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ON GALOIS GROUPS FOR NON-IRREDUCIBLE
INCLUSIONS OF SUBFACTORS

JUNG RYE LEE

ABSTRACT. We apply sector theory to obtain some characterization
on Galois groups for subfactors. As an example of a non-irreducible
inclusion of small index, a locally trivial inclusion arising from an
automorphism is considered and its Galois group is completely deter-
mined by using sector theory.

1. Introduction

Index theory for II;-factors was started by Jones in [8] and it was
extended to properly infinite factors by Kosaki in (10]. Index theory has
played a fundamental role to classify subfactors and automorphisms of
subfactors. Especially, Galois groups have been studied by many authors
(see for example [2,3,11,13]).

The concept of sector (or equivalently bimodule) was initially con-
sidered by Ocneanu’s work {16] and Longo’s approach on index theory
for properly infinite factors [15]. The sector technique is very useful to
attack problems related to the Galois group. For an irreducible inclusion
case, the precise description of Galois group was obtained (see [11,12]).
In fact, for an irreducible and finite index inclusion N C M case, the
Galois group is just the group of automorphisms appearing in the de-
composition of the canonical endomorphism pp associated to a given
inclusion N = p(M) C M.

It is natural to consider Galois groups for non-irreducible inclusions.
But for a non-irreducible inclusion case, automorphisms given as above
do not necessarily form a group, so characterization given as above is
actually false and it is difficult to describe its Galois group completely.
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The purpose of the present paper is to characterize Galois groups
for subfactors in the sense of sectors and give some properties on them.
As examples of non-irreducible inclusions, we consider Jones tower of
I -factors and a locally trivial inclusion of factors arising from an au-
tomorphism. In §2 we will introduce Jones’ index, sector theory, and
Galois group for subfactors. In §3 we will use sector theoretic approach
and give some results on Galois groups. In §4 we will consider a locally
trivial inclusion of index 4 and describe its Galois group by applying
sector theory.

2. Preliminaries

In this section we summarize definitions and basic facts on sectors
and Galois groups for our later purpose. Further details can be found in
(1,5,9].

For a pair N C M of I1;-factors, Jones’ index [M : N] is defined in [8]
by the coupling constant dimy L?(M) of N on the standard Hilbert space
L%(M) with modular conjugation Jps. The von Neumann algebra M; =
JumN'Jyps is called the basic construction of N C M and by iterating the
basic constructions we get Jones tower N C M C M; C My C ---. For
a properly infinite factors we use Kosaki (minimal) index in [10]. If the
relative commutant N’ N M is trivial then the inclusion N C M is called
an irreducible inclusion.

For a properly infinite factor M, End(M) denotes the set of unital,
normal endomorphisms of M. For a given p € End(M), let H, =um
L?(M) s be the Hilbert space with M-M bimodule action m - £ - mg =
p(my)IpmiJpé. Two M-M bimodules H, and H,, are unitarily
equivalent if and only if p; and p; are inner conjugate. Any abstract
M-M bimodule is unitary equivalent to H, for some p € End(M).

We set Sect(M) = End(M)/Int(M), and its class is called a sec-
tor, denoted by [p] (or simply by p), where Int(M) is the set of in-
ner automorphisms. Note that Sect(M) is the same as the set of M-
M bimodules up to unitarily equivalent and ordinary composition of
sectors corresponds to the relative tensor product of bimodules. For
p1, p2 € End(M), choose isometries v1,ve € M satisfying that v;v] and
vou} are orthogonal projections with viv] + vovs = 1. If we define p by
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p(z) = vip1(x)v] +vepa(z)vy, T € M, then we have [p] = [p1] ® [p2] and
denote it by [p;] < [p], i =1,2. ’

Moreover we know End(H,) = M N p(M)’" and so H, is irreducible
if and only if p(M) C M is irreducible. When p(M) C M is of finite
index, the relative commutant p(M)’ N M is finite dimensional so that
by choosing minimal orthogonal projections {p;}i=1,... m With )} p; =1,
we can obtain the irreducible decomposition [p] = [p1] ® - - - @ [pm] of p.

