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THE EXISTENCE OF (n,rt,k)-ARRANGEMENTS

DarL-Young JEONG

ABSTRACT. B. Griinbaum defined the arrangements of simple curves
and got many combinatorial properties. In this paper, we studied the
existence of (n,r,t,k)-arrangements and the existence of digon-free
(n, r, t, k)-arrangements, which is a generalized version of Griinbaum’s
definition.

1. Introduction

When two curves meet at a point, they either intersect (cross) or
osculate. If two curves intersect at a point, we call it an intersection
point. If two curves osculate at a point, we call it a kissing point or
an osculation point.

J. Malkevitch suggested a generalization of the arrangements of simple
curves defined by B. Griinbaum [1,3]. An arrangement of n simple
curves in the Euclidean plane E? is a finite family of simple closed
curves {Cy,Cy,...,Cp} with the following properties:

1) every pair of curves has exactly ¢ intersection points (¢ is even) and

exactly k kissing points in common,

2) exactly two curves meet at each point.

From this definition, it is obvious that every curve has the same num-
ber of points r, which is determined by the equation r = (n — 1)(¢t +
k), n > 2. Hence, we will denote this arrangement by an (n,r,t, k)-
arrangement of curves.

Throughout this paper, we assume that every 4-tuple (n,r,t, k) con-
sists of nonnegative integers satisfying the equation r = (n — 1)(t + k).
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Then (n,r,2,0)-arrangements without the second property are the ar-
rangements of simple curves in Griinbaum’s sense (see Figure 1).

The graph of an arrangement of simple curves is a plane graph each of
whose vertices is either an intersection point or a kissing point, and whose
edges are the segments of curves between each pair of adjacent points.
We will use the term “point” and “vertex” interchangeably throughout
this paper.

Let G be the graph of an (n,r,t, k)-arrangement. Then G is a plane
4-valent graph. If G does not have any faces which are digons, then
such an arrangement is called a digon-free (n,r,t, k)-arrangement of
curves.

Since all curves in an arrangement are simple, there is no (1,r,t, k)-
arrangement. Also, every (2,r,t,k)-arrangement has digons. Thus we
assume that n > 3, when we refer to a digon-free arrangement.

2. Existence of arrangements

Arrangements in Figure 1 illustrate the existence of an (n,r,2,0)-
arrangement and a digon-free (n,r,2,0)-arrangement, respectively [cf.
1].

Figure 1. Examples of (n,r,2,0)-arrangement

For further study, let us define the operations Oy, O, and O3 (Figure
2 (a), (b), and (c)). The operations O; and O3 add two more intersection
points, while the operation Oz adds one more kissing point.
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(a)
Figure 2. 01,03, and O3 operations

LEMMA 2.1. If there is an (n,r,t, k)-arrangement with t+k > 0, then
there exists an (n,r’,t + 2m, k + k')-arrangement where m and k' are
positive integers and r' =7+ (n — 1) - (2m + k).

PROOF. Let G be the graph of an (n, 7, ¢, k)-arrangement with ¢+ k& >
0. Since t + k > 0, each pair of curves in G has at least one intersection
point or kissing point. Let C; and C; be two different curves in G and let
v be an intersection point or a kissing point (cf. Figure 3 (a), (b)). By
applying the operation O; m times to the neighbor of the point v, we can
increase the number of intersection points of the two curves to t + 2m.
Similarly, by applying the operation Oz k' times to the neighbor of the
point v, we can increase the number of kissing points of the two curves
to k+ k' as we wish that we would like (see Figure 3 (a), (b) for the case
m = 2,k’ = 3). Now, apply this method to every pair of curves, one by
one. Then, the resulting graph is an (n, ', t+2m, k+k')-arrangement.]

XM o

(@ m=2,k’=3 (b) m=2,k’=3

Figure 3. Adding intersection points and kissing points

LEMMA 2.2. There is no (n,r,0, k)-arrangement for n > 5.

