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POSITIVE SOLUTIONS FOR PSEUDO-LAPLACIAN
EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS

KwoN WooK KiM

ABSTRACT. A sufficient condition for psendo-Laplacian equations in-

volving critical Sobolev exponents to have positive solutions is estab-
lished.

1. Introduction

In this paper we deal with the existence of positive solutions of the
quasilinear elliptic equation

-div(|DulP~2Du) = Q(z)|ulP" %u + f(z,u) in Q
(1) u>0 in Q
u=0 on 00

where 2 is a bounded open subset of RV, 1 < p < N, p* = Np/N —p, the
function f(z,u) : © x [0,+00) — R, Q(z) > 0 is a bounded measurable
function in 2 and Q(z) satisfy the following property:

PROPERTY (P). There is a maximum point xo of Q(x) in §? such that
|Q(z) = Q(zo)| = o|z — zo|P~1) as z — =o.

In [1], we studied for @(z) = 1. Later ,we introduce the new normal-
ized function different from the normalized function used in [1} to show
the existence of solution. Also we make the following assumptions:

(2) f(z,u) : @ x [0,00) = R is measurable in z,
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(3) continuousin w and sup |f(z,u)| < oo for every M > 0;
ze

0<usM
(4) f(z,u) = a(@)|ulP~?u + g(z, u)
(5) with a(z) € L°(9),
(6) g(z,u) = o(uP~!) asu — 0T, uniformly in z,
(7 g(z,u) = o(uP 1) asu — +oo, uniformly in ;

the operator — Apu—a(z)|u[P~2u has its smallest positive eigenvalue,
that is,

(8) / |V 8 — a(2)d® > o / ¢ for all g € WEP(Q),a >0

or equivalently

(9) / |V 6 — a@)¢? > o / |7 6P for all ¢ € WEP(Q), o > 0.

Since the value of f(z,u) for u < 0 is irrelevant, we may define

(10) f(z,u) =0 for allz € Q, u<0.
Set
(11) - F(z,u) = / f(z,t)dt forall z€QueR
0
and
(12)

¢(u)=/%|vu!p—/%?MP’—/F(@U) for all u € Wy'P(Q).

In fact, the solutions of (1) correspond to the critical point of 1)(u). Since
p* is the critical Sobolev exponent corresponding to the non-compact
embedding of W, P(£) into L?" (2), the functional ¢ does not, in general,
satisfy the Palais-Smale condition and it is not possible to obtain critical
points of ¢ via simple variational arguments. Thus we rely on a variant
of the mountain pass theorem of Ambrosetti and Rabinowiz without the
(PS) condition [3]. The main result in this paper is the following:
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MAIN THEOREM.  Assume that the conditions (2)-(8) be satisfied
and suppose that there exists some vy € Wol P(Q), =000, Vo0
such that

1 S%
(13) sup ¥(tvg) < — —.
20 N (max  Q(a))+*
Then problem (1) possesses a solution.

Here S is the best constant for the Sobolev imbedding W, 'P(2) «—
L7 (Q).

2. Proof of main theorem
Using (4)-(7) we may fix a constant u > 0 so large that
(14) ~f(z,u) < puP~t 4P

for almost all z €  and for all w > 0. 1In case f(z,u) >0 forallu >0,
we may choose = 0. On E = W,P(Q) we define

= 1 wlP ﬁup_g(.x_)u P" _ F(z.u _1 u
o = [{Svup+ S - L - pun) - Sy,

Then ® is C! on E. First, we must prove that ® satisfies the conditions
of the mountain pass theorem of Ambrosetti and Rabinowitz without
the (PS) condition [3]. It is stated that for C* function ® on a Banach
space F, if ® satisfies the following two conditions:

(CON1) there exist a neighborhood U of 0 in F and a constant p
such that ®(u) > p for every u in the boundary of U,

(CON2) &(0) < p and ®(v) < p for some v ¢ U.