The square root dp of index of p(M) C M is called the statistical
dimension of p and it satisfies that d(p, ® p2) = dpy + dp2 and d(p1p2) =
dp; - dpz. Note that dp = 1 if and only if p is an automorphism of M
(i.e., p € Out(M) = Aut(M)/Int(M)).

For a given pair N C M of factors, by tensoring an infinite factor
B(H) we get properly infinite isomorphic factors N ® B(H) ¢ M ®
B(H). It is well known that for a given 6 € Aut(M,N) we get § =
0 ®id € Aut(M ® B(H),N ® B(H)) and the relative commutant is
invariant by this tensoring. So we may assume that N C M is an
inclusion of isomorphic properly infinite factors with finite index and p
is an endomorphism of M with p(M) = N. However it is actually valid
for any pair of factors.

The conjugate sector [p] of [p] is given by [] with 5 = p~!o~, where 7
is the canonical endomorphism for the inclusion p(M) C M (see [14,15]).

Note that H,; is unitarily equivalent to pL?(M)p via the unitary
JuJN and the decomposition rule for 1 — p — pp — ppp — -+ corre-
sponds to the dual principal graph for N C M.

Now we recall Galois group theory for subfactors (see [9]). The Ga-
lois group G(M, N) for an inclusion N C M of factors.is defined by
G(M,N) = {a € Aut(M)} a|y = idn} and the set of unitaries in M is
denoted by U(M). The well known facts on Galois groups for subfactors
are as follows: :

(1) For any o € Aut(M) we have G(M,0(N)) = cG(M,N)o™ .

(2) G(M,N) N Int(M) = U(N' n M)/T, where T denotes a one-
dimensional torus. So if NN M = C- 1 then G acts outerly on
M.

When a finite group G acts outerly on a I1;-factor M, for a subgroup
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H of G, we have the followings:
(1) G(MH, M®) = Gy, where Gg = {g € G| gHg™! = H}. So we
have G(M, M®) = G.
(2) The Galois group G(M x G, M x H) is isomorphic with the group
of one-dimensional representation x of G with x|y = 1. So we
have G(M x G, M) = G/|G,G].

3. Some properties on Galois groups analyzed from sectors

To study sector theory is equivalent to that of bimodules for von Neu-
mann algebra which was introduced by Connes (see [6,12] for the details).
Thanks to Frobenius reciprocity, there is always a canonical pairing be-
tween End(H ® H*) and End(H* ® H), where H =y L?(M)p, N-M
bimodule. In the case of depth 2, this pairing provides Hopf structure to
End(H ® H*) and its dual End(H* ® H) as well (see [4,19] for details).
In terms of bimodules, the Galois group for N C M can be formulated
as the following.

PROPOSITION 3.1. ([12]) For an irreducible inclusion N C M of fac-
tors, the irreducible bimodules of dimension 1 (i.e., automorphisms) ap-
pearing in the irreducible decomposition of the M-M bimodule pyL?
(M) pm(=m LA(M) ®n L2(M)p) = End(H* ® H)) form a finite group
and this group is exactly the Galois group G(M,N).

For a properly infinite case, the above result means that G(M, N) con-
sists of automorphisms appearing in Longo’s canonical endomorphism -y
attached to N C M (see [14]).

Now we describe Galois group G(M, N) for the finite index inclusion
p(M) =N c M, p € End(M), of factors by using sector theory. Note
that for an irreducible sector [p], we have [id] < [pp] and [id] < [pp]. It
is not necessary to assume irreducibility of p in the next results.

LEMMA 3.2. If o € G(M, N) then [ap] = [p| and [a] < [pp] hold.

PrOOF. The fact that p(z) € N, Vz € M, implies that for a given
a € G(M,N), ap(z) = p(z). So we have [ap] = [p]. By using irreducible
decomposition of p and Frobenius reciprocity, we have [id] < [pp] and
[o] = [a0id] < [app] = [0p]. O



On Galois groups 103

Here we set G and G as follows:
Go = {[a] | da =1, € Aut(M),[a] < [pp]},
G = G(M,N)/G(M,N) n Int(M).