PROOF. We will proceed by induction on k. Suppose that k£ = 1.
The arrangements in Figure 4 shows the existence of an (n,r,0,1)-
arrangement for n = 2,3 and 4. Now, suppose that there is an (n, 7,0, 1)-
arrangement for some n > 5. Clearly each curve has only (n — 1) kissing
points. Let C be a curve in this arrangement. If a curve resides inside
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the curve C (or outside the curve C, respectively), then all the other
curves must reside inside C (or outside C, respectively). Otherwise, the
curves inside C cannot kiss the curves that are outside of C' without
creating an intersection point, and this violates the condition ¢ = 0.

Now, let us construct a new graph G’ from the graph G of the given
(n,r,0,1)-arrangement. Since every curve in an (n,r,0, 1)-arrangement
is simple, each curve separates the plane into two regions. Assign a vertex
to each curve by adding and placing a vertex in the region that does not
contain any other curves. And, join two vertices if the corresponding
curves meet at a kissing point. The graph of thick lines in Figure 4 (d)
illustrates this method. Then, the new graph G’ is isomorphic to K,
since every curve osculates to all the other curves. We know that K, is
not planar if n > 5. Therefore, we cannot have an (n, r, 0, 1)-arrangement
on the plane for all n > 5.

Suppose that our assertion is true for all k¥ < m and that there is an
(n,r,0, m)-arrangement. Let v be a kissing point of two curves C;, Cj.
Remove the vertex v and detach two curves at v, then the pair of curves
C;, C; has m — 1 kissing points. By applying the same method to all the
other pairs of curves, we have an (n,r,0, m — 1)-arrangement and it con-
tradicts our assumption. Therefore, there is no (n,r,0, k)-arrangement

ifn > 5. : O
(a) n=2 (b) n=3 () n=4 (d) anew graph
Figure 4.

THEOREM 2.3. For a 4-tuple (n,r,t,k), there is an (n, ,t, k)-arrange-
ment, except for the casen > 5 and t = 0.

ProOOF. If t = 0, the result is clear by Lemma 2.2. Otherwise, there
is an (m,r’,2,0)-arrangement (Figure 1 (a)). Apply the operation O;
(t — 2)/2 times and the operation O k times to every pair of curves.
The final arrangement is an (n,r, t, k)-arrangement. O
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The arrangements described in Theorem 2.3 may not be a digon-
free arrangement. However, a digon-free arrangement is more desirable
because it can be a 3-polytopal graph. Hence, let us consider the con-
struction of digon-free arrangements.

LEMMA 2.4. There exists a digon-free (3,r,t,0)-arrangement.

PRrOOF. Consider a (2,7/,,0)-arrangement which has a form like in
Figure 5 (a). Now, draw the third curve that cuts the digons in the
(2,7',t,0)-arrangement to change them 2t triangles (Figure 5 (b)). The
final arrangement is a digon-free (3,r, ¢, 0)-arrangement. O

Y

(a) a (2,4,4,0)-arrangement (b) a (3,8,4,0)-arrangement

Figure 5.

LEMMA 2.5. Suppose that there exists a digon-free (n,r,t,0)-arrange-
ment. Then, there is a digon-free (n + 1,7’ ,t,0)-arrangement where
v =r4t

PRrRoOOF. Let C be a digon-free (n,r,t,0)-arrangement. Choose a sim-
ple curve C,, in C. Then, we can draw a new simple curve C,,;; such
that C,,4, is parallel to the curve C,, and close enough not to have any
points between C, and Cp; (Figure 6 (a)). Since C,, intersects every
curve C; (i < n — 1) ¢ times, Ch4; also intersects all of these curves
t times (except for the curve Crn). Now, pull over a part of the curve
Cn+1 along the other curve that cut through the curve C,, to make 2

t
intersection points (Figure 6 (b)). Repetition of this method at 3 places

yields the graph of an (n+ 1,7, ¢,0)-arrangement (Figure 6 (c) shows an
example for n = 3,¢ = 4). O
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(a) drawing a paraile! curve (b) making two
intersection points (c)a (4,12,4,0)-arrangement

Figure 6.

As a result of Lemma 2.4 and Lemma 2.5, we have the following
theorem.

THEOREM 2.6. There exists a digon-free (n,r,t,0)-arrangement for
n>3.

