POSITIVE SOLUTIONS FOR PSEUDO-LAPLACIAN EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS

KWON WOOK KIM

ABSTRACT. A sufficient condition for pseudo-Laplacian equations involving critical Sobolev exponents to have positive solutions is established.

1. Introduction

In this paper we deal with the existence of positive solutions of the quasilinear elliptic equation

$$-\operatorname{div}(|Du|^{p-2}Du) = Q(x)|u|^{p^*-2}u + f(x,u) \quad \text{in} \quad \Omega$$

$$(1) \qquad \qquad u > 0 \quad \text{in} \quad \Omega$$

$$u = 0 \quad \text{on} \quad \partial\Omega$$

where Ω is a bounded open subset of R^N , $1 , <math>p^* = Np/N - p$, the function $f(x,u): \Omega \times [0,+\infty) \to R$, $Q(x) \ge 0$ is a bounded measurable function in Ω and Q(x) satisfy the following property:

PROPERTY (P). There is a maximum point x_0 of Q(x) in Ω such that $|Q(x) - Q(x_0)| = o(|x - x_0|^{p-1})$ as $x \to x_0$.

In [1], we studied for Q(x) = 1. Later ,we introduce the new normalized function different from the normalized function used in [1] to show the existence of solution. Also we make the following assumptions:

$$(2) \hspace{1cm} f(x,u): \Omega \times [0,\infty) \to R \hspace{3mm} \text{is measurable in } x,$$

Received March 2, 1998. Revised June 6, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 35J60.

Key words and phrases: pseudo-Laplacian equation, critical Sobolev exponent.

(3) continuous in
$$u$$
 and $\sup_{\substack{x \in \Omega \\ 0 \le u \le M}} |f(x,u)| < \infty$ for every $M > 0$;

(4)
$$f(x,u) = a(x)|u|^{p-2}u + g(x,u)$$

(5) with
$$a(x) \in L^{\infty}(\Omega)$$
,

(6)
$$g(x,u) = o(u^{p-1})$$
 as $u \to 0^+$, uniformly in x ,

(7)
$$g(x,u) = o(u^{p^*-1})$$
 as $u \to +\infty$, uniformly in x ;

the operator $-\triangle_p u - a(x)|u|^{p-2}u$ has its smallest positive eigenvalue, that is,

(8)
$$\int |\nabla \phi|^p - a(x)\phi^p \ge \alpha \int \phi^p \text{ for all } \phi \in W_0^{1,p}(\Omega), \alpha > 0$$

or equivalently

$$(9) \quad \int |\bigtriangledown \phi|^p - a(x)\phi^p \geq \alpha' \int |\bigtriangledown \phi|^p \ \text{ for all } \phi \in W^{1,p}_0(\Omega), \alpha' > 0.$$

Since the value of f(x, u) for u < 0 is irrelevant, we may define

(10)
$$f(x,u) = 0 \text{ for all } x \in \Omega, \ u \le 0.$$

Set

(11)
$$F(x,u) = \int_0^u f(x,t)dt \quad \text{for all} \ \ x \in \Omega, u \in R$$

and

(12)

$$\psi(u)=\intrac{1}{p}|igtriangledown u|^p-\intrac{Q(x)}{p^*}|u|^{p^*}-\int F(x,u)\quad ext{for all}\ \ u\in W^{1,p}_0(\Omega).$$

In fact, the solutions of (1) correspond to the critical point of $\psi(u)$. Since p^* is the critical Sobolev exponent corresponding to the non-compact embedding of $W_0^{1,p}(\Omega)$ into $L^{p^*}(\Omega)$, the functional ψ does not, in general, satisfy the Palais-Smale condition and it is not possible to obtain critical points of ψ via simple variational arguments. Thus we rely on a variant of the mountain pass theorem of Ambrosetti and Rabinowiz without the (PS) condition [3]. The main result in this paper is the following:

MAIN THEOREM. Assume that the conditions (2)-(8) be satisfied and suppose that there exists some $v_0 \in W_0^{1,p}(\Omega)$, $v_0 \ge 0$ on Ω , $v_0 \not\equiv 0$ such that

(13)
$$\sup_{t\geq 0} \psi(tv_0) < \frac{1}{N} \frac{S^{\frac{N}{p}}}{(\max Q(x))^{\frac{N-p}{p}}}.$$

Then problem (1) possesses a solution.

Here S is the best constant for the Sobolev imbedding $W_0^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$.

