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ON THE CHAIN CONDITIONS OF
A FAITHFUL ENDO-FLAT MODULE

SOON-SO0OK BAE

ABSTRACT. The faithful bi-module p Mg, 4 r(M) With its endomor-
phism ring Endg(M) such that MEgndgp(ar) is flat (in other words,
Endg(M)~flat, or endo-flat) and with a commutative ring R contain-
ing an identity has been studied in this paper. The chain conditions
of a faithful endo-flat module r M relative to those of the endomor-
phism ring Endr(M) having the zero annihilator of each non-zero
endomorphism are studied.

1. Introduction

The chain conditions of the endomorphism ring Endg(M) and those
of a flat module pRM ([6]) were studied when rM is closedly quotient
endo-flat. A left R—module g M is said to be closedly quotient endo-
flat if for each closed submodule N < M, the quotient module M/N is
endo-flat. Here, one of replacements of closedly quotient endo-flatness
which can give clues to relationships between the chain conditions of the
endomorphism ring and those of a module is found. In other words, one
of the replacements of closedly quotient endo-flatness is that End r(M)
has the zero left annihilator of each non-zero endomorphism.

The author investigates again the tools (used in [6]), a left ideal

I" = Homp(M,L) = { f € Endg(M) | Imf <L} <; Endp(M)
of Endp(M) and a right ideal

Iy = {f€Endp(M)|N <kerf} <, Endr(M)
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of Endgr(M) for each submodules L , N < M. For a left (or right, or
two-sided) ideal J of Endgr(M), we define the image and the kernel of
J by

ImJ = Zlmf =MJ and kerJ= ﬂ ker f , respectively .
feJ feJ

Assume that R is a commutaive ring with an identity. Because we are
studying RMEn4p(M), the compositions of mappings will follow the di-
rection of arrows:

fg:A—L B2 C.

The following definition is one of the equivalent definitions of an endo-flat
(or Endg(M)—flat) module ([1],(2],(5]).

DEFINITION 1.1. A left R—module g M with its endomorphism ring
Endgr(M), denoted by S briefly, is said to be endo-flat (S—flat, or
flat over S) provided that for any left ideal J of S, there exists a
Z—isomorphism u, : M ®s J — MJ where p, is the restriction of
ptoM®gJforu : M®sS — M defined by (m® f)u = mf for all
m € M and for all f € S and where Z is the ring of integers. Note that
we have the following commutative diagram:

M®sJ 22, MesS

b | |

MJ] ——— MS=M,

with the inclusion mappings —, ¢, and the identity mapping 157 on M.

For a commutative ring R, the abelian group pRM®gsS is an R—module.

Now recall that a submodule K is said to be open if K = K° where
K°=n{N, < M | INe = X} and a submodule N is said to be closed
if N=N where N = Y, _{No|In, = IN}.

A submodule K < M is said to be generatedby M if K =3 ., M fq
=Y acaImfa, for some endomorphism fo and for some index set A.

The following lemma and theorem are well-known.
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LEMMA 1.2 ([3]). A faithful module gU is flat over its endomorphism
ring, if and only if, it generates the kernel of each homomorphism

d:U™M U (n=1,2,3,---),

where U™ denotes the direct product of n—copies of U.

THEOREM 1.3 ([5]). A module Mg is flat if and only if for every
relation

Y v, =0 (v;€M, g; €5)

i=1

there exist elements uy, - ,um € M and elements f;; € S (2 =
1"" , M, _7: 1,"‘ ,n) such that

m n
> wifiy=v(j=1,---,n) and Y _ fi;g; =0 (i=1,---,m).
i=1

Jj=1

For any commutative ring R, we have the R—isomorphism u : M ®g
S — M defined by (m ® f)p=mf for every m € M and every f € S.

If two left (or right, or two-sided) ideals J and J’ of S have the same
image, then we will call J and J’ similar. And if their kernels are iden-
tical, then we will call J and J’ cosimilar. Furthermore similarity and
costmilarity on the lattice of all submodules are equivalence relations.
sim~ denotes the “similarity” and cosim~ denotes the “cosimilarity”. A
submodule N < gM is said to be fully invariant if Nf < N for any
endomorphism f.

We notice that for any left ideal J <; S , kerJ = Ngcyker f is
always a closed fully invariant submodule of M, and for any right ideal
J <. S, ImJ is an open fully invariant submodule of M.

