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ESTIMATES OF CHRISTOFFEL FUNCTIONS
FOR GENERALIZED POLYNOMIALS
WITH EXPONENTIAL WEIGHTS

HAEWON JouNG

ABSTRACT. Generalized nonnegative polynomials are defined as the
products of nonnegative polynomials raised to positive real powers.
The generalized degree can be defined in a natural way. We extend
some results on Infinite-Finite range inequalities, Christoffel functions,
and Nikolskil type inequalities corresponding to weights W,(z) =
exp(—|z|*), & > 0, to those for generalized nonnegative polynomials.

1. Introduction and notation

We denote by N, R, and C, the set of positive integers, the set of real
numbers, and the set of complex numbers, respectively. R* denotes the
set of positive real numbers.

We denote by P, (n € N), the set of all real algebraic polynomials of
degree at most n.

The function

£2) = W [Tl - 1
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with r; € R, z; € C, and 0 # w € C is called a generalized nonnegative
algebraic polynomial of generalized degree

m

[~
-

aet
n = T .

j=1
We denote by GANP, the set of all generalized nonnegative algebraic
polynomials of degree at most n € R*.

Note that, here, n > 0 is not necessarily an integer. In fact, we assume
throughout this paper that n € R* unless stated otherwise.

In this paper we study generalized nonnegative polynomials restricted
to the real line. Using

2= 2" = ((z - 2)(z - 5))", zeR,

we can easily check that when f € GANP, is restricted to the real line,

then it can be written as
m

m
f:HPJTf/?, 0K PeP, reRY, Y ri<n,

Jj=1 Jj=1
which is the product of nonnegative polynomials raised to positive real
powers. This explains the name generalized nonnegative polynomials. Ob-
serve that if f € GANP,, with r; > 1 in its representation then one-sided
derivatives of f exist for all z € R with the same absolute value, thus,
|f'(z)| is well defined for all z € R. Many properties of generalized non-
negative polynomials were investigated in a series of papers (cf. [1-4]).

In what follows we denote by a, = a,(a) the Mhaskar-Rahmanov-Saff
number which is the positive solution of the equation

1
n= %/ antQ'(ant)(1 — t2)"2dt, neR*,
0

where Q(z) = |z|*, @ > 0. Explicitly,

1/
a, = a,(a) = (—) , neR"

where
27T ()

A = M)
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Now let 0 < p < oo. Then the generalized Christoffel function for
ordinary polynomials is defined by

N min [ PO )P

)‘n’p(me)_PgTEx/_w )P d, z€eR,neN,.

The generalized Christoffel function for generalized nonnegative polyno-
mials is defined by!

. oo W, ()P

W) = e [ L)
’ feGANP, J_o  fP(z)
We write gp(z) ~ h,(z) if for every n and for every z in consideration

gn(T)
< ,
hn(.'l,‘) S ¢y <00,

and g(z) ~ h(z), n ~ N have similar meanings.

dt, zeR, neR*

0<CIS

We denote by m(A) one-dimensional Lebesgue measure of aset A C R .
Finally, for each » € R*, the symbol [n] denotes the integer part of n.

There are many inequalities in conjunction with the weight W,(z) =
exp(—|z|*), a > 0, (cf. [5-12]). The majority of these inequalities, which
hold for ordinary polynomials, are expected to be true for generalized non-
negative polynomials. In this paper we extend some of these inequalities
to those for generalized nonnegative polynomials. For example, Mhaskar
and Saff [12, Theorem 2.7, p. 210] proved that

“ PW, "Loo(R)=“ PW, “L""([—an,a,.]) , PeP,,neN.
As an analogue, we show that
I fWa =@ =l fWe llz2(-anaa) » f € GANP,, n € RT.

We also find lower and upper bounds of Christoffel functions for general-
ized polynomials.

The rest of this paper is organized as follows. In Section 2, we state
our results. In Section 3, we give the proof of theorems.

2. Results

In this section we state the results which will be proved in Section 3.

ly=omega.
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2.1. Infinite-Finite range inequalities

In the theory of orthogonal polynomials for weights on the whole real
line, Infinite-Finite range inequalities are useful because they reduce prob-
lems over an infinite interval to problems on a finite interval. For ordinary
polynomials, Mhaskar and Saff [12, Theorem 2.7, p. 210] established, in
an asymptotic sense, best possible inequalities. They showed that

| PWy lleo®y=|l PWa ll1o(-anas)) » PEPa, mneEN.