2. Proof of main theorem

Using (4)-(7) we may fix a constant $\mu \ge 0$ so large that

$$(14) -f(x,u) \le \mu u^{p-1} + u^{p^*-1}$$

for almost all $x \in \Omega$ and for all $u \ge 0$. In case $f(x, u) \ge 0$ for all $u \ge 0$, we may choose $\mu = 0$. On $E = W_0^{1,p}(\Omega)$ we define

$$\Phi(u) = \int \left\{ \frac{1}{p} |\nabla u|^p + \frac{\mu}{p} |u|^p - \frac{Q(x)}{p^*} (u^+)^{p^*} - F(x, u^+) - \frac{1}{p} \mu(u^+)^p \right\}.$$

Then Φ is C^1 on E. First, we must prove that Φ satisfies the conditions of the mountain pass theorem of Ambrosetti and Rabinowitz without the (PS) condition [3]. It is stated that for C^1 function Φ on a Banach space E, if Φ satisfies the following two conditions:

(CON1) there exist a neighborhood U of 0 in E and a constant ρ such that $\Phi(u) \geq \rho$ for every u in the boundary of U,

(CON2)
$$\Phi(0) < \rho$$
 and $\Phi(v) < \rho$ for some $v \notin U$.
Set

$$C = \inf_{P \in \mathcal{P}} \max_{w \in P} \Phi(w) \ge \rho$$

where \mathcal{P} denotes the class of continuous paths joining 0 to v. Then there is a sequence (u_i) in E such that

$$\Phi(u_i) \to C$$
 and $\Phi'(u_i) \to 0$ in E^* .

PROOF OF (CON1). It follows from condition (6) that for any $\varepsilon > 0$, there is a $\delta > 0$ such that

$$g(x, u) \le \varepsilon u^{p-1}$$
 for almost all $x \in \Omega$ and for all $0 \le u \le \delta$.

Thus from (7), we obtain

$$g(x,u) \le \varepsilon u^{p-1} + C u^{p^*-1}$$
 for almost all $x \in \Omega$ and for all $u \ge 0$.

and for some constant C (depending on ε). Therefore we have

(15)
$$F(x,u) \leq \frac{1}{p}a(x)u^p + \frac{\varepsilon}{p}u^p + \frac{C}{p^*}u^{p^*}$$

for almost all $x \in \Omega$ and for all $u \ge 0$. Hence we can easily see that for all $u \in W_0^{1,p}(\Omega)$,

$$\Phi(u) \geq \int \left\{ \frac{1}{p} |\bigtriangledown u|^p - \frac{a(x)}{p} (u^+)^p - \frac{\varepsilon}{p} (u^+)^p - \frac{C+1}{p^*} Q(x) (u^+)^{p^*} \right\}$$

Using (9) and the fact that $\int |\nabla u|^p = \int |\nabla u^+|^p + \int |\nabla u^-|^p$ we conclude that (with ε small enough) there exist constants ρ and a neighborhood U of 0 in $W_0^{1,p}(\Omega)$ such that

$$\Phi(u) \ge \int \frac{1}{p} |\nabla u^{+}|^{p} + \frac{1}{p} |\nabla u^{-}|^{p} - \frac{a(x)}{p} (u^{+})^{p} - \frac{C+1}{p^{*}} Q(x) (u^{+})^{p^{*}} \\
\ge K ||u||_{W_{0}^{1,p}}^{p} - C' ||u||_{W_{0}^{1,p}}^{p^{*}} > \rho$$

for every u in the boundary of U.

PROOF OF (CON2). For any $u \in W_0^{1,p}(\Omega)$, $u \geq 0$, $u \not\equiv 0$, we have by (7) $\lim_{t\to\infty} \Phi(tu) = -\infty$. Thus there are many v's satisfying $\Phi(0) < \rho$ and $\Phi(v) < \rho$ for some $v \notin U$. However, it will be important for later purposes to use Theorem [3] with a special v, namely $v = t_0 v_0$ where v_0 is given by (13) and $t_0 > 0$ is chosen so large that $v \notin U$ and $\Phi(v) \leq 0$. It follows from (13) that

$$\sup_{t \ge 0} \Phi(tv) < \frac{1}{N} \frac{S^{\frac{N}{p}}}{(\max \quad Q(x))^{\frac{N-p}{p}}}$$

and therefore we have

(16)
$$C < \frac{1}{N} \frac{S^{\frac{N}{p}}}{(\max Q(x))^{\frac{N-p}{p}}}.$$

Applying Theorem [3], we obtain a sequence (u_j) in $W_0^{1,p}(\Omega)$ such that $\Phi(u_j) \to C$ and $\Phi'(u_j) \to 0$ in $W^{-1,p'}(\Omega)$ $(\frac{1}{p} + \frac{1}{p'} = 1)$, that is,

(17)
$$\int \left\{ \frac{1}{p} |\nabla u_j|^p + \frac{\mu}{p} |u_j|^p - \frac{1}{p^*} Q(x) (u_j^+)^{p^*} - F(x, u_j^+) - \frac{\mu}{p} (u_j^+)^p \right\}$$
$$= C + O(1)$$

and

(18)
$$- \triangle_p u_j + \mu |u_j|^{p-2} u_j - Q(x) (u_j^+)^{p^*-1} - f(x, u_j^+) - \mu (u_j^+)^{p-1}$$

$$= \xi_j \quad \text{with} \quad \xi_j \to 0 \quad \text{in} \quad W^{-1, p'}(\Omega).$$

We claim that

$$||u_j||_{W_0^{1,p}} \le C.$$

Indeed, multiply (18) by u_j , we obtain

(20)
$$\int \{|\nabla u_j|^p + \mu |u_j|^p - Q(x)(u_j^+)^{p^*} - f(x, u_j^+)u_j^+ - \mu (u_j^+)^p\} = \langle \xi_j, u_j \rangle.$$

