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ASYMPTOTIC FUNCTIONS
SunGg HUN AHN

ABSTRACT. In this paper, we improve some of results in [2] by show-
ing that if J is a cancellation ideal and if J is a regular ideal then
a(m), B(m) and §(m), behave nicely under localization. We prove
that ril_x& %"—) = 0 if and only if a(m) is eventually constant and that

lim @ exists and is equal to or less than a(1). Finally we give several

n—oo

conditions which are equivalent to lim ? =0.
m—o0

1. Introduction

Throughout this paper, R will always be a commutative Noetherian
ring and I and J will be ideals in R unless otherwise stated. If J clI
then we denote by (J: I) = {r € R: rI C J} the annihilator of I /J. For
each n > 1, since (I" : J) C (I": J%) C (I*: J?) C --- is an increasing
sequence, the sequence eventually stabilizes, that is, (" J* = (I -
J*1) = .- for all large integer k. We define a(n) to be the least such k.
If J is regular then, for each m > 1, it is not hard to show that there is
an integer h such that (/" : Jm) C I, for all » > 1. We define B(m)
to be the least such h.

In [2], Katz and McAdam introduced these two functions: a(m) and
B(m), and studied the behavior of % as m — oo and -ﬂ% as m — 0o.
They showed that if J is a regular ideal, then lin;O % exists and that

lim %"l = 0 if and only if {#(m) : m > 1} is eventually constant. They
m—oo0

also showed that if / is a regular principal ideal then lim @ exists and
m-00
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is equal to or less than a(1). Furthermore, if J is also a regular ideal, then

lim ‘—’%"—) = 0 if and only if {a(m) : m > 1} is eventually constant.
m—00

The purpose of the present paper is to improve this result by replacing
a regular principal ideal with a cancellation ideal.
We first prove in theorem (2.5) that if  is a cancellation ideal then

Assp(R/I) = Assg(R/I"), for alln > 1.

In lemma (3.1), we show that the asymptotic functions: a(m), 8(m) and
8(m), behave nicely under localization. This allows us to prove in theorem
(3.6) that if I is a cancellation ideal of R and J is a regular ideal, then

lim 9‘% = 0 if and only if a(m) is eventually constant. We also prove
m—0o0
aln)

in theorem (3.3) that if I is a cancellation ideal of R, then lim == exists

n—0o0
and is equal to or less than a(1). Finally we show in corollary (3.7) that
the conditions in corollary (3.7) are equivalent.

2. Definitions and preliminary results

We begin this section by listing the definitions and some results that
will be needed in this paper. ’

DEFINITION 2.1. Let R be a ring with identity. A nonzero ideal I of R
is said to be a cancellation ideal if I has the property that, for any ideals
J, K of R, IJ C IK implies that J C K.

The following results concerning cancellation ideals are well known. For
a proof, we refer the reader to [1].

REMARK 2.2. Let R be a commutative ring with identity, I, I1, I, -- -,
I,_; and I, ideals of R with I cancellative and S a multiplicative subset of
R. Then

(1) I, - - - I; is a cancellation ideal of R if and only if each I; is a can-
cellation ideal of R. In particular, I" is a cancellation ideal, for all
n > 1.

(2) IRgs is a cancellation ideal of Rs.

(3) If R is a quasi-local ring and if I is finitely generated then I is a
regular principal ideal.
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DEFINITION 2.3. Let R be a Noetherian ring, I and J ideals of R with
J regular and m a positive integer.

(A) a(m) is the least positive integer k such that (I™ : J¥) = (I™ : JH+T)
for all integer » > 1.

(B) B(m) is the least positive integer h such that (I**" : J™) C I, for
all integer r > 1.

(C) 8(m) is the least positive integer ¢ such that (I*: J™) C I.