Having read a preliminary draft of this paper, D. S. Lubinsky suggested
that we could also use the method of Mhaskar and Saff, to prove Infinite-
Finite range inequalities for generalized nonnegative polynomials. Using
this idea, we were able to extend Infinite-Finite range inequalities for
ordinary polynomials to those for generalized nonnegative polynomials as
follows.

THEOREM 2.1. Let € > 0. Let W,(z) = exp(—|z|*), a > 0.
If p = oo, then
| fWa llz=@y=ll fWa llz=(-anan) »
for all f € GANP,, , n € R*.

If0 < p < oo, then there exist positive constants C; and Cy so that,
whenever

e<neRY, >K,>C,, and

(log(n+1))2 —

5 = (Knlog(n+ 1))2/3

n
then

| fWa los@< (1 + (n+ )7 ) || fWa llo(can(rén) aniesa]) »
for all f € GANP,, .

From now on, the condition € > 0 appears in the statement of theorems
whenever Theorem 2.1, for 0 < p < 00, is used .

THEOREM 2.2. Let ¢ > 0 and d > 0. Let W,(z) = exp(—|z|*), a > 1.

Let
da,,

Sp = min{—,an} , neR*t
n
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If 0 < p < 0o, then there exist positive constants B* and C, such that for
all measurable sets A, C [-B*a,, B*a,] with m(4,) < s,,/2,

/ " oW < G /. P@WE(z)dz
~00 : TEAp

for all f € GANP, , e <n e R*.
If p = oo, then there exists a positive constant Cy, such that for all mea-
surable sets A, C {—B*a,, B*a,] with m(A,) < s,,

| fWa firo@S Co | fWa |zo(eBranBran)\An) »
for all f € GANP, , n € R*.
2.2. Lower and upper bounds for Christoffel functions

Christoffel functions play an important role in the theory of orthog-
onal polynomials. For ordinary polynomials the estimates of Christoffel
functions for W, appear in, for instance, |7, Theorem 1.1, p. 465]. The
following is a generalization for generalized nonnegative polynomials.

THEOREM 2.3. Let W,(z) = exp(—|z|%), @ > 1, and 0 < p < 00. Then
wng(Wai®) 2 Cop2W2(z), 2 €R, neRY,

and :
wn»P(Wa;x) < ’\[n}+1,p(Wa; 113) ’ rTe R) n e R*.

REMARK. If a > 1, there exist positive constants C} and C; depending
on p and a, such that

an '
Anj+1,0{Wa; ) < Cl;;Wf(fB) , el < Caay, .
(see, for example, [6, Theorem 7.4, p. 166] ).
2.3. Nikolskil type inequalities

THEOREM 2.4. Let W,(z) = exp(—|z|*), « > 1, and 0 < p < r < oo.
Then there exists a positive constant C(a,p,r) such that
1.1

. ” fWa "LT(R)VS C(a?p7 T) (g’) " fWa !iLP(R) ’
for all f € GANP,,, n € R*.

In the opposite direction we have
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THEOREM 2.5. Let € > 0. Let W,(z) = exp(—|z|*), @ > 0, and 0 <
p <1 < 0o. Then there exists a positive constant C(a, €, p,r) such that

| fWa @< Cla,e,p,7)(an)"~* || fWa
for all f € GANP,, , e <n € R*.

L7 (R) »

For ordinary polynomials, Theorems 2.4 and 2.5 can be found in, for
instance, {12, Theorems 6.1 and 6.4, pp. 228-231].

3. Proof of Theorems

To prove Theorem 2.1, we need the following lemma.

