ON THE SUPERSTABILITY OF THE FUNCTIONAL EQUATION $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$

Soon-Mo Jung

ABSTRACT. First, we shall improve the superstability result of the exponential equation f(x+y) = f(x)f(y) which was obtained in [4]. Furthermore, the superstability problems of the functional equation $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$ shall be investigated in the special settings (2) and (9).

1. Introduction

In 1940, S. M. Ulam [7] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

In the next year, D. H. Hyers [3] answered the question of Ulam for the case where G_1 and G_2 are Banach spaces. The result of Hyers was further generalized by Th. M. Rassias [6]. Since then, the stability problems of several functional equations have been extensively investigated. The terminology $Hyers-Ulam-Rassias\ stability$ originates from this historical background (cf. [5]).

Received July 3, 1997. Revised October 9, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 39B72.

Key words and phrases: superstability, exponential equation, Hyers–Ulam–Rassias stability.

This paper was supported by Hong-Ik University Research Fund (1997).

In 1979, J. Baker, J. Lawrence and F. Zorzitto [2] proved a new type of stability of the exponential equation f(x+y) = f(x)f(y) (see also [1]). More precisely, they proved that if a complex-valued mapping f defined on a normed vector space satisfies the inequality $|f(x+y)-f(x)f(y)| \leq \delta$ for some given $\delta > 0$ and for all x, y, then either f is bounded or f is exponential. Such a phenomenon is called the *superstability* of the exponential equation.

In this work, we consider the superstability of the functional equation $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$ which is explained as follows. For given $0 , and <math>\varepsilon > 0$, we let f be a complex-valued mapping defined on a normed vector space V such that

$$|f(x+y) - f(x)f(y)| \le \varepsilon ||x||^p ||y||^q$$

for all x, y in V. Now, let us define

$$\psi_{p,q}(x) = \max\{t > 0 : t - t^{1/2} - \varepsilon ||x||^{p+q} = 0\}$$

for all $x \in V$. We remark that $\psi_{p,q}(x) > 1$ holds for every $x \neq 0$ (and $m \geq 2$).

We introduce the main results of this work, Theorem 2 and Theorem 3 whose proofs are presented in section 2 and section 3 respectively.

THEOREM 2. It holds either $|f(x)| \leq \max\{2^p, \psi_{p,q}(x)\}$ for any x in V, where $\psi_{p,q}(x) = \left(1 + 2\varepsilon ||x||^{p+q} + \sqrt{1 + 4\varepsilon ||x||^{p+q}}\right)/2$, or else f(x+y) = f(x)f(y) for every $x, y \in V$.

In section 3, let m (> 2) be an integer and let $p_1, ..., p_m$ be given such that $0 < p_1 \le ... \le p_m$. Suppose that V is a normed vector space and that f is a complex-valued mapping defined on V and satisfying the following functional inequality

(2)
$$|f(x_1 + \cdots + x_m) - f(x_1) \cdots f(x_m)| \le \varepsilon ||x_1||^{p_1} \cdots ||x_m||^{p_m}$$

for all $x_1, ..., x_m \in V$. In section 3, the following theorem shall be proved:

THEOREM 3. If f(0) = 0 then f(x) = 0 holds for all $x \in V$. Otherwise, if we define $g(x) = f(0)^{-1}f(x)$ for all $x \in V$ then it holds g(x + y) = g(x)g(y) for all $x, y \in V$.

Moreover, the superstability problem of the functional equation $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$ shall be investigated in another setting (9).

2. Superstability of f(x + y) = f(x)f(y)

Let p, q, and ε be positive numbers with $p \leq q$. Suppose that V is a normed vector space and f is a complex-valued mapping defined on V which satisfies the functional inequality (1). Then, Theorem 1 in [4] says that it holds either $|f(x)| = o(||x||^{p+q})$ as $||x|| \to \infty$ or f(x+y) = f(x)f(y) for all $x, y \in V$. However, precisely speaking, this theorem gives only the asymptotic behavior of the absolute value of f(x) in the case when f is not exponential. Hence, it is worth while to estimate a suitable upper bound for |f(x)| if f is not exponential. We shall first prove the next lemma:

LEMMA 1. If there exists $v \neq 0$ in V satisfying $|f(v)| > \max\{2^p, \psi_{p,q}(v)\}$, then

$$||nv||^q = o\left(|f(nv)|\right)$$

as $n \to \infty$.