In the case of an irreducible pair N C M of factors, it is known that Gg
is a group and Galois group G(M, N) is isomorphic to Gp (see [11,12]).
But without assuming of irreducibility, we obtain the following theorem.

THEOREM 3.3. For an inclusion N C M of factors with dim(N’ N
M) = k, we have

|G| < [M: N] - (k-1).

PROOF. When a € G(M,N) we have ap = p and dp = 1.
Since [id] < [pp], we get [a] = [aoid] < [app] = [pp] and so [a] € Go.
If we consider ¢ : G(M, N) — Gp defined by ¢(a) = [o] then ¢ induces
an injection ¢ : G — Go. Hence we have |Gl < |Gol and |Go| < d(pp) =
(dp)? = [M : N].

From the irreducible decomposition of p, we know that id occurs in
pp with multiplicity m with m > k and so it follows |Gp| < d(pp) —k +1.
Hence we get |G| < [M : N] - (k — 1). O

As an application of the preceding theorem, we obtain that Galois
group G(M, N)) for an inclusion of factors is always a compact Lie group.
Now consider that what happens for an irreducible inclusion. Since
G(M,N)NInt(M) = U(N'NM)/T, we have G = G(M, N). The preced-
ing theorem says that |G(M, N)| < [M : N] for an irreducible inclusion
N c M.

For an inclusion N C M of Il -factors with [M : NJ] < 4, it is well
known that the principal graph and the dual principal graph are same
one of Coxeter graphs A,(n > 3), Don(n > 2), Eg, and Eg (see [5,6]). It
is a folk result among specialists that the Galois group for this inclusion
is closely related to Coxeter graphs. For example, if it is Da,(n > 3)
and Fg then G(M,N) = {id}. If it is A3 (vesp. Dy) then G(M,N) = Z
(resp. Z3).

But for a non-irreducible inclusion N C M of factors, we know that
in many cases Galois group G(M, N)) consists of inner automorphisms.
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PROPOSITION 3.4. When G(M, N) consists of inner automorphisms,
if a € Aut(M) with o(N) = N is outer then o|y is an outer automor-
phism of N.

PROOF. Suppose that o|y € Aut(NN) is inner and v € U(N) with
a|y = Adv. Then we have Adv*oa € G(M, N) and from the assumption,
Adv* o o is an inner automorphism. Since v* € U(M), a is also an inner
automorphism of M, which is a contradiction. O

The following lemma gives sufficient conditions guaranteeing that
G(M,N) C Int(M).

LEMMA 3.5. For a non-irreducible inclusion N = p(M) C M and irre-
ducible decomposition p = p1®pa - - -Bpn, ifdp1 # dp;, i = 2,--- ,n, and
G(M, p1(M)) = {id} then G(M, N) consists of inner automorphisms.

PROOF. For any a € G(M, N), by Lemma 3.2, we have [ap] - (o]
and

[ap1] @ - @ [apn] = [p1] @ - & [pn]-

Since (ap;(M))' N M = a(pi(M)Y N M) = a(C-1) =C-1, ap; is irre-
ducible and d(ap;) = dp;. By the assumption, we get [ap;] = [p1]. Since
[id) < [p171], We have [a] = [aoid] < [ap1p1] = [p1P1)- So [o] is an ir-
reducible sector with do = 1 appearing in the irreducible decomposition
of p1p1. This implies that a can be adjusted in G(M, p1(M)) = {id}
and so a is an inner automorphism. Therefore G(M, N) consists of inner
automorphisms. 0

As a typical example of a non-irreducible inclusion, we will consider
an irreducible pair of hyperfinite 1];-factors and downward Jones tower.