2. Relationships between similarity and cosimilarity

In this section we only consider the relationships between the simi-
larity and the cosimilarity of left ideals of the endomorphism ring S in
which the left annihilator of each non-zero endomorphism is the zero.

For a fully invariant submodule N < M , M/N is a right S—module
and M/N ®g J is a left R—module for any left ideal J <; S. And for any
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left ideal J <; S, M/ker J ®g J is well-defined and is a left R—module
because ker J is a closed fully invariant submodule of M.
For an endo-flat module M, we define a mapping

p,  M/kerJ®sJ — MJ

by ((m+ker J)® f)p, = mf for every ((m-+ker J)® f) € M/ker J @5 J .
Then p, is an R—isomorphism.

Let m, : M — M/ker J be the natural (canonical) projection defined
by mm, = m+kerJ, for each m € M andlet1:S — S be the identity
function. Define

7,81 :M®sJ— M/kerJ®gs J

the tensor product of w, and 1. Then

T, @l=p,p,"t :M®sJ 3 MJ L M/kerJ ®sJ

is an R—isomorphism.

REMARK 2.1. For any faithful endo-flat module r M if every non-zero
endomorphism g in Endgr(M) has the zero left annihilator, i.e.,

Anny(g) = { f € Endp(M) | fg = 0}=0,

then it follows that MJNkerJ = 0 = MIMJ Nker J for every left ideal
J <y Endgr(M) which are obtained immediately from Theorem 1.3.

Therefore we obtain the following theorem.

THEOREM 2.2. If a left R—faithful module g M is endo-flat and if
its endomorphism ring Endr(M) has the zero left annihilator of each
non-zero endomorphism, then we have the following:

For left ideals J, J' of Endr(M), if J and J' are similar, then J and
J' are cosimilar.
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PROOF. Let S denote the endomorphism ring Endr(M) of gM.
Since the left ideals J, J’ are similar and since J, I’ are also sim-
ilar, it suffices to show that J and I are cosimilar because if once
it were proven then the fact I™7 = IMJ’ would induce cosimilarity of
J and J'. Since ker J, ker IM7 are fully invariant, the tensor products

M/ker I @gJ, M/ker J®sJ, M/ker JosI™’, and M/ker IM7@gIM7

are well-defined and they are R—modules. Since J C IMY kerJ O
ker I™7 follows.
Let’s consider the mappings

J i M/ker I — M/ker J

defined by (m + ker IM7)j = m + ker J, for every element m + ker IM/
in M/ker IM7 |

Poaes i M/ker IM7 @5 M7 . MIMT = MJ
defined by
(m+ker IM?)® f)p,p, =mf
for every (m + ker IM7) ® f € M/ker I’ g IM7
and

p, : M/kerJ ®s J — MJ defined by ((m + ker J) ® h)p, = mh,,

for every (m + kerJ) @ h € M/kerJ ®s J . In fact, P, and p, are
R—isomorphisms.

We can consider the following diagrams (1*) and (2*) in which map-
pIngs j, T, , Wy s My s Kovs s Py and p,ms are involved.

®1
Mes ™5 M/kerIM @5 J '8 M/kerIM! @5 M

®1)~1!
oLy je1 N Troes @)
1 e
BrN,  M/kerJ®sJ ST Mikerd @s IM7 | Pimi M @g IMI
$ P 4 Hyng

MJ = MIMJ
(1)
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Since (7 ,,, ®17)(1®)p, 4, = p, Which is an R—isomorphism, 7 ,,,®1;
is an R—monomorphism and thus 7 ,,, ®1, is an isomorphism. Because
of the facts that

J®ly= (TrIMJ ® lJ)_l)u'JpJ—l

and that
100 = (3, @10) ™ by by L (Mppgs ®10) = (T gy ©10) 7 1y Praess
it follows that
j®1l; : M/ker I @5 J — M/kerJ ®s J
with the identity mapping 15 : J — J and
1®¢ : M/ker IMY @5 J — M/ker IM7 @5 IM’

are R—isomorphisms also. In the diagram (2*):

M /kerIM' ®g 1M/
I®1
Pims s Mfkerd ®s J M/kerJ ®s IM7 & M/kerJ x 1M/
AV N e In B
MIMI = MJ MJ/(kertJOMJ) = MIM’/(kerJ N MIM7)