PROOF. Using induction on n, we first prove that

(3)
$$|f(nv) - f(v)^{n}| \le \varepsilon \left(|f(v)|^{n/2} + |f(v)|^{(n+1)/2} + \dots + |f(v)|^{n-1} \right) ||v||^{p+q}$$

for each natural number n. The inequality (3) is trivial for n=1. Now, assume that (3) is valid for some n. It is not difficult to verify that the condition $|f(v)| > 2^p$ implies $|f(v)|^{(n+1)/2} > n^p$ for every $n \in \mathbb{N}$. This fact, together with (1) and (3), yields

$$\begin{aligned} &|f((n+1)v) - f(v)^{n+1}| \\ &\leq |f((n+1)v) - f(nv)f(v)| + |f(nv)f(v) - f(v)^{n+1}| \\ &\leq \varepsilon ||nv||^p ||v||^q + |f(v)|\varepsilon ||v||^{p+q} \left(|f(v)|^{n/2} + |f(v)|^{(n+1)/2} + \dots + |f(v)|^{n-1} \right) \\ &\leq \varepsilon ||v||^{p+q} \left(|f(v)|^{(n+1)/2} + |f(v)|^{(n+2)/2} + \dots + |f(v)|^n \right). \end{aligned}$$

Hence, the inequality (3) holds for every $n \in \mathbb{N}$. If we divide both sides in (3) by $|f(v)|^n$ then the condition $|f(v)| > \psi_{p,q}(v)$ yields

$$|f(nv)f(v)^{-n} - 1| \leq \varepsilon ||v||^{p+q} \left(|f(v)|^{-1} + |f(v)|^{-3/2} + \cdots \right)$$

$$\leq \frac{\varepsilon ||v||^{p+q}}{|f(v)| - |f(v)|^{1/2}}$$

$$< 1$$

for all $n \in \mathbb{N}$. On the other hand, we have

(5)
$$\frac{\|nv\|^q}{|f(v)|^n} < \frac{n^q \|v\|^q}{(1+\varepsilon \|v\|^{p+q})^n} \to 0 \text{ as } n \to \infty,$$

since the definition of $\psi_{p,q}(v)$ and the fact $\psi_{p,q}(v) > 1$ imply $|f(v)| > \psi_{p,q}(v) = [\psi_{p,q}(v)]^{1/2} + \varepsilon ||v||^{p+q} > 1 + \varepsilon ||v||^{p+q}$. Comparing (4) with (5), we complete the proof of the lemma.

PROOF OF THEOREM 2. Assume that there exists $v \neq 0$ in V such that $|f(v)| > \max\{2^p, \psi_{p,q}(v)\}$. For any $x, y \in V$, we get

$$|f(nv)||f(x+y) - f(x)f(y)| = |f(x+y)f(nv) - f(x)f(y)f(nv)|$$

 $\leq |f(x+y)f(nv) - f(x+y+nv)|$

(6)
$$+|f(x+y+nv)-f(x)f(y+nv)|+|f(x)||f(y+nv)-f(y)f(nv)|.$$

From (1) and (6) it follows

$$|f(nv)||f(x+y) - f(x)f(y)|$$

$$\leq \varepsilon (||x+y||^p ||nv||^q + ||x||^p ||y+nv||^q + |f(x)|||y||^p ||nv||^q)$$

$$\leq C||nv||^q$$

for sufficiently large n and for some suitable C = C(x, y) > 0. If $f(x+y) \neq f(x)f(y)$, then (7) would be contrary to Lemma 1.