The existence of a(m) was shown in the introduction and the existence
of B(m) was shown in [2]. By the definition, 1 < §(m) < f(m) + 1 and
since (10D ; Jm) C (J60m+D) . gmHly C T, §(m) < §(m+1) for all m > 1,

, {6(m) : m > 1} is a nondecreasing sequence. Some preliminary
results which are proved by Katz and McAdam in [2] are listed in the
next remark. We will improve (7), (8), (9), (10) and (11) by replacing a
regular principal ideal with a cancellation ideal.

REMARK 2.4. Let R be a Noetherian ring and I and J ideals of R with
J regular and let A = limsup{g—(ml) :m>1}and D = limsup{% tm >
1}. Then the following hold.

(1) {a(m) : m > 1} is eventually nondecreasing.

(2) {B(m) : m > 1} is nondecreasing.

(3) {a(m) : m > 1} is eventually constant if and only if so is {8(m
m > 1}.

(4) lim @ = 0 if and only if {8(m) : m > 1} is eventually constant.

(5) hm —1) = 0 if and only if {6(m) : m > 1} is eventually constant.
(6) elther AD > 1 or {6(m): m > 1} is eventually constant.

Furthermore if I is a regular principal ideal, then

(7 nllméo @ exists and is equal to or less than a(1).
(8) d(m) = pB(m)+ 1, for all m > 1.
(9) {8(m) : m > 1} is eventually constant if and only if {6(m) : m > 1}
is eventually constant.
(10) a(m +n) < a(m) + a(n), for all m, n > 1.
(11) lim 9‘-(7—n"L) =0 if and only if {a(m) : m > 1} is eventually constant.

m—o0
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It is well known that if I is a regular principal ideal then Assp(R/I) =
Assg(R/I™), for all n > 1 and that if S is a multiplicative subset of R
and if M is a finitely generated R-module then

Asspy(Mg) = Assg(M) ﬂ Spec(Rs).

Now we are ready to show theorem (2.5) that is one of our main tools in
this paper.

THEOREM 2.5. Let R be a Noetherian ring and I a cancellation ideal
in R. Then Assgp(R/I) = Assp(R/I") for alln > 1.

PROOF. For each P € Spec(R), since I Rp is a cancellation ideal in Rp,
IRp is a regular principal ideal. Hence
Assg,(Rp/IRp) = Assg,(Rp/(I")Rp), foralln >1.
If P € Assg(R/I) then

P e Assg(R/I) ﬂSpec(Rp) = Assg,(Rp/IRp).
Since Assg,(Rp/IRp) = Assg,(Rp/(I")Rp),
Pe ASSRP(RP/(In)Rp) = ASSR(R/IR) ﬂSpec(Rp).

Thus P € Assp(R/I™), ie., Assg(R/I) C Assp(R/I"), for all n > 1.
Similarly, the opposite inclusion holds. Hence the theorem follows. 0

3. Main results

In this section, we will prove theorem (3.3) and theorem (3.6) which are
our main theorems in this paper. To give a proof of main theorems, we
first prove lemma (3.1) that shows that asymptotic functions: a(m), 8(m)
and 6(m), behave nicely under localization. T hroughout this paper, we
will denote by ap(m), Bp(m) and dp(m) the asymptotic functions with
respect to IRp and JRp, respectively.

LEMMA 3.1. Let R be a Noetherian ring and I a cancellation ideal in
R. Then the following hold.
(1) a(m) = max{ap(m) : P € Assg(R/I)} for allm > 1.
(2) B(m) = max{Bp(m) : P € Assg(R/I)} for allm > 1.
(3) 8(m) = max{dp(m) : P € Assp(R/I)} for allm > 1.
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PROOF. For each m > 1, (I™ : J*m) = (J™ : Jetm+¥) for all k > 0.
Thus for each P € Spec(R), (I™Rp: J*™Rp) = (I™Rp : Jom+kRp),
for all £ > 0. The minimality of ap(m) shows that ap(m) < a(m)
for any P € Spec(R). Thus set h(m) = max{ap(m) : P € Assp(R/I)},
then h(m) < a(m). Conversely, the maximality of h(m) shows that for all
P € Assp(R/I) and k >0, (I™Rp: J"™Rp) = (I™Rp : JH™**Rp).
Since Assp(R/I) = Assp(R/I™) for all n > 1, it is not hard to see
that (I™ : Jh™) = ([™ . Jhm+k) - Thys by the definition of a(m),
a(m) < h(m). Hence a(m) = max{ap(m) : P € Assg(R/I)} for all
m > 1.