Set

= >
O= gt ze

where P denotes the class of continuous paths joining 0 to v. Then there
is a sequence(u;) in E such that

b(u;) - C and ¥'(u;) >0 in E™.
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ProOF OF (CON1). It follows from condition (6) that for any € > 0,
there is a § > 0 such that

g(z,u) < euP~! for almostallz € Q and forall 0 <u <.
Thus from (7), we obtain
g9(z,u) < euP~ !+ CuP 1 for almost all z € Q and for all u>0.
and for some constant C' (depending on €). Therefore we have
1 € Cc -
15 F(z,u) < —a(z)u? + —uP + —u?
(15) (z,u) p (z) il
for almost all z € Q and for all u > 0. Hence we can easily see that for
all u € Wy P(9),
.F'_(u-ir)p - C't 1
p p

Using (9) and the fact that [ |yulP = [ |vut [P+ [ |7 u” [P we conclude
that (with € small enough) there exist constants p and a neighborhood
U of 0 in WyP(Q) such that

P(u) 2 /{%IVUVD— %jc)(u*')”— Q(z)(u+)p"}

C+1

2w 2 [HvurP+lvur - Lty - ZEeE@eh”

2 Kllullyso = C'llullyynn >0

4
WS‘P Wol-P

for every u in the boundary of U. a

PROOF OF (CONZ2). For any u € W3 P(Q), u > 0, u # 0, we have by
(7) limy_ o ®(tu) = —co. Thus there are many v’s satisfying ®(0) <
p and ®(v) < p forsome v ¢ U. However, it will be important
for later purposes to use Theorem [3] with a special v, namely v = tovo
where vg is given by (13) and ¢y > 0 is chosen so large that v ¢ U and
®(v) <0. It follows from (13) that

sup &(tv) < el ki
0 N (max  Q(z)+"
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and therefore we have

1 sy
N (max Q(z)) "

(16) C<

Applying Theorem {3], we obtain a sequence (u;) in W& () such that
@(UJ) — C and @I(UJ) - 0 in W“laP/(Q) (% + 517 = 1), that is,

1 , 1 . . |
a7 /{? v uif? + %Wﬂp - ;;Q(x)(u;)p - F(z,u}) - %(u;)p}'
=C+0(1)
and
= Bgu + plusP g ~ Q@) (wf P = flayuf) - plu) )P

(18) ,
=¢; with £ —0 in W=HP(Q).

We claim that

(19) sl < C:

Indeed, multiply (18) by u;, we obtain

(20) [ {1vus1+atus P Qo)) (o uf =l ) = ().
Taking - £x(20) + (17), we obtain

) %,— / Q) ()P < { / (F(z,ul) - % f(a, uj)u;} +C+0(1)

T 13 ey o

(21

On the other hand, from (7) we have for all € > 0, there exists a constant
C such that

(22) _ If(z,u)| <ew? "'+ C
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for almost all z € Q and for all u > 0. So
(23) IF(z,u)| < I%up' +Cu

for almost all z € 2 and for all u > 0. We deduce from (21)-(23) (with
¢ small enough)that

(24) [@@@}y" <+ Cluslyy.

Combining (17) and (24), we obtain (19).

Extract a subsequence, still denoted by u;, so that
u; — u weakly in WyP(Q),
u; — u strongly in L? for all 1 < q < p*,
u; — u a.eonfl
)Pt = (uh)P" 7! weakly in (LP7) = LF;t_l,
f(z:,uj) — fz, u;") weakly in (LP") = LFft_l,
— Apu; = — Apu weakly in WP

Passing to the limit in (18), we obtain
(25)
—DputplulP~?u = Q) (wh)P TN+ f(z, uh) +u(u)P! in WLP(Q).

We deduce from (14) and (25) in which the right-hand side is greater
than or equal to 0 and from the Vazquez maximum principle [13], that
u > 0 on 2 and u satisfies

— Dpu=Q@)ulf *u+ f(z,u).