To demonstrate the existence of digon-free (n,r,t, k)-arrangements
for an arbitrary number of kissing points k, we need to develop some
methods to increase the number of kissing points in the arrangements.
For this purpose, we will consider two operations K and K,. Suppose
that a curve C; intersects two curves Cr, Cs consecutively as in Figure
7 (a), then we change the curve C; as in Figure 7 (a) to make k kissing
points with the curve C, and with the curve C,. This operation is called
K, operation. For the operation K3, suppose that we have j curves
Ci,,Ciy, ..., Ci; as in Figure 7 (b). By changing the curves as in Figure
7 (b), § — 1 pairs of curves C;;,Ci,,, 1 = 1,2,...,5 — 1 have k kissing

points each.
G ¢ Cit
! ~ /:
Cs Cs /
|

(a) Ky operation fork = 2 (b) Ko operation fork =3

Figure 7. K, and K, operations
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Now, let’s construct a digon-free (n,r,t,0)-arrangement according to
the method described as above. We start from the digon-free (3,2t,t,0)-
arrangement of the form in Figure 5 (b). First, draw the curve C,
parallel to the curve C3. Then there are t intersection points in the pair
of curves Cy,C;,1 = 1,2. Choose t/2 points in an alternating manner
and pull a part of the curve Cy out of the curve Cs along the curve C;
using the operation O3. It produces ¢ intersection points between the
curves Cs and Cy. Thus we have a digon-free (4, 3t, t, 0)-arrangement of
curves (Figure 8 (a)). To construct a digon-free (5, 4t,t,0)-arrangement
of curves, draw the curve Cs parallel to the curve C4 and pull a part of
the curve Cs out of the curve Cy4 along the curve C; at the same place
where the curve C4 was pulled out. By applying the same method again
and again, we are able to construct a digon-free (n,r,t,0)-arrangement
(see Figure 8 (b) for the case n = 6).

C4 C3

C

(a) a (4,12, 4,0)-arrangement (b) a (6, 20, 4,0)-arrangement

Figure 8.

In the (n,r,t,0)-arrangement constructed above, let’s investigate the
order of the curves which the curve C;,1 = 1,2, -+ ,n intersects. For ex-
ample, the curve C; intersects the curves Cz,C3,C4,- - ,Cp,C2,Cs, Cy,
co+,Cp,Ca,C3,C4,---. Here is the table of the order of the curves that
the curve C; intersect. For convenience, we just use the index ¢ instead
of Ci.
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1
2
3
4
)

:2,3,4,5,---,n,2,3,4,5,--- ,n,2,- -
:1,3,4,5,---,n,1,n,---,5,4,3,1,---
:1,2,4,5,--- ,n,1,n,---,5,4,2,1,---
:1,2,3,5,---,n,1,n,---,5,3,2,1,---
:1,2,3,4,---,n,1,n,---,4,3,2,1,---

n:1,2,3,4,....n—1,1,n—1,...,4,3,2,1,...

As we see, the numbers are increasing at the beginning of each row.
That is, we are able to apply operation K; to two pairs of curves
{Ci,C;},i # j and {C;,Cj+1},i # j + 1 to increase the number of
kissing points. Also this arrangement of curves has a configuration in
Figure 7 (b), and the order of curves in this part is 3,4, 5,...,n. Hence,
it is possible to apply operation K2 to any number of pairs of curves,
{C,', Ci+1}, {Ci+1a Ci+2}, ey {Ci+j_1, Ci+j}’ 3 S 7 S n—2, 2 S _] S n—1.

Here is a good place to state our main theorem.

THEOREM 2.7. There exists a digon-free (n,r,t,k)-arrangement ex-
cept for the casen > 5 and t = 0.

PROOF. We can exclude the case n > 5 and t = 0 by Lemma 2.2.

Since we have a digon-free (n, r,t,0)-arrangement (Theorem 2.6), the
only thing we have to do is to make k kissing points for each pair of
curves. We do this by applying the operation K; and the operation K,
appropriately.

