fully invariant } \}$$

$$\stackrel{1-1}{\longleftrightarrow} \{ I_B | B \leq M \text{ is fully invariant } \}.$$

3. Chain conditions of a faithful endo-flat module whose endomorphism ring has the zero left annihilator of each nonzero endomorphism

The following corollary is an immediate consequence of Theorem 2.2.

COROLLARY 3.1. For a faithful endo-flat module $_RM$ with the endomorphism ring $End_R(M)$ having the zero left annihilator of each non-zero endomorphism, there is a one-to-one function from $\{J \leq_l End_R(M)\}/_{cosim^{\sim}}$ into $\{J \leq_l End_R(M)\}/_{sim^{\sim}}$.

PROPOSITION 3.2. For a faithful endo-flat module $_RM$, if the endo-morphism ring $End_R(M)$ has the zero left annihilator of each non-zero endomorphism, then the following are obtained easily:

- (1) For a self-generated module M, if $End_R(M)$ is left Noetherian, then M is Noetherian.
- (2) For a self-generated module M, if $End_R(M)$ is left Artinian, then M is Artinian.
- (3) For a self-cogenerated module M, if $End_R(M)$ is left Noetherian, then M is Artinian and Noetherian.
- (4) For a self-cogenerated module M, if $End_R(M)$ is left Artinian, then M is Artinian and Noetherian.
- (5) For a self-cogenerated module M, if $End_R(M)$ is right Noetherian, then M is Artinian.
- (6) For a self-cogenerated module M, if $End_R(M)$ is right Artinian, then M is Noetherian.

PROOF. For (1), (2), (3) and (4) the proofs are easy so we will not write them here. For (5), let

$$N_1 \geq N_2 \geq \cdots \geq N_n \geq N_{n+1} \geq \cdots$$

be any descending chain of submodules of a self-cogenerated module M, then we have an ascending chain of right ideals of $End_R(M)$

$$J_1 = I_{N_1} \subseteq J_2 = I_{N_2} \subseteq \cdots \subseteq J_n = I_{N_n} \subseteq J_{n+1} = I_{N_{n+1}} \subseteq \cdots.$$

Since $End_R(M)$ is a right Noetherian, there is an m such that

$$J_m = I_{N_m} = J_{m+i} = I_{N_{m+i}}$$
 for all $i = 1, 2, 3, \cdots$.

Then, since the N_i 's are closed submodules,

$$\ker J_m = N_m = \ker J_{m+i} = N_{m+i} \quad \text{for all } i = 1, 2, 3, \cdots$$

follows immediately from $I_{N_m} = I_{N_{m+i}}$ for all $i = 1, 2, 3, \cdots$. Hence M is Artinian. For (6), proof follows by taking the reversing inclusion and the right Artinian ring $End_R(M)$ in the previous item (5).

The theorem stated on page 69 in [2] is well known: If $End_R(M)$ is right Artinian, then any right $End_R(M)$ -module is Noetherian if, and only if, it is Artinian.

Combining the above theorem with the facts;

$$\{A \leq M \mid A \text{ is open }\} \supseteq \{B \leq M \mid B \text{ is closed }\}$$

$$\supseteq \{B \leq M \mid B \text{ is closed fully invariant }\},$$

we have the following theorem.

THEOREM 3.3. If a faithful endo-flat module $_RM$ is self-cogenerated and if the endomorphism ring $End_R(M)$ has the zero left annihilator of each non-zero endomorphism, then M is Artinian if and only if it is Noetherian.

PROOF. Assume that M is a Noetherian module. Let

$$N_1 \geq N_2 \geq \cdots \geq N_n \geq N_{n+1} > \cdots$$

be any descending chain of submodules of M. Then we have an ascending chain of right ideals of $End_R(M)$:

$$J_1 = I_{N_1} \subseteq J_2 = I_{N_2} \subseteq \cdots \subseteq J_n = I_{N_n} \subseteq J_{n+1} = I_{N_{n+1}} \subseteq \cdots$$

from which we have an ascending chain of submodules of M:

$$MJ_1 \leq MJ_2 \leq \cdots \leq MJ_n \leq MJ_{n+1} \leq \cdots$$

Since M is Noetherian, there is an m such that

$$MJ_m = MJ_{m+i}$$
 for all $i = 1, 2, 3, \cdots$.