We shall now verify that u # 0 (and consequently u > 0 on Q by the
strict Vazquez maximum principle). Indeed, suppose that u = 0 we
claim that

(26) /f(:c,uj)u;r -0,
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(27) / F(z,ul) 5 0.
From (22), (23), we deduce that

|/f(:1: ub)u} Ss/(u;')p'-{-—C/u;_
[Feun|s 2 [apyso [u

Since u; remains bounded in L?" and u; — 0 in L2, we obtain (26) and
(27). Extracting still another sequence, we may assume that

(28) /|vuj|z’_,e

for some constant £ > 0. Passing to the limit in (20) and then in (17),
we obtain

(29) [a@w -
and

1
(30) w{=C

On the other hand, from (29), since max Qz) [ (u;')”' > ¢ for sufficiently

large j, we have

I 7 usllze 2 Slluil7,- > Slluflf,.
Hence, using (28) and (29) we find in the limit
Se#

1 )
(31 Z max QE)E

From (30) and (31) we deduce that

1 S%
C>z N N—p
(max Q(z)) @
This contradicts (16). Thus u #Z 0. 0

Lemma below furnishes the assumption under which the crucial con-
dition (13) of main theorem holds.
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LEMMA. Assume that f(x,u) satisfies the conditions (2)-(8) and Q(z)
satisfies property (P). Also suppose that there is a function f(u) such
that

(32) f(z,u) > f(u) >0 for almost all z € w and for all u > 0

where w is some nonempty open set in 2 and the primitive F(u) =
Jo f(t)dt satisfies

: pN-2N+p E_P;_l 5'1_;2 N;
(33) lime™ » / F <_“I> sV lds = 0.
e—~0 0 1+ s7-T

Then the condition (13) holds.

To prove the Lemma, we need the following estimates (39)-(43). With-
out loss of generality, we can assume that 0 € © and that max Qz) =

Q(0). Let us define for A € R
(34)

Sy = inf{/ (|DulP — MulP)dz : w € WyP(R), / [ulP"dz = 1} .
Q Q
Then
(35) So =S = inf {/ |DufPdz : u € W, P(Q), / JulP" dz = 1}
Q Q

is the best constant for the Sobolev imbedding Wg'P(Q) — L* (Q).
Note that S is independent of  and is never achieved for a bounded
domain of RV. When  is replaced by RY, then S is achieved by the
function

(30 Ua<x>=(Na(1Z_—f) 1) (o 50) 7

for some a > 0. Assume 0 € w and fix a function ¢ € C§°(2), 0< ¢ <1
and ¢(z) = 1 in some neighborhood of 0.
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Set
¢(z)
37 ue(x) =
(37) @) =
and
(39) (o) = —2)

1Q@)7 uell g

We claim that v satisfies the condition (13) for ¢ > 0 sufficient
small. To show this, we need to estimate the following: As ¢ — 0,

_ N = p\?
89 17wl =K 40, Ki= (322} vu@.

(40) / Q@) fuel? dz = 0 ,ﬁ "” I? + K2Q(0)e= % + 0(1),

L»*>

N_op

(41) | 7 vellde = QO 5% +0(e757),

89

ly

K np—p-n .
(12) llellsy = Z2eP 40 (55%), Ko =l if 1<p? <N,

K>

2 _
(43) Nvellf» = —-—sp‘lllog el + O( ) |loge| if p*> = N.
Ko

PROOF OF (39).

v p-N__ a4l

(e + lal?*) e A S
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As ¢ =1 is in some neighborhood of 0,

/Q | ue(@)[Pdz = (2; __Jf ),, / (ilx|¢(_x))p dz + O(1).

Writing ¢(z)? = 1 + ¢(z)P — 1, we obtain

/Q|Vue(:v)|pdm=(1;[—__lz—))p/n( |x|i ~dz + O(1)

e +[2]77)

— (p—1N
( put xzerﬁ’_lt, dr=¢ » dt

_ —p\? =1
=" (u) / —ﬂﬁ—th +0(1)
p—1 RN ( B

1+ |t|p—1)

P

—K1€ " +0(1)

| N- tl5%s
witn K= (222" ("—th = LN, D)l v wa(3) 2

1+|t|s’i—1) o

PROOF OF (40).