Taking - $\frac{1}{p} \times (20) + (17)$, we obtain

(21)
$$\frac{1}{N} \int Q(x) (u_j^+)^{p^*} \le \left\{ \int \left\{ F(x, u_j^+) - \frac{1}{p} f(x, u_j^+) u_j^+ \right\} + C + O(1) + \|\xi_j\|_{W^{-1, p'}} \|u_j\|_{W^{1, p}_o}. \right\}$$

On the other hand, from (7) we have for all $\varepsilon > 0$, there exists a constant C such that

$$|f(x,u)| \le \varepsilon u^{p^*-1} + C$$

for almost all $x \in \Omega$ and for all $u \ge 0$. So

$$|F(x,u)| \le \frac{\varepsilon}{p^*} u^{p^*} + Cu$$

for almost all $x\in\Omega$ and for all $u\geq0$. We deduce from (21)-(23) (with ε small enough)that

(24)
$$\int Q(x)(u_j^+)^{p^*} \le C + C \|u_j\|_{W_0^{1,p}}.$$

Combining (17) and (24), we obtain (19).

Extract a subsequence, still denoted by u_j , so that

$$u_j
ightharpoonup u$$
 weakly in $W_0^{1,p}(\Omega)$, $u_j
ightharpoonup u$ strongly in L^q for all $1 < q < p^*$, $u_j
ightharpoonup u$ a.e on Ω , $(u_j^+)^{p^*-1}
ightharpoonup (u^+)^{p^*-1}$ weakly in $(L^{p^*})' = L^{\frac{p^*}{p^*-1}}$, $f(x, u_j^+)
ightharpoonup f(x, u_j^+)$ weakly in $(L^{p^*})' = L^{\frac{p^*}{p^*-1}}$, $- \triangle_p u_j
ightharpoonup - \triangle_p u$ weakly in $W^{-1,p'}$.

Passing to the limit in (18), we obtain (25)

$$-\triangle_p u + \mu |u|^{p-2} u = Q(x)(u^+)^{p^*-1} + f(x, u^+) + \mu (u^+)^{p-1} \text{ in } W^{-1, p'}(\Omega).$$

We deduce from (14) and (25) in which the right-hand side is greater than or equal to 0 and from the Vazquez maximum principle [13], that $u \ge 0$ on Ω and u satisfies

$$-\bigtriangleup_p u = Q(x)|u|^{p^*-2}u + f(x,u).$$

We shall now verify that $u \not\equiv 0$ (and consequently u > 0 on Ω by the strict Vazquez maximum principle). Indeed, suppose that $u \equiv 0$ we claim that

(26)
$$\int f(x,u_j^+)u_j^+ \to 0,$$

(27)
$$\int F(x, u_j^+) \xrightarrow{\prime} 0.$$

From (22), (23), we deduce that

$$\left|\int f(x,u_j^+)u_j^+\right| \leq arepsilon \int (u_j^+)^{p^*} + C \int u_j^+ \ \left|\int F(x,u_j^+)
ight| \leq rac{arepsilon}{p^*} \int (u_j^+)^{p^*} + C \int u_j^+.$$

Since u_j remains bounded in L^{p^*} and $u_j \to 0$ in L^2 , we obtain (26) and (27). Extracting still another sequence, we may assume that

$$\int |\nabla u_j|^p \to \ell$$

for some constant $\ell \geq 0$. Passing to the limit in (20) and then in (17), we obtain

(29)
$$\int Q(x)(u_j^+)^{p^*} \to \ell$$

and

$$\frac{1}{N}\ell = C.$$

On the other hand, from (29), since $\max_{\Omega} Q(x) \int (u_j^+)^{p^*} \geq \ell$ for sufficiently large j, we have

$$\| \nabla u_j \|_{L^p}^p \ge S \| u_j \|_{L^{p^*}}^p \ge S \| u_j^+ \|_{L^{p^*}}^p.$$

Hence, using (28) and (29) we find in the limit

(31)
$$\ell \geq \frac{S\ell^{\frac{p}{p^*}}}{(\max \ Q(x))^{\frac{p}{p^*}}}.$$

From (30) and (31) we deduce that

$$C \geq rac{1}{N} rac{S^{rac{N}{p}}}{\left(\max \quad Q(x)
ight)^{rac{N-p}{p}}}.$$

This contradicts (16). Thus $u \not\equiv 0$.

Lemma below furnishes the assumption under which the crucial condition (13) of main theorem holds.

LEMMA. Assume that f(x, u) satisfies the conditions (2)-(8) and Q(x) satisfies property (P). Also suppose that there is a function f(u) such that

(32)
$$f(x, u) \ge f(u) \ge 0$$
 for almost all $x \in w$ and for all $u \ge 0$

where w is some nonempty open set in Ω and the primitive $F(u) = \int_0^u f(t)dt$ satisfies

$$(33) \qquad \lim_{\varepsilon \to 0} \varepsilon^{\frac{pN-2N+p}{p}} \int_0^{\varepsilon^{-\frac{p-1}{p}}} F\left[\left(\frac{\varepsilon^{\frac{1-p}{p}}}{1+s^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}}\right] s^{N-1} ds = \infty.$$

Then the condition (13) holds.