For (2), it suffices to show that §(m) < Bp(m), for any P € Assp(R/I).
Let g(m) = max{fp(m) : P € Assp(R/I)}. Then by the maximality of
g(m), for all P € Assp(R/I) and r > 1, (I9™+ Rp : J™"Rp) C I"Rp.
Thus

(1o 2 ™) € (1" Rp - J"Rp) (YR C I'Rp (R,

for all P € Assg(R/I). Thus (I9(+r . jm) C N {ReNR)=1T".
PcAssp(R/I)
The minimality of B(m) shows that B(m) < g(m). (3) follows from

(2). O

LeEMMA 3.2. Let R be a Noetherian ring and I a cancellation ideal in
R. Then a(m 4+ n) < a(m) + a(n).

PROOF. For each P € Spec(R), since IRp is a regular principal ideal
in Rp, ap(m+n) < ap(m) + ap(n), for all m, n > 1. Thus

a(m +n) max{ap(m +n) : P € Assgr(R/I)}
max{ap(m) + ap(n) : P € Assg(R/I)}
max{ap(m) : P € Assp(R/I)}
max{ap(n) : P € Assg(R/I)}

a(m) + a(n).

I+ IAIA

d

Lemma (3.2) allows us to use the same argument used in [2]. The proof
* in [2] is easily carried over to a(m) so that we omit the proof. For a proof,
we refer to [2, Proposition (1.3)].
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THEOREM 3.3. Let R be a Noetherian ring and I a cancellation ideal
in R. Then lim % exists and is equal to or less than a(1).

m—oo

PROPOSITION 3.4. Let R be a Noetherian ring and I a cancellation
ideal in R. If J is a regular ideal then 6(m) = 3(m)+ 1 for all m > 1.

PROOF. For each P € Assg(R/I), since I Rp is a regular principal ideal
of Rp, 6p(m) = Bp(m)+1 for all m > 1. Thus there exists P € Assg(R/I)
such that G(m) = Bp(m) and 8(m) = dp(m). Hence the proposition
follows. O

COROLLARY 3.5. Let R be a Noetherian ring, I a cancellation ideal in
R and J a regular ideal of R. Then {8(m) : m > 1} is eventually constant
if and only if {§(m) : m > 1} is eventually constant.

PROOF. By proposition (3.4), 6(m) = B(m) + 1 for all m > 1. Hence
{B(m) : m > 1} is eventually constant if and only if so is {§(m) : m >
1}. O

THEOREM 3.6. Let R be a Noetherian ring, I a cancellation ideal in R

and J a regular ideal. Then 7}1_120 == =0 if and only if a(m) is eventually

constant.

PROOF. One direction of the equivalence is trivial. If lim 5%”2 =0

m-—00

then by (6) in remark (2.4), {6(m) : m > 1} is eventually constant.
By corollary (3.5), {8(m) : m > 1} is eventually constant. By (3) in
remark (2.4), {a(m) : m > 1} is eventually constant. This completes the
proof. a

We now close this section by stating what we have shown in this paper.

COROLLARY 3.7. Let R be a Noetherian ring, I a cancellation ideal in
R and J a regular ideal of R. Then the following are equivalent.

2) lim £ S;”) 0
m—0o0
3) lim %™ =0

4) {a(m) : m > 1} is eventually constant.
5) {B(m) : m > 1} is eventually constant.
6) {6(m) : m > 1} is eventually constant.
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PROOF. This follows from (3), (4) and (5) in remark (2.4), corollary
(3.5) and theorem (3.6). O
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