/ Qa)t" (2)de
P(z)?” P(x)?”
/(Q 0))mdx+/ncg(0)mdx
=of /Q o I)Ndw

(put z=¢» Bt do=e"r th)

o(m)JrQ() N/N(d%-

1+ [¢7°7)

0 (eu—ﬂ) + K>2Q(0) " +0(1)

with Ko = ||u1j|1£p*
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PROOF OF (41). From (40), (41),

(fo| 7 ue()|Pdz) &
(fo Q@)uc(z)?" dz) 7
PRrOOF OF (42). For1 < p? < N,

- d &P —1
Agw_k( ijM?#L@+mﬁgMﬂx

- ~-N N-—
|7 vellfy = =QO)F 5% +0 (%), g

€+ |z|7-T
dx
=/ + O(1)
N-p
RY (s + la:ngT>
(put z = eL;lt dz = sp';_l'th)
*gfﬂ/ _¢+ou)
RN

1+|t|
2

= Kse¥5 +O(1) for 1<p2<N,

dt
mmm:/ — = P,
—p Lr
RY (1 + |t|‘Lv—1)

Hence
”Us”Lp P _ Kse = +0(1)
= |lvellz» = - Z
Q@)™ uel?, (o (™) + K@% + 0(1))”
= %Ep*l_{,.o(gﬁril&——lv) lf 1<p2<N D
2

PROOF OF (43). For N = p?,

L@m:mnﬁ/( dz = 0(1) + I(e)

p(p—1)
€+ |z|7= 1)
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and there exists 0 < R; < Ry such that
dx

/ “ p(p—1) — <Ie) </ p(p—1)
lz|< Ry ( ) |z|< Rz (E+ |m|;’_1—1)

€+ |z|P-

and it is clear that for a fixed constant R > 0, we have

/IwI<R (s + lat5®
Re— P p>—1

— |SN—1| S ds
o )p(p—l)

1+sp—

rN-1gr

_| N 1|
)p(p~1) p(p—l)

6+1”P

=K, log<§>+0(1) as e— 0 if P =N

where |SV~1] is the measure of the unit sphere in R". Hence

Iluelle el = K,log(¢) +O(1)
Ve - - £
ez, el (o (r—: P N) + KzQ(O)E_% + O(l) ?
= —g—‘llog(l)ep_l+o(s _P—l) |loge] if p?=N. O
2

PROOF OF LEMMA. We set X, = || v ve||}, and so we have

s ={ [ Lo - [ LD pp "~ [Pt}

= —t”X - E—*— —/F(ar: tve).
p P

Note that 9(tve) < StPX, —

Jim vliw) = —os
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Therefore SUP;>g Y(tve) is achieved at some t. >0 (if t. =0, then
sup;>q ¥(tve) = 0 and there is nothing to prove). Since the derivative
of the function ¢ — (tv. ) vanishes at t =t., we have

(44) tg’"lXE - té"_l - /f(:z:, teve)ve =0

and therefore

(45) tPIX, —tF 1 >0
that is,
X. > tp*-p
te S XP —P

Set Y. = supy(tve) = P(teve).
>0

Since the function ¢t — (%thE - 3:—) is increasing on the interval

[0, XZ""7]. Tt follows from (45) that

1, te
},E = ;teXe — ;);— - F(.’E,te’l)s)

1/ ==)\° 1
_<_"< 4 Qp) Xe—'_;< p_.p> /F(wteve)
P p

1 12
;X” ——-X‘° P—/F(m,teve)

-_—.——X” = /F(mtvs)

Using (39), we obtain

Y. < = (Q(O)“"SP +o = /F(:c teve)

(46) 1 oY
= NQ(O);?L o(e » )-—/F(a: teve).
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On the other hand, we claim that
(47) te = (Q(0)"7S)7=% as ¢ — 0.