To prove the Lemma, we need the following estimates (39)-(43). Without loss of generality, we can assume that $0 \in \Omega$ and that $\max_{\Omega} Q(x) = Q(0)$. Let us define for $\lambda \in R$ (34)

$$S_{\lambda}=\inf\left\{\int_{\Omega}(|Du|^p-\lambda|u|^p)dx:\;u\in W^{1,p}_0(\Omega),\;\int_{\Omega}|u|^{p^*}dx=1
ight\}.$$

Then

(35)
$$S_0 = S = \inf \left\{ \int_{\Omega} |Du|^p dx : u \in W_0^{1,p}(\Omega), \int_{\Omega} |u|^{p^*} dx = 1 \right\}$$

is the best constant for the Sobolev imbedding $W_0^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$. Note that S is independent of Ω and is never achieved for a bounded domain of R^N . When Ω is replaced by R^N , then S is achieved by the function

(36)
$$U_a(x) = \left(Na \left(\frac{N-p}{p-1} \right)^{p-1} \right)^{\frac{N-p}{p^2}} \left(a + |x|^{\frac{p}{p-1}} \right)^{\frac{p-N}{p}}$$

for some a > 0. Assume $0 \in w$ and fix a function $\phi \in C_0^{\infty}(\Omega)$, $0 \le \phi \le 1$ and $\phi(x) \equiv 1$ in some neighborhood of 0.

Set

(37)
$$u_{\varepsilon}(x) = \frac{\phi(x)}{(\varepsilon + |x|^{\frac{p}{p-1}})^{N-p/p}}$$

and

(38)
$$v_{\varepsilon}(x) = \frac{u_{\varepsilon}(x)}{\|Q(x)^{\frac{1}{p^{\star}}} u_{\varepsilon}\|_{L^{p^{\star}}}}.$$

We claim that v_{ε} satisfies the condition (13) for $\varepsilon > 0$ sufficiently small. To show this, we need to estimate the following: As $\varepsilon \to 0$,

(39)
$$\| \nabla u_{\varepsilon} \|_{L^{p}}^{p} = K_{1} \varepsilon^{\frac{p-N}{p}} + O(1), \quad K_{1} = \left(\frac{N-p}{p-1} \right)^{p} \| \nabla u_{1}(x) \|_{L^{p}}^{p},$$

(40)
$$\int_{\Omega} Q(x)|u_{\varepsilon}|^{p^{*}}dx = o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + K_{2}Q(0)\varepsilon^{-\frac{N}{p}} + O(1),$$
$$K_{2} = ||u_{1}||_{L^{p^{*}}}^{p^{*}},$$

(41)
$$\| \nabla v_{\varepsilon} \|_{L^{p}}^{N} = Q(0)^{-\frac{N}{p^{*}}} S^{\frac{N}{p}} + o\left(\varepsilon^{\frac{N-p}{p}}\right),$$

$$(42) \|v_{\varepsilon}\|_{L^{p}}^{p} = \frac{K_{3}}{K_{2}} \varepsilon^{p-1} + o\left(\varepsilon^{\frac{np-p-n}{n}}\right), \quad K_{3} = \|u_{1}\|_{L^{p}}^{p}, \quad \text{if } 1 < p^{2} < N,$$

$$(43) \|v_{\varepsilon}\|_{L^{p}}^{p} = \frac{K_{4}}{K_{2}} \varepsilon^{p-1} |\log \varepsilon| + O\left(\varepsilon^{\frac{p^{2}-p-1}{p}}\right) |\log \varepsilon| if p^{2} = N.$$

Proof of (39).

$$igtriangledown u_{arepsilon}(x) = rac{igtriangledown \phi(x)}{\left(arepsilon + |x|^{rac{p}{p-1}}
ight)^{N-p/p}} + rac{p-N}{p-1} rac{x\phi(x)}{\left(arepsilon + |x|^{rac{p}{p-1}}
ight)^{N/p} |x|^{rac{p-2}{p-1}}}.$$

As $\phi \equiv 1$ is in some neighborhood of 0,

$$\int_{\Omega} |igtriangledown u_{arepsilon}(x)|^p dx = \left(rac{p-N}{p-1}
ight)^p \int_{\Omega} rac{|x|^{rac{p}{p-1}}\phi(x)^p}{\left(arepsilon+|x|^{rac{p}{p-1}}
ight)^N} dx + O(1).$$

Writing $\phi(x)^p = 1 + \phi(x)^p - 1$, we obtain

$$\int_{\Omega} |\nabla u_{\varepsilon}(x)|^{p} dx = \left(\frac{N-p}{p-1}\right)^{p} \int_{\Omega} \frac{|x|^{\frac{p}{p-1}}}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N}} dx + O(1)$$

$$(\text{ put } x = \varepsilon^{\frac{p-1}{p}} t, \ dx = \varepsilon^{\frac{(p-1)N}{p}} dt)$$

$$= \varepsilon^{\frac{p-N}{p}} \left(\frac{N-p}{p-1}\right)^{p} \int_{R^{N}} \frac{|t|^{\frac{p}{p-1}}}{\left(1 + |t|^{\frac{p}{p-1}}\right)^{N}} dt + O(1)$$

$$= K_{1} \varepsilon^{\frac{p-N}{p}} + O(1)$$
with $K_{1} = \left(\frac{N-p}{p-1}\right)^{p} \int_{R^{N}} \frac{|t|^{\frac{p}{p-1}}}{\left(1 + |t|^{\frac{p}{p-1}}\right)^{N}} dt = L(N,p) \|\nabla u_{1}(x)\|_{L^{p}}^{p}.$