LEMMA 3.1. Let W,(z) = exp(—|z|*), @ > 0. Let 0 < p < co. Then
there exists C' > 0 such that

I fWa llzo@ < Cln + 127 || fWe [l ,
for f € GANP,, .
PROOF OF LEMMA 3.1. Let f € GANP,, and let £ be such that

HEWal®) > 5 | W lmwy
Suppose first that £ > 1. Then, by [3, Theorem 6, p. 246],
Il fWa llomy | fWe llLoge-14)
Wa(&) || £ lzeqe-14)
c(n + 1) PWo (&) || f llze(e-1.6
c(n + 1) 7P| F(E)Wa(8)]
(17| FWe lloeguy -

If £ < —1, the result follows similarly. If |¢] < 1, the result again follows
in a similar way, since W¥(z) is bounded in [—1, 1]. O

vV IV IV IV

v

In proving Infinite-Finite range inequalities for ordinary polynomials,
Mhaskar and Saff used the function

/ log |z — t|v(e; t)dt—l/\——i-log2+l
163

(>0, 2€0C),
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where v(a; t) is the Ullman distribution

1
«
vest) = % [ -y, (<),

and
N
* T 2 2{T(a/2)P
We state the properties of U, in the following lemma.

LEMMA 3.2. Let o > 0. Then
(i) Us(2) is even, continuous in C, and U,(z) = 0 for |z} < 1.
(i) As e — 07,
Ul(1+€) = —av2e + O(e).

(iii) As e — 0T,

Ug(1+¢€) = ~a g—? 2 + O(é).
(iv) zU.(z) is decreasing for z > 1.
PROOF OF LEMMA 3.2. See the proof of [10, Lemma 3.1, p. 71]. O
" Now we are ready to prove Theorem 2.1. _

Proor oF THEOREM 2.1. We distinguish two cases.

Case 1. p = 00.
Let f € GANP,, . Since log f is subharmonic function, we may apply [12,
Theorem 2.2, p. 208} to f as well. This idea is due to D. S. Lubinsky.
From [12, Theorem 2.2, p. 208], with a = a, and a suitable substitution,
we see that

(3.1) |F(@)Walanz)| <|| f()Walant) | 1o-1,1) exp(nUa(z)),
for f € GANP,, and |z| > 1.

Next, by [12, Theorem 2.6, p. 209], U,(z) < 0 for |z| > 1. Then, Theorem
2.1 follows from (3.1).

Case2. 0 <p < o0.
We closely follow the proof of [11, Lemma 7.4, p. 54]. By Lemma 3.2, we
have

(32) Ua(l + 77) ~ —773/2> 0< <7,
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and
UL +m) ~ =12 0<n<m.
Since zU/(z) is decreasing for > 1,
U(z) < —en’a™,  e214n, 0<n<m.

Integrating the above inequality, and using (3.2), we have, for z > 1 + 7,

0<77<"707
o) < e {4 1og (1))
(z) < 02{77 nlog { T

Using this, we have, if §, is given as in Theorem 2.1,

1/p
I, = {/ exp(npUa(m/an))da:}
lz|>an(1+4,)

< cy(n+1)"Heg/?,

for n > €, provided K, > C) for some large enough C; > 0.
Next, if f € GANP, and n > ¢, then we obtain, from (3.1),

| fWa || (12 an+62))

SII fWa ”Lw([—aman]) In,p
< (n + I)CA_CZK" " W ”L"(R) ’
by Lemma 3.1. If
264

Kn_>_—a nZG,
C2

then we have

| FWa etz anarann < (m+ 17 || fWa (o)

hence, Theorem 2.1 follows. O

To prove Theorem 2.2, we need lemmas which are the consequences of
[2, Theorem 4, p. 258]. First we restate [2, Thecrem 4, p. 258].

Let
GANP,(s) & {f € GANP, : m({z € [-1,1] : f(z) < 1}) > 2 — s},
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where 0 < s < 2. Then there exists an absolute constant C such that
(3.3)

f(z) <exp (C’n-min{ﬁ,ﬁ}) , 0<s<1l, -l<z<1,
for all f € GANP,(s).

It is easy see that (3.3) implies the following lemma.
LEMMA 3.3. Let0<éd<1landd>0. Let
Sp = min{é,l} , neR.
n
Then there exists a positive constant C* depending on § and d such that

| |xlrr;ala_céf(ﬂf:) <,

for all f € GANP,(s,).
We can rewrite Lemma 3.3 as follows.

LEMMA 34. Let0<d<1andd>0. Let
Sp = min{é,l} , neRt
n
Then there exists a positive constant C depending on § and d such that

m ({y €[-L1j:Cf(y) 2 Mlgf;w_caf(w)}) > Sn
for all f € GANP, ,n € R*.