Suppose that the given digon-free (n,r,t,0)-arrangement was con-
structed in the special way as described above (cf. Figure 8 (b)). If
n = 3, we can locate the configuration in Figure 7 (b) whose order is
1,2,3,1. By applying the operation K2, we have a digon-free (3,r,¢, k)-
arrangement of curves.

n(n—1)
2

step like figure to display all the pairs of the curves (see Figure 9). We call
it an n—1 stairs. In this figure, the cell in the (, j)-position (5 < i) means

For n > 4 curves, there are pairs of curves. We will use the
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the pair of two curves {C;,C;}. Then two pairs of curves {C;, C;} and
{Ci,Cj11} are either horizontally adjacent two cells ((4, 5), (3,5 4+ 1) po-
sition) or vertically adjacent two cells ((4,4), (j +1,%) position). Further-
more j pairs of curves like {C;, Ci11}, {Cit1, Cita}, ..., {Citj-1,Citi},
2 < 7 < n—i are diagonally adjacent j cells. For example, see the blocks
in black color in Figure 9. We call these blocks in black, a horizontal
block, a vertical block, and a diagonal block of length j, respectively.

W AW N

. .

I 2 3 45 n-1n

The n-1 stairs and 3 types of blocks
Figure 9. (n-1) stairs

For the pairs covered by either a horizontal block or a vertical block,
we are able to apply the K operation because there is a common curve
C; in two pairs which intersect the other two curves C;,Cji41. On the
other hand, for the pairs in a diagonal block of length j, we can apply
K operation since there is a configuration of the curves in Figure 7
(b) whose order is C;, Cit1,...,Citj. Thus to prove this theorem for n
curves, it suffices to show that the n — 1 stairs in Figure 9 can be covered
by these 3 types of blocks.

Claim 1. Suppose that the 4m — 1 stairs and the 4m + 1 stairs are
covered by the 3 types blocks, then the 4m stairs and 4m + 2 stairs are
also covered by them.

The 4m stairs (4m + 2 stairs, respectively) requires the addition of
4m cells (4m + 2 cells, respectively) to the 4m — 1 stairs (4m + 1 stairs,
respectively) at the bottom. Furthermore, these 4m cells (4m + 2 cells,
resp.) can be covered by 2m (2m + 1, resp.) horizontal blocks. Hence,
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if we cover the 4m — 1 stairs (4m + 1 stairs, resp.) using 3 types blocks,
then we are also able to cover 4m stairs (4m + 2 stairs, resp.) too (see
Figure 10 (a), (b) for the case m = 1).

5 HE HE

(a) 3 stairs and 4 stairs (b) 5 stairs and 6 stairs

Figure 10.

Claim 2. For m > 4, if the m stairs is covered by 3 types of blocks,
then so is m + 4 stairs.

Suppose that we covered the m stairs, then by adding 4 x (m+1) cells
covered by 2 x (m + 1) vertical blocks and the 3 stairs at the bottom of
the k stairs, the m + 4 stairs is also covered (Figure 11).

m stairs

2 x (m+1) vertical blocks 3 stairs

Figure 11.

Due to the Claim 1, if we can cover the 3 stairs and the 5 stairs,
then the 4 stairs and the 6 stairs are also covered by 3 types of blocks
(see Figure 10). Moreover, if we cover the m stairs for m = 3,4,5,6,
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then every m stairs is covered by 3 types blocks according to the Claim
2. That is, there is a way to change the given (n,r,t,0)-arrangement
(n > 4) to (n,r,t, k)-arrangement by using the operation K; and the
operation K. O

We can try to relate the (n, r, ¢, k)-arrangement to a block design. Let
the points in the arrangement be varieties and let each simple curve be
a block. Since each curve contains exactly r points, every block has r
varieties and each variety appears exactly in two blocks. Some pairs of
varieties appear in two blocks but not all the pairs. This is the only
problem to relate the (n,r,t, k)-arrangements to a balanced incomplete
block design. If we do not consider the A condition, then there is a way to
construct (n, &°, 2,7, —) design by constructing a (n, 1, ¢, k)-arrangement.

There are many ways to extend the area of the study on this kind
of problem. First, if we change the word “exactly” in the first property
in the definition to “at most”, then we have the definition of weak
arrangements. Second, changing the word “exactly two curves” in the
second property in the definition to “exactly three curves” yields the 6-
valent graphs. Finally, we only consider arrangements in Euclidean plane
in this paper. If we allow arrangements in E® space, then some facts in
this paper are not true. For example, there is a (5,4, 0, 1)-arrangement
in E® though there is none in E? (see Lemma 2.2).

Also, there are some results of the Eberhard type problem for ar-
rangements of simple curves [2].
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