PROOF OF (40).

$$\begin{split} &\int_{\Omega} Q(x) u_{\varepsilon}^{p^{*}}(x) dx \\ &= \int_{\Omega} (Q(x) - Q(0)) \frac{\phi(x)^{p^{*}}}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N}} dx + \int_{\Omega} Q(0) \frac{\phi(x)^{p^{*}}}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N}} dx \\ &= o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + \int_{\Omega} Q(0) \frac{\phi^{p^{*}}}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N}} dx \\ &(\text{put } x = \varepsilon^{\frac{p-1}{p}} t \ dx = \varepsilon^{\frac{p-1}{p} \cdot N} dt) \\ &= o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + Q(0)\varepsilon^{\frac{-N}{p}} \int_{R^{N}} \frac{dt}{\left(1 + |t|^{\frac{p}{p-1}}\right)^{N}}. \\ &= o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + K_{2}Q(0)\varepsilon^{\frac{-N}{p}} + 0(1) \\ &\text{with } K_{2} = \|u_{1}\|_{L^{p^{*}}}^{p^{*}} \end{split}$$

PROOF OF (41). From (40), (41),

$$\|igtriangledown v_arepsilon\|_{L^p}^N = rac{(\int_\Omega |igtriangledown u_arepsilon(x)|^p dx)^{rac{N}{p}}}{(\int_\Omega Q(x) u_arepsilon(x)^{p^*} dx)^{rac{N}{p^*}}} = Q(0)^{rac{-N}{p^*}} S^{rac{N}{p}} + o\left(arepsilon^{rac{N-p}{p}}
ight). \quad \Box$$

PROOF OF (42). For $1 < p^2 < N$,

$$\int_{\Omega} u_{\varepsilon}^{p} dx = \int_{\Omega} \frac{dx}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N-p}} + \int_{\Omega} \frac{\phi^{p} - 1}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N-p}} dx$$

$$= \int_{R^{N}} \frac{dx}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{N-p}} + O(1)$$
(put $x = \varepsilon^{\frac{p-1}{p}} t$, $dx = \varepsilon^{\frac{p-1}{p} \cdot N} dt$)
$$= \varepsilon^{\frac{p^{2-N}}{p}} \int_{R^{N}} \frac{dt}{\left(1 + |t|^{\frac{p}{p-1}}\right)^{N-p}} + O(1)$$

$$= K_{3}\varepsilon^{\frac{p^{2-N}}{p}} + O(1) \quad \text{for } 1 < p^{2} < N,$$
with $K_{3} = \int_{R^{N}} \frac{dt}{\left(1 + |t|^{\frac{p}{p-1}}\right)^{N-p}} = ||u_{1}||_{L^{p^{*}}}^{p}.$

Hence

$$\frac{\|u_{\varepsilon}\|_{L^{p}}^{p}}{\|Q(x)^{\frac{1}{p^{*}}}u_{\varepsilon}\|_{L^{p^{*}}}^{p}} = \|v_{\varepsilon}\|_{L^{p}}^{p} = \frac{K_{3}\varepsilon^{\frac{p^{*}-N}{p}} + O(1)}{\left(o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + K_{2}Q(0)\varepsilon^{-\frac{N}{p}} + O(1)\right)^{\frac{p}{p^{*}}}}$$

$$= \frac{K_{3}}{K_{2}}\varepsilon^{p-1} + o(\varepsilon^{\frac{Np-p-N}{N}}) \quad \text{if } 1 < p^{2} < N. \qquad \square$$

PROOF OF (43). For $N = p^2$,

$$\int_{\Omega}u_{arepsilon}^{p}dx=O(1)+\int_{\Omega}rac{dx}{\left(arepsilon+|x|^{rac{p}{p-1}}
ight)^{p(p-1)}}=O(1)+I(arepsilon)$$

and there exists $0 < R_1 < R_2$ such that

$$\int_{|x| \le R_1} \frac{dx}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{p(p-1)}} \le I(\varepsilon) \le \int_{|x| \le R_2} \frac{dx}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{p(p-1)}}$$

and it is clear that for a fixed constant R > 0, we have

$$\int_{|x| \le R} \frac{dx}{\left(\varepsilon + |x|^{\frac{p}{p-1}}\right)^{p(p-1)}} = |S^{N-1}| \int_0^R \frac{r^{N-1}dr}{\left(\varepsilon + r^{\frac{p}{p-1}}\right)^{p(p-1)}}$$

$$= |S^{N-1}| \int_0^{R\varepsilon^{-\frac{p-1}{p}}} \frac{s^{p^2 - 1}}{\left(1 + s^{\frac{p}{p-1}}\right)^{p(p-1)}} ds$$

$$= K_4 \log\left(\frac{1}{\varepsilon}\right) + O(1) \quad \text{as } \varepsilon \to 0 \quad \text{if } p^2 = N$$