[
MJ/0

(27)

for an S-—balanced mapping

B : M/ker J x IM7 — MIM7/(ker JO MIM’) defined by
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(m+kerJ,g)8 = mg +ker JNMIM7 for every element (m +ker J, g) in
M/ker J x IMY | there is a unique

R — homomorphism 7 : M/ker J ®¢ I — MIM7 /(ker J N MTM7)
such that ®7 = 3. By Remark 2.1, for any element

k k
Y omifi+ker JOMJT =3 mif; +0e MJ/(ker J N MJ) = MJ/0,
1 1

we can define

¢ : MJ/0— M/kerJ ®s J by

k k
(Zmifi +0) ¢= Z(mi +kerJ)® f;,
1 1

from which, we have that
¢ MJ/(kerJNMJ)=MJ/0— M/kerJ ®s J

is clearly well-defined and is an R—monomorphism since the restriction
of B to M/ker J x J induces a unique R—homomorphism

¢ M/ker J®J — MJJ0 = MJ/(ker J N MJ)

such that ¢¢ = 1ry/(kersnmys). Hence (j @ 1) n ¢ p, = Poms 18
an R—isomorphism, from which we have an R—monomorphism j ® 1.

By combining this with the surjectivity of 7 ® 1,  ® 1 becomes an
R—isomorphism. And also the homomorphism

Ip/ker g ® ¢ : M/ker J @5 J — M/ker J ®g IM”

is an R—isomorphism since 1ps/kers @ ¢ = (j®17) 1 (1 ®¢)(j ®1) is the
composition of isomorphisms.
It remains to show that ker J C ker I™Y. For each m € ker J, the fact
of
(m+kerJ)®g = 0nrs/ker s , for every g € mJ

says that mg = 0 always for each g € IMJ, Thus kerJ C ker IM/
follows. Therefore the cosimilarity of J and I™7 follows. Hence the
proof is completed. O
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REMARK 2.3 ([6]). For an endo-flat module M, we have the follow-

ing:
(1) For an open submodule L and a submodule L', IV = IY implies
that L < L.
(2) For a closed submodule N and a submodule N, Iy = Iy implies
N'<N.

(3) But the converse of the above Theorem 2.2 doesn’t hold, in gen-
eral. A left Z—module itself zZ tells immediately that the cosimi-
larity doesn’t imply the similarity, where Z is the ring of integers.

(4) On an endo-flat module M, for each left ideal J < Endgr(M),
the closed submodule ker J is open by Lemma 1.2. Hence we have
that

{ H< M | H is a closed submodule of M }
C { K < M| K is an open submodule of M }.

The items of the following Remark 2.4 proved in [6] are restated for
good insights of relationships of chain conditions.

REMARK 2.4. ([6]) Let [J] be the equivalence class containing J in
the set { J < Endp(M) }/simn~-

(1) If an endo-flat module M is self-generated, then we have one-to-
one correspondences between the following sets:

{ J < Bndp(M) | J < Endp(M) }/sim~ = { [J1]J <y Endr(M) }
— {A<M}
EL{IA A<M}

(2) If an endo-ﬂat module M is self-cogenerated, then we have the
following:

{L<M} {A< M| A is open}
{B< M| B is closed }

D {B< M| B is closed fully invariant }.
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(3) Let (J) be the equivalence class containing J in the set { J <
EndR(M) }/cosim’: .
If an endo-flat module M is self-cogenerated, then there are
one-to-one correspondences between the following sets:

< Endp(M)}/cosim~ = { (J) |J Qi Endg(M) }
5 {B< M| B is fully invariant }
« {Ip| B < M is fully invariant }.

3. Chain conditions of a faithful endo-flat module whose
endomorphism ring has the zero left annihilator of each non-
zero endomorphism

The following corollary is an immediate consequence of Theorem 2.2.

COROLLARY 3.1. For a faithful endo-flat module R M with the en-
domorphism ring Endr(M) having the zero left annihilator of each
non-zero endomorphism, there is a one-to-one function from { J <

EndR(M) }/cosim'z into { J EndR(M) }/simN .

PROPOSITION 3.2. For a faithful endo-flat module gk M, if the endo-
morphism ring Endgr(M) has the zero left annihilator of each non-zero
endomorphism, then the following are obtained easily:

(1) For a self-generated module M, if Endr(M) is left Noetherian,
then M is Noetherian.