3. Superstability of $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$

Suppose $m \ (> 2)$ is an integer and $p_1, ..., p_m$ are given with $0 < p_1 \le \cdots \le p_m$. Assume that f is a complex-valued mapping defined on a normed vector space V and satisfying the functional inequality (2).

PROOF OF THEOREM 3. By putting $x_1 = x_2 = \cdots = x_m = 0$ in (2), we get

(8)
$$f(0) - f(0)^m = 0.$$

It follows from (8) that f(0) = 0 or $f(0)^{m-1} = 1$.

Case I. Suppose f(0) = 0. Setting $x_1 = x$ and $x_2 = \cdots = x_m = 0$ in (2) yields

$$f(x) = f(x)f(0)^{m-1} = 0.$$

Superstability of
$$f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$$

79

Case II. Assume $f(0)^{m-1}=1$. We then have $f(0)\neq 0$ and $f(0)^{m-2}=f(0)^{-1}$. By putting $x_1=x,\ x_2=y$ and $x_3=\cdots=x_m=0$ in (2) it follows

$$f(x+y) = f(0)^{m-2}f(x)f(y) = f(0)^{-1}f(x)f(y).$$

Hence, if we define $g(x) = f(0)^{-1}f(x)$ for $x \in V$ then it holds g(x+y) = g(x)g(y) for all $x, y \in V$.

By using Theorem 1 in [4], we can easily prove the superstability of the functional equation $f(x_1 + \cdots + x_m) = f(x_1) \cdots f(x_m)$ in another setting as we see in the following theorem:

THEOREM 4. Let m > 2 be a fixed integer and let p > 0 be given. If a complex-valued mapping f defined on V satisfies the following functional inequality

(9)
$$|f(x_1 + \dots + x_m) - f(x_1) \dots f(x_m)| \le \varepsilon (||x_1||^p + \dots + ||x_m||^p)$$

for all $x_1, \dots, x_m \in V$, then either $|f(x)| = O(||x||^p)$ as $||x|| \to \infty$ or

for all $x_1, ..., x_m \in V$, then either $|f(x)| = O(||x||^2)$ as $||x|| \to \infty$ of g(x+y) = g(x)g(y) for all $x, y \in V$, where $g(x) = f(0)^{-1}f(x)$ for $x \in V$.

PROOF. Setting $x_1 = x_2 = \cdots = x_m = 0$ in (9) yields the equation (8). Therefore, it holds f(0) = 0 or $f(0)^{m-1} = 1$.

Case I. Let f(0) = 0. By putting $x_1 = x$ and $x_2 = \cdots = x_m = 0$ in (9), we have

$$|f(x)| \le \varepsilon ||x||^p.$$

Case II. Suppose $f(0)^{m-1} = 1$. If we define $g(x) = f(0)^{-1} f(x)$ for $x \in V$, then we obtain the functional inequality

$$|g(x+y) - g(x)g(y)| \le \varepsilon |f(0)|^{-1} (||x||^p + ||y||^p)$$

by putting $x_1 = x$, $x_2 = y$ and $x_3 = \cdots = x_m = 0$ in (9) and by using the fact $f(0)^{m-2} = f(0)^{-1}$. According to Theorem 1 in [4], it holds either $|f(x)| = o(||x||^p)$ as $||x|| \to \infty$ or g(x+y) = g(x)g(y) for all $x, y \in V$. \square

References

^[1] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.

- [2] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242–246.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
- [4] S.-M. Jung, On the superstability of some functional inequalities with the unbounded Cauchy difference f(x+y) f(x)f(y), Comm. Korean Math. Soc. 12 (1997), 287-291.
- [5] —, Hyers-Ulam-Rassias stability of functional equations, Dynamic Systems and Applications 6 (1997), 541-566.
- [6] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [7] S. M. Ulam, Problems in modern mathematics, Wiley, New York, 1960.

Mathematics Section College of Science & Technology Hong-Ik University Chochiwon 339–800, Korea