where $|S^{N-1}|$ is the measure of the unit sphere in \mathbb{R}^N . Hence

$$\frac{\|u_{\varepsilon}\|_{L^{p}}^{p}}{\|u_{\varepsilon}\|_{L^{p^{*}}}^{p}} = \|v_{\varepsilon}\|_{L^{p}}^{p} = \frac{K_{4}\log(\frac{1}{\varepsilon}) + O(1)}{\left(o\left(\varepsilon^{\frac{p^{*}-p-N}{p}}\right) + K_{2}Q(0)\varepsilon^{-\frac{N}{p}} + O(1)^{\frac{p}{p^{*}}}\right)}$$

$$= \frac{K_{4}}{K_{2}}\log\left(\frac{1}{\varepsilon}\right)\varepsilon^{p-1} + o\left(\varepsilon^{\frac{p^{2}-p-1}{p}}\right)|\log\varepsilon| \quad \text{if} \quad p^{2} = N. \qquad \square$$

Proof of Lemma. We set $X_{arepsilon} = \|igtriangledown v_{arepsilon}\|_{L^p}^p$ and so we have

$$\psi(tv_{\varepsilon}) = \left\{ \int \frac{1}{p} t^{p} |\nabla v_{\varepsilon}|^{p} - \int \frac{Q(x)}{p^{*}} t^{p^{*}} |v_{\varepsilon}|^{p^{*}} - \int F(x, tv_{\varepsilon}) \right\}$$
$$= \frac{1}{p} t^{p} X_{\varepsilon} - \frac{t^{p^{*}}}{p^{*}} - \int F(x, tv_{\varepsilon}).$$

Note that $\psi(tv_{\varepsilon}) \leq \frac{1}{p}t^{p}X_{\varepsilon} - \frac{t^{p^{*}}}{p^{*}}$ and fix ε ,

$$\lim_{t\to\infty}\psi(tv_{\varepsilon})=-\infty.$$

Therefore $\sup_{t\geq 0} \psi(tv_{\varepsilon})$ is achieved at some $t_{\varepsilon} > 0$ (if $t_{\varepsilon} = 0$, then $\sup_{t\geq 0} \psi(tv_{\varepsilon}) = 0$ and there is nothing to prove). Since the derivative of the function $t \mapsto \psi(tv_{\varepsilon})$ vanishes at $t = t_{\varepsilon}$, we have

(44)
$$t_{\varepsilon}^{p-1} X_{\varepsilon} - t_{\varepsilon}^{p^*-1} - \int f(x, t_{\varepsilon} v_{\varepsilon}) v_{\varepsilon} = 0$$

and therefore

$$(45) t_{\varepsilon}^{p-1} X_{\varepsilon} - t_{\varepsilon}^{p^{*}-1} \ge 0$$

that is,

$$X_{\varepsilon} \ge t_{\varepsilon}^{p^* - p}$$
$$t_{\varepsilon} < X_{\varepsilon}^{\frac{1}{p^* - p}}.$$

Set
$$Y_{\varepsilon} = \sup_{t>0} \psi(tv_{\varepsilon}) = \psi(t_{\varepsilon}v_{\varepsilon}).$$

Since the function $t\mapsto (\frac{1}{p}t^pX_{\varepsilon}-\frac{t^{p^*}}{p^*})$ is increasing on the interval $[0,X_{\varepsilon}^{\frac{1}{p^*-p}}]$. It follows from (45) that

$$Y_{\varepsilon} = \frac{1}{p} t_{\varepsilon}^{p} X_{\varepsilon} - \frac{t_{\varepsilon}^{p^{*}}}{p^{*}} - \int F(x, t_{\varepsilon} v_{\varepsilon})$$

$$\leq \frac{1}{p} \left(X_{\varepsilon}^{\frac{1}{p^{*}-p}} \right)^{p} X_{\varepsilon} - \frac{1}{p^{*}} \left(X_{\varepsilon}^{\frac{1}{p^{*}-p}} \right)^{p^{*}} - \int F(x, t_{\varepsilon} v_{\varepsilon})$$

$$= \frac{1}{p} X_{\varepsilon}^{\frac{p}{p^{*}-p}} - \frac{1}{p^{*}} X_{\varepsilon}^{\frac{p^{*}}{p^{*}-p}} - \int F(x, t_{\varepsilon} v_{\varepsilon})$$

$$= \frac{1}{N} X_{\varepsilon}^{\frac{p^{*}}{p^{*}-p}} - \int F(x, t_{\varepsilon} v_{\varepsilon}).$$

Using (39), we obtain

$$(46) Y_{\varepsilon} \leq \frac{1}{N} \left(Q(0)^{-\frac{N}{p^{*}}} S^{\frac{N}{p}} + o\left(\varepsilon^{\frac{N-p}{p}}\right) \right) - \int F(x, t_{\varepsilon} v_{\varepsilon})$$

$$= \frac{1}{N} \frac{S^{\frac{N}{p}}}{Q(0)^{\frac{N}{p^{*}}}} + o\left(\varepsilon^{\frac{N-p}{p}}\right) - \int F(x, t_{\varepsilon} v_{\varepsilon}).$$