Thus J_m and J_{m+i} are *similar*, so J_m and J_{m+i} are *cosimilar* for all $i = 1, 2, 3, \dots$, by Theorem 2.5. In other words,

$$\ker J_m = N_m = \ker J_{m+i} = N_{m+i} \cdots$$
 for all $i = 1, 2, 3, \cdots$.

Hence M is Artinian. Conversely, assume that M is an Artinian module. Let

$$N_1 \leq N_2 \leq \cdots \leq N_n \leq N_{n+1} \leq \cdots$$

be an ascending chain of submodules of M. We have a descending chain of right ideals of $End_R(M)$:

$$J_1 = I_{N_1} \supseteq J_2 = I_{N_2} \supseteq \cdots \supseteq J_n = I_{N_n} \supseteq J_{n+1} = I_{N_{n+1}} \supseteq \cdots,$$

from which we have a descending chain of submodules of M;

$$Im J_1 \ge Im J_2 \ge \cdots \ge Im J_n \ge Im J_{n+1} \ge \cdots$$
.

Since M is Artinian, there is an m such that

$$Im J_m = Im I_{N_m} = Im J_{m+i} = Im I_{N_{m+i}}$$
 for all $i = 1, 2, 3, \cdots$.

Thus J_m and J_{m+i} are similar for every $i=1,2,3,\cdots$. Hence by Theorem 2.2, J_m and J_{m+i} are cosimilar. Since M is endo-flat and self-cogenerated, every submodule of M is closed and open. Thus

$$\ker J_m = N_m = \ker J_{m+i} = N_{m+i}$$
 for all $i = 1, 2, 3, \dots$,

which implies that M is Noetherian. Hence the proof is completed. \square

The following corollary is an immediate consequence of the Proposition 3.2 and Theorem 3.3.

COROLLARY 3.4. If a left R-faithful module $_RM$ is self-cogenerated endo-flat and if its endomorphism ring $End_R(M)$ has the zero left annihilator of each non-zero endomorphism, then we have the following:

- (1) If $End_R(M)$ is a left (or right, or two-sided) Noetherian ring, then M is Artinian and Noetherian.
- (2) If $End_R(M)$ is a left (or right, or two-sided) Artinian ring, then M is Artinian and Noetherian.

ACKNOWLEDGEMENT. The author thanks Professor V. Camillo of the department of mathematics in the University of Iowa for many stimulating discussions, the referee, and the editors, especially a chief editor, Professor I. S. Wee of Communications of the Korean Mathematical Society for their hospitality.

References

- [1] M. F. Atyah Frs. and I. G. Macdonald, Introduction of Commutative Algebra, Addison-Wesley Publ. Comp., 1969.
- [2] J. Lambek, Lectures on Rings and Modules (2nd, ed.), Chelsa Publ. Comp. New York, NY, 1976.
- [3] V. P. Camillo and K. R. Fuller, Rings whose faithful modules are flat over their endomorphism rings, vol. 27, Arch. Math., 1976, pp. 522-525.
- [4] S. M. Khuri, Correspondence theorems for modules and their endomorphism rings, Journal of Algebra 122 (1989), 380-396.
- [5] F. W. Anderson and K. R. Fuller, Rings and categories of modules (2nd, ed.), Springer-Verlag, 1992.
- [6] Soon-Sook Bae, On the Chain conditions of the endomorphism ring and of a flat module, Pusan Kyŏngnam Mathematical Journal 12 (1996), no. 2, 213-233.

Department of Mathematics Kyungnam University Masan 631-701, Korea

E-mail: ssb@hanma.kyungnam.ac.kr