ExXAMPLE 3.6. Now we consider N = B;, C A = M for an irreducible
pair B C A of hyperfinite II;-factors with [A : B] < 4 and downward
Jones tower A D B O B; D By O ---." We have already noted its
Coxeter graphs. If this irreducible inclusion B C A has Galois group
G(A,B) = {id}, then from the Bratteli diagram and Lemma 3.5, we
know that G(A, B;) consists of inner automorphisms. If B C A has
Coxeter graphs Dan(n > 3), Es, An,(n > 4), and Fg then it is well
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known that G(A, Bi) = U(A N B;)/T. Hence G(A, By) consists of just
inner automorphisms of Ag.

But if B C A has Coxeter graphs Az and D4 then G(A, By) contains
outer automorphisms (see [6,12]).

In fact, if B C A has Coxeter graph A3 (resp. D) then B = A%
(resp. B = AZ). In general, we will get the following theorem for an
outer action on a factor.

THEOREM 3.7. For an outer action a of a finite group G on a II;-
factor A, if we consider a pair B = A“G) ¢ A of I'l;-factors and down-
ward Jones tower AD B D By D By D ---, then G(A,Bg),k=1,2,---,
contains outer automorphisms.

PrOOF. For an endomorphxsm p (resp. pr ) with p(A4) = B (resp.
pr(A) = By), we have pp = 3, .0 and px = (pp)™ or px = (pp)™p-
So we have piPE = (o)™ = Soeg2mag or piPE = (7). =
29€G(2m + 1)agy . In any case, we have anpr = px, Vh € G and
apn, € G(A, By), outer automorphisms of A, as desired. O

We now close this section with some properties on Galois groups for
Jones tower. For Jones tower N C M = My C M; C --- of II;-factors
and ¢ > 7 > 0, we have G(M;, M;_;) = G(M;425, M;+;). If we consider
the basic construction M® C M C M x G, where a finite non-abelian
group G acts outerly on I -factor M. Then we know that G(M, M)
and G(M x G, M) are not isomorphic. So G(M;, M;_;) and G(M;41, M;)
may not be isomorphie. '

Conversely, for an irreducible inclusion N C M of II-factors, the
Galois group G(M, N)(= G) acts outerly on M and we get II;-factors
MCand M xGwith NCc M cMcMxG.

4. The Galois group for a locally trivial inclusion

As an example of a non-irreducible inclusion with the smallest index,
we will consider “a locally trivial inclusion” arising from an automor-
phism.

Two pairs of factors N C M and B C A are called conjugate if there
exists an isomorphism ¢ from M to A satisfying ¢|n, an isomorphism
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from N to B. In this case, we get G(M,N) = ¢ 'G(4, B)¢, which
means that Galois groups are conjugacy invariant.

For an irreducible pair of I1;-factors and an automorphism 8, we first
give a sufficient condition in order that 8 can be adjusted to an element in
the Galois group. The proof of the next proposition is a straightforward

computation and left to the reader.

PROPOSITION 4.1. Let N C M be an irreducible pair of 11;-factors
and 0 an automorphism of M. If there exists a non-zero x € M such that
z0(y) = yz, Yy € N, then 6 can be adjusted to an element in G(M, N).

Note that for an inclusion of II;-factors with Jones’ index (M : N] <
4, it is an irreducible and its Galois group is isomorphic to {id},Zs or
Zs3. So it is natural to consider an inclusion N C M of II;-factors with
[M:N]=4and NNnM =CaC.

From now on, we shall determine the Galois group for the following
inclusion N C M arising from an automorphism a € Aut(P), where P
is hyperfinite II;-factor.

T 0
N:{(O a(x)) | zeP}cP@Mz(C)zM.

For this inclusion, Jones’ index [M : N]=4and N'NM = C®C are
well known (see [12,20]). Moreover the complete list of subfactors with
index less than or equal to 4 of hyperfinite II;-factors was obtained (see
[18]). By standard tensoring technique, the sector theory is valid for this
pair N C M.

If we choose isometries v1,ve € P with vjv] + vovs = 1 and define

p(z) = vizv] + vaa(x)vs, = € P,
then we have p € End(P) with [p] = [id] ® [a].