On the other hand, we claim that

(47)
$$t_{\varepsilon} \to (Q(0)^{-\frac{p}{p^{*}}}S)^{\frac{1}{p^{*}-p}} \quad \text{as } \varepsilon \to 0.$$

Indeed, by (44) we have

(48)
$$X_{\varepsilon} - t_{\varepsilon}^{p^* - p} - \int \frac{f(x, t_{\varepsilon} v_{\varepsilon}) v_{\varepsilon}}{t_{\varepsilon}^{p-1}} = 0.$$

Thus it suffices to verify that

(49)
$$\int \frac{f(x, t_{\varepsilon} v_{\varepsilon}) v_{\varepsilon}}{t_{\varepsilon}^{p-1}} \to 0 \quad \text{as} \quad \varepsilon \to 0.$$

Using (4)-(7), we see that for all $\delta > 0$, there exists a constant C > 0 such that $|f(x,u)| \leq \delta u^{p^*-1} + C u^{p-1}$ for almost all $x \in \Omega$ and for all $u \geq 0$. Therefore we have

$$\left| \int \frac{f(x, t_{\varepsilon}v_{\varepsilon})v_{\varepsilon}}{t_{\varepsilon}^{p-1}} \right| \leq \left| \int \frac{[\delta(t_{\varepsilon}v_{\varepsilon})^{p^{*}-1} + C(t_{\varepsilon}v_{\varepsilon})^{p-1}]v_{\varepsilon}}{t_{\varepsilon}^{p-1}} \right|$$

$$= \left| \int \delta t_{\varepsilon}^{p^{*}-p} v_{\varepsilon}^{p^{*}} + Cv_{\varepsilon}^{p} \right| \leq \delta t_{\varepsilon}^{p^{*}-p} \|v_{\varepsilon}\|_{L^{p^{*}}}^{p^{*}} + C\|v_{\varepsilon}\|_{L^{p}}^{p}.$$

From (48), $t_{\varepsilon}^{p^*-p} \leq \| \nabla v_{\varepsilon} \|_{L^p}^p = Q(0)^{-\frac{p}{p^*}} S^{\frac{N}{p}} + o(\varepsilon^{\frac{N-p}{p}})$ as $\varepsilon \to 0$. For $\varepsilon > 0$ small, we get

$$t_{\varepsilon}^{p^*-p} < Q(0)^{-\frac{p}{p^*}} S^{\frac{N}{p}} + 1.$$

Thus $\delta t_{\varepsilon}^{p^*-p} \|v_{\varepsilon}\|_{L^{p^*}}^{p^*} + C\|v_{\varepsilon}\|_{L^p}^p < \delta(Q(0)^{-\frac{p}{p^*}}S^{\frac{N}{p}}+1)\|v_{\varepsilon}\|_{L^{p^*}}^{p^*} + C\|v_{\varepsilon}\|_{L^p}^p \to 0$ as $\varepsilon \to 0$ which implies (49) and thereby (47).

It follows from (47), (37), (38) and (39) that, for $\varepsilon > 0$ sufficiently small,

(50)
$$\int F(x, t_{\varepsilon} v_{\varepsilon}) \geq \int_{|x| < R} F(x, t_{\varepsilon} v_{\varepsilon})$$
$$\geq \int_{|x| < R} F\left[\frac{A \varepsilon^{\frac{N-p}{p^2}}}{(\varepsilon + |x|^{p/p-1})^{N-p/p}}\right] dx$$

for some constant $A(0 < A \le t_{\varepsilon})$. From (44) and (48), we deduce that

$$(51) Y_{\varepsilon} \leq \frac{1}{N} \frac{S^{\frac{N}{p}}}{Q(0)^{\frac{N}{p^*}}} + o(\varepsilon^{\frac{N-p}{p}}) - \int_{|x| < R} F\left[\frac{A\varepsilon^{\frac{N-p}{p^2}}}{(\varepsilon + |x|^{p/p-1})^{N-p/p}}\right] dx.$$

Finally, we claim that

(52)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{\frac{N-p}{p}}} \int_{|x| < R} F\left[\frac{A\varepsilon^{\frac{N-p}{p^2}}}{(\varepsilon + |x|^{p/p-1})^{N-p/p}} \right] dx = \infty$$

which implies, together with (51), that $Y_{\varepsilon} < \frac{1}{N} \frac{S^{\frac{N}{p}}}{Q(0)^{\frac{N}{p^*}}}$ for $\varepsilon > 0$ sufficiently small.