Indeed, by (44) we have

(48) X — 7P / f(@ teve)ve (x’tiﬁe)ve = 0.
74

Thus it suffices to verify that

f(:L‘, tsve)'va

(49) 21 —0 as £—-0.

Using (4)-(7), we see that for all § > 0, there exists a constant C' > 0
such that |f(z,u)] < 6uP"~! + CuP~! for almost all z € Q and for all
u > 0. Therefore we have

I f(z,t ve)ve

5(t5v5)”"1 + C(teve )P o,
T

—1
174

- ‘ [otz = + oup| < ot Puel. + Ol

From (48), "7 < || v v|%, = Q(0)"# S+ + o(sN_;E) as & — 0.
For &€ > 0 small, we get

2P < Q(0)"7 SF + 1.
Thus 6627 o [[7. +Cllve |3, < 8(Q(0) ™7 8% +1)[jve|[. +Clve |2, —
Oase —0 Wh1ch 1mphes (49) and thereby (47).

It follows from (47), (37), (38) and (39) that, for &€ > 0 sufficiently
small, :

/F(:L‘,teve) 2/ F(z,t.v,)
|z|<R

(50 ASNT—ZE
> / F dz
ei<r | &+ [2PTPT)N=Ts
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for some constant A(0 < A <t.). From (44) and (48), we deduce that

N ‘ Noe
1 S» Nop Ae »
1 YE <= N P - )
(51) Ye < N Q(0)7" tole ) /|zl<RF [(5'*' |37|”/””1)N_p/p} @

Finally, we claim that

N—
. 1 Ae 7
@ )P [(eﬂzwm-lw-ﬂp] dome

N

which implies, together with (51), that Y. < & —2 5 for € > 0 suffi-
Q(0)*”

ciently small. O

VERIFICATION OF (52). We have

1 P Aslzo_fﬂ d
gN-»/p lz| <R (g+|x|P/P—1)N—p/p T

B |SN—1| R Ae%}e
~ eN-p/p [y (€ + rp/P—1)N-p/p

] rN-lgr

(put r= e s dr = aeg‘lds.)

N-—p

—p=1
pN—-2N+p Re » 5%1 P
=|SN"He / FlA| —— sN1ds.
0

1+ s7-1

After rescaling ¢ we see that (52) is equivalent to

p—1 1 s N—-p

Re™ P P
(53) lime = / F —E::E sN"lds = o0
e—0 0 1 + sp—1

for some constant R’ > 0. When R’ > 1, (53) implies (13). Otherwise,
when R’ <1, consider

p—1 N—-p

- _1
pN—2N+p /6 ¥ P 5P—p— P N-1g
zZe=¢€ _ — s s
’s—p_P— 1+ s?7=1 ,
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and note that (for some constant C)
|ze] < C'e =R (C’a%}z) e

5 (A orpetst 1 et 4 oy ST

I%(Cl)p‘ﬂ) ¢

IA

. Ce
( (cypr1 222 a(x +(CYPHZ €
p

which is bounded as € — 0 and thus (52) implies (13). Thus the proof
of Lemma is complete. 0O

EXAMPLE. All the assumptions of Lemma are satisfied if f(z,u) =
fu) = pu? with g >0and p-1<g<p*—1,1<p< N. And
F(z,u) = [, f(t)dt satisfy (33). Thus (1) possess a solution. Now we
will show that F(z,u) satisfy (33).

We have F(u) = E_ﬁ‘_—luQH > [ for all u > B for some constant
B>0 and B >0.

1-p N; 1-p p
Then F (%) > 3 for all s such that 24— > B¥-7 and
1+sp—1 1+sp—1

—13)2
this holds for all s < Ce ™ pP’I where C is some constant and € is small.
Thus we have for € small,

N—p

_p—1 1-p F2)
pN—_2N4p 3 € P _
€ P / F — SN lds
0 1+ sp-T
_e-n?
Ce P
pN—2N4p _
>pPe @ sN-lds

0

_ 12N

_ %ELN_%M:E .e_ﬁ__}_l’ 2
B

_2
=N Loase — 0

N



(9]

(10}
11]
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