(2) For a self-generated module M, if Endr(M) is left Artinian, then
M is Artinian.

(3) For a self-cogenerated module M, if Endr(M) is left Noetherian,
then M is Artinian and Noetherian.

(4) For a self-cogenerated module M, if Endr(M) is left Artinian,
then M is Artinian and Noetherian.

(5) For a self-cogenerated module M, if Endg(M) is right Noether-
ian, then M is Artinian.

(6) For a self-cogenerated module M, if Endg(M) is right Artinian,
then M is Noetherian.
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PROOF. For (1), (2), (3) and (4) the proofs are easy so we will not
write them here. For (5), let

N 2Np> o 2Ny > Npgr 2o

be any descending chain of submodules of a self-cogenerated module M,
then we have an ascending chain of right ideals of Endg(M)

J=InCIo=IN,C---CIp=In, CIpr1=In,,, T

n+l =

Since Endg(M) is a right Noetherian, there is an m such that
Jn=1In,, = Imti=1In,,,, foral i=1,23,---.
Then, since the N;’s are closed submodules,
ker J,, = N, = ker Jpp i = Nppti foralli=1,2,3,---

follows immediately from Iy, = In,,,, forall ¢=1,2,3,---. Hence M
is Artinian. For {6), proof follows by taking the reversing inclusion and
the right Artinian ring Endg(M) in the previous item (5).

The theorem stated on page 69 in [2] is well known: If Endg(M) is
right Artinian, then any right Endg(M)-module is Noetherian if, and
only if, it is Artinian. O

Combining the above theorem with the facts;

{A<M|Aisopen} D { B< M| Bis closed }
D { B< M |B is closed fully invariant } ,

we have the following theorem.

THEOREM 3.3. If a faithful endo-flat module g M is self-cogenerated
and if the endomorphism ring Endg(M) has the zero left annihilator
of each non-zero endomorphism, then M is Artinian if and only if it is
Noetherian.
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PROOF. Assume that M is a Noetherian module. Let
Ny2Np2 o2 N2 Nppy > oo

be any descending chain of submodules of M. Then we have an ascending
chain of right ideals of Endg(M):

h=InCl=IN,C---CIp=1IN, CIpp1=1In,,,C -,
from which we have an ascending chain of submodules of M:
Mh<MJ(p<---<MJ, <MJp1<---.
Since M is Noetherian, there is an m such that
MJy, =MJp+; forall 1=1,2,3,... .

Thus J,, and Jp,4; are similar, so J,, and Jy,4; are cosimilar for all
t=1,2,3,---, by Theorem 2.5. In other words,

ker J, = Ny = ker Jpys = Ny -+ forall ¢=1,2,3,---

Hence M is Artinian. Conversely, assume that M is an Artinian module.
Let
N1 <Ny <---<N,<Npy1 < -+

be an ascending chain of submodules of M. We have a descending chain
of right ideals of Endg(M) :

Ji=In2J2=1In,2 -2 Jpn=1IN,DJpy1=IN,,, D",
from which we have a descending chain of submodules of M;
Imdy >Imdy > - > Imdp, > Imdpig > - .
Since M is Artinian, there is an m such that
ImJ,, = Imly,, =ImJpmyi =Imly, ., forall :=1,2,3,---

Thus J,, and Jpn4; are similar for every ¢ = 1,2,3,--- . Hence by
Theorem 2.2, J,, and J,,1; are cosimilar. Since M is endo-flat and
self-cogenerated, every submodule of M is closed and open. Thus

ker Jp, = N = ker Jpp i = Nppps foralli=1,2,3,---,
which implies that M is Noetherian. Hence the proof is completed. O

The following corollary is an immediate consequence of the Proposi-
tion 3.2 and Theorem 3.3.
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COROLLARY 3.4. If a left R—faithful module rRM is self-cogenerated
endo-flat and if its endomorphism ring Endr(M) has the zero left anni-
hilator of each non-zero endomorphism, then we have the following:

(1) If Endr(M) is a left (or right, or two-sided) Noetherian ring,
then M is Artinian and Noetherian.

(2) If Endr(M) is a left (or right, or two-sided) Artinian ring, then
M is Artinian and Noetherian.
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