VERIFICATION OF (52). We have

$$\begin{split} &\frac{1}{\varepsilon^{N-p/p}} \int_{|x| < R} F \left[\frac{A\varepsilon^{\frac{N-p}{p^2}}}{(\varepsilon + |x|^{p/p-1})^{N-p/p}} \right] dx \\ &= \frac{|S^{N-1}|}{\varepsilon^{N-p/p}} \int_0^R F \left[\frac{A\varepsilon^{\frac{N-p}{p^2}}}{(\varepsilon + r^{p/p-1})^{N-p/p}} \right] r^{N-1} dr \\ &\text{(put } r = \varepsilon^{\frac{p-1}{p}} s \ dr = \varepsilon^{\frac{p-1}{p}} ds.) \\ &= |S^{N-1}| \varepsilon^{\frac{pN-2N+p}{p}} \int_0^{R\varepsilon^{\frac{-p-1}{p}}} F \left[A \left(\frac{\varepsilon^{\frac{p-1}{p}}}{1 + s^{\frac{p}{p-1}}} \right)^{\frac{N-p}{p}} \right] s^{N-1} ds. \end{split}$$

After rescaling ε we see that (52) is equivalent to

(53)
$$\lim_{\varepsilon \to 0} \varepsilon^{\frac{pN-2N+p}{p}} \int_0^{R'\varepsilon^{-\frac{p-1}{p}}} F\left[\left(\frac{\varepsilon^{\frac{p-1}{p}}}{1+s^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}}\right] s^{N-1} ds = \infty$$

for some constant R' > 0. When $R' \ge 1$, (53) implies (13). Otherwise, when R' < 1, consider

$$z_{\varepsilon} = \varepsilon^{\frac{pN-2N+p}{p}} \int_{R'\varepsilon^{-\frac{p-1}{p}}}^{\varepsilon^{-\frac{p-1}{p}}} F\left[\left(\frac{\varepsilon^{\frac{p-1}{p}}}{1+s^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}}\right] s^{N-1} ds$$

and note that (for some constant C')

$$\begin{split} |z_{\varepsilon}| &\leq C' \varepsilon^{\frac{pN-2N+p}{p}} F\left(C' \varepsilon^{\frac{N-p}{p^2}}\right) \varepsilon^{-\frac{p-1}{p} \cdot N} \\ &\leq C' \varepsilon^{\frac{p-N}{p}} \left(\frac{a(x)}{p} (C')^p \varepsilon^{\frac{N-p}{p}} + \frac{\varepsilon}{p} (C')^p \varepsilon^{\frac{N-p}{p}} + \frac{C}{p^*} (C')^{p^*} \cdot \varepsilon^{\frac{N-p}{p^2} \cdot \frac{pN}{N-p}}\right) \\ &= \left((C')^{p+1} \frac{a(x)}{p} + (C')^{p+1} \frac{\varepsilon}{p} + \frac{C}{p^*} (C')^{p^*+1}\right) \varepsilon \end{split}$$

which is bounded as $\varepsilon \to 0$ and thus (52) implies (13). Thus the proof of Lemma is complete.

EXAMPLE. All the assumptions of Lemma are satisfied if $f(x,u) = f(u) = \mu u^q$ with $\mu > 0$ and $p-1 < q < p^*-1$, $1 . And <math>F(x,u) = \int_0^u f(t) dt$ satisfy (33). Thus (1) possess a solution. Now we will show that F(x,u) satisfy (33).

will show that F(x,u) satisfy (33). We have $F(u) = \frac{\mu}{q+1} u^{q+1} \ge \beta$ for all $u \ge B$ for some constant $\beta > 0$ and B > 0.

Then
$$F\left[\left(\frac{\epsilon^{\frac{1-p}{p}}}{1+s^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}}\right] \geq \beta$$
 for all s such that $\frac{\epsilon^{\frac{1-p}{p}}}{1+s^{\frac{p}{p-1}}} \geq B^{\frac{p}{N-p}}$ and

this holds for all $s \leq C\epsilon^{-\frac{(p-1)^2}{p^2}}$ where C is some constant and ϵ is small. Thus we have for ϵ small,

$$\epsilon^{\frac{pN-2N+p}{p}} \int_{0}^{-\frac{p-1}{p}} F\left[\left(\frac{\epsilon^{\frac{1-p}{p}}}{1+s^{\frac{p}{p-1}}}\right)^{\frac{N-p}{p}}\right] s^{N-1} ds$$

$$\geq \beta \epsilon^{\frac{pN-2N+p}{p}} \int_{0}^{C\epsilon^{-\frac{(p-1)^{2}}{p^{2}}}} s^{N-1} ds$$

$$= \frac{\beta}{N} \epsilon^{\frac{pN-2N+p}{p}} \cdot \epsilon^{-\frac{(p-1)^{2}N}{p^{2}}}$$

$$= \frac{\beta}{N} \epsilon^{p^{2}-N^{2}} \to \infty \text{ as } \epsilon \to 0$$

References

- [1] Jongsik Kim and Kwonwook Kim, Existence of positive solutions for Pseud Laplacian equations involving critical Sobolev exponents, Math. Japonica 42 (1995), no. 1, 75-86.
- [2] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- [3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- [4] V. Benci, Some critical point theorems and applications, Comm. Pure Appl. Math. 33 (1980), 147-172.
- [5] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [7] H. Guedda and L. Verron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. T.M.A. 8 (1989), 879-902.
- [8] P. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review. 24 (1982), 441-467.
- L. Niremberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4 (1981), 267-302.
- [10] S. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Doklady. 6 (1965), 1408-1411.
- [11] P. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indian Univ. Math. J. 23 (1974), 729-754.
- [12] G. Talenti, Best constants in Sobolev inequality, Ann. Math. 110 (1976), 353-370.
- [13] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Department of Mathematics Education Sunchon National University Chonnam 540-742, Korea

E-mail: kkwook@sunchon.sunchon.ac.kr