Here two inclusions p(P) C P and N C M are conjugate via ¢ defined
by

o(z) = (levl levz) , z€P

V5TV UsTU2



On Galois groups 107

This isomorphism allows us to compute G(M, N).
If € G(P, p(P)) then we have [fp] = [p] and

[6] + [0a] = [id] + [a].

Since # and o are automorphisms of a factor P, [fa] is an irreducible
sector. Hence two cases occur. One is [0] = [a] and [fa] = [id] with
[@?] = [id]. The other is [0] = [id] and [#a] = []. For this pair N C M of
hyperfinite II;-factors, we are ready to prove the following two lemmas.

LEMMA 4.2.

(1) o cannot be adjusted to an element in G(M, N).
(2) If a is inner then G(M, N) is isomorphic to T.

PROOF.

(1) Suppose that o can be adjusted to an element in G(M, N). Then
[ap] = [p]. Since [pp] = 2[id] + [a] + [@], we have 2[o] < [app] =
[0p) and 2[a] < [pp]. So we get 4 = d(pp) > 2da+ 2da + 2d(id) =
6, which is a contradiction.

(2) If o is inner then [p] = 2[id]. So for a given § € G(M, N), [0p] =
[p] implies 2[f] = 2[id] and 6 is inner. Since N'NM = CaC, we
have

G(M,N) = G(M,N) 0 Int(M) = U(N' " M)/T = T. 0

Now we recall Connes outer conjugacy invariants p and v in [3]. Two
automorphisms a and 3 of a von Neumann algebra M are called outer
conjugate when [a] and [§] are conjugate in Out(M) = Aut(M)/Int(M).
For an automorphism o of M, we define outer period p(a) € N of @ and
Connes obstruction y(a) € C of a by {n € Z| a" € Int(M)} = p(a)Z
and a(u) = y(a)u, for some u € U(M) with oP(®) = Adu. Teruya and
Watatani determined the structure of lattices of intermediate subfactors
for this inclusion in [20]. But by applying sector theory, we can give
another proof of their theorem. More precisely, when p(a) = 2 and
7(e) = —1, there is no non-trivial intermediate factor of N ¢ M.

LEMMA 4.3.
(1) If p(a) = 2 then we have G(M,N) = Zs x T.
(2) If p(a) # 2 then we have G(M,N) = T.
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PROOF.
(1) If p(a) = 2 then for a given 6 € G(P,p(P)), we have [0] = [a]

(2)

and [o?] = [id).

Since P is a hyperfinite factor, we can choose vy, v2 in the fixed
point algebra P¢ (%’ P). By an inner perturbation of a unitary
w = %010} + e ®uyu3, ¢ € R, we may assume a® = id. Since
6 = Adu o o, for some u € U(P), we get Aduoap = p and

u(via(z)v] + vezvy)u* = vizv] + ve(T)v3.
By a direct computation, this follows viuvy = 0, viuve = €'Y,
viuv) = (viuve)* = e~ %, viuvy =0 and
u = e¥vv) + e ¥}, Y €R
So when outer period of a is 2, Galois group G(P, p(P)) is gen-
erated by

{Ad(e®v1v] + e~ vv3)|p € R}
U {Ad(e*¥v1v} + e ¥vovT) 0 aly € R}.

Hence equivalently, Galois group G(M, N) is generated by
el 0
{Ad ( . e—w) 6 €R)
0 e¥

which is isomorphic to Zg x T .
If p(a) # 2 then for a given 8 € G(P,p(P)), [6] = [id] and
[6a] = [@] hold.

So if we let 8 = Adu, u € U(P), then we get Aduop = p and
u(v1zv} + voa(z)vd)u* = vizv] + vea(z)vs. It is straightforward
to see that

U= ewvlv{ + e‘iwvgvg, Y €R,

and G(M,N) = G(P,p(P)) = T. O

By summing up the computation so far, we now conclude the following

result.
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THEOREM 4.4. In the above situation, o cannot be adjusted to an
element in G(M, N). When o? is inner, we have G(M,N)/G(M,N) n
Int(M) = Z and |G| = 2. When o? is not inner (or o is inner), G(M, N)
consists of inner automorphisms and |G} = 1.
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