PROOF OF LEMMA 3.4. Let C* be as in Lemma 3.3. We show that

. C = 2C* satisfies Lemma 3.4. Assume that Lemma 3.4 is not true with
this C = 2C*. Then there exists f € GANP,, such that

m ({y €[-1,1]1:2C" f(y) < l1r|15;,)(5f(ac)}) >2=58,.
Define the function g by
g=2C"f/ max f(z).

lz]<1-4
~ Then g € GANP,(s,) and

’wrga{}_((sg(:z) =2C" > ",
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which is a contradiction to Lemma 3.3. O

As a consequence of Lemma 3.4, we have

LEMMA 3.5. Let 0 <d <1 andd > 0. Let
snzmin{—q,l}, ne€R".
n

Then there exists a positive constant C' depending on § and d such that
for all measurable sets D, C [—1,1] with m(D,) < s, ,

I f llzo-1460-n< C Nl £ lzoo(=1,\D0) 5
for all f € GANP,, ,n € R*.

Now we are ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Lete > 0and d > 0. Let W,(z) = exp(—|z|®),
a>1. Let

da
S, = min {—",an} , neR.
n
We distinguish two cases.

Case 1. p = 0o. By Theorem 2.1, there exists B* > 1 such that

(3.4) | fWa llo@< 2 || fWa llr(-BanBra) » (0 <P < 00),

for f € GANP,, , n > €. By [6, Theorem 1.1, p. 150], there exist polyno-
mials S,, € P, , m € N, and a constant c* > 0 such that

Sm(z) ~ Wa(z), for jz| < c*ap, -

Choose k > 0 so that ¢'k/* > B* and for each n € R*, let N = [kn].
Define Sy = 1.
Then we have

Sn(z) ~ Wy(z), |z| £ B'a,.

Let f € GANP, . Since B* > 1, by Lemma 3.5, there exists a positive
constant ¢;, such that for all measurable sets A, C [—B*a,, B*a,| with
m(A;,) < s,

| £SN o (-ana) S 1 || FSN llo((-Bran,Branl\AR) -
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Then by Theorem 2.1, we have

I W llzo®) = | fWe llzo(-BranBan)
(3.5) = || fWa llzo(-anan)
ez | FSN lzoo(-aman)
¢s || FSN N oG- Bran, Bran)\an)
ca | fWe ”L""([—B‘an,B"an}\An) .

VAN VAN VAN

Case 2. 0 <p < 00.
Let f € GANP,,n > €. Let

L(f) = {= € [-B'an, Bau] : S (c)W2(2) 2| fWe [
Then by (3.5), m(I,(f)) > sp.

Let A, C [=B*an, B*a,] with m(A,) < s,/2 and let A, = L(f) \ A,.
Then m(A,) > s,/2, hence,

/A fA@)Wi(z)dz < _/A W W im0y 5menp) 92

< & /A (@) W2 (2)de

-B’an,B‘a,.])} :

S Cg lz|<B*an f”(w)Wg(x)da: .
¢ D
This together with Theorem 2.1 gives

/.oo fPz)WP(z)dz < c5 /zlsmw P)WE(2)dz

[e o} mgAn
for all f € GANP,,, n > . 0

Next we prove Theorem 2.3.

PROOF OF THEOREM 2.3. Let W,(z) = exp(—|z|*), @ > 1, and 0 <
p < 0o. By [6, Theorem 1.1, p. 150], there exist polynomials S,, € P,,,
m € N, and a constant ¢; > 0 such that

S(z) ~ Wa(z),  for o] < cram .

Choose k > 0 so that ¢;k/* > 2 and for each n € R*, let M = [kn].
Define S = 1.
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Then we have
(3.6) Su(z) ~ Wo(z), |z| £ 2a,.
Then by (3.6), for |z| < 2a,,
wnp(Wa; T) - / 2 | () Wa(B)IP
np\"War2) REANZAACANT N
Wo@) > sediie, ), @ Wald P
2
: | f()Su ()P
> f e A
= recane, / 17 (2)Su ()P
e pr(t)

1m
FEGANP..y J g, fP(T)

fP(t)
> ¢ inf dt .
= 0 GANP,.y /_1 ()
By [4, Theorem 3.1, p. 114}, if |z| < a,,
bR at > % e

fGGANP,H.M -1 fp(2an)

dt

>

hence,
(3.7) wnp(Wai @) 2 s WE(2),  la] < an.
By Theorem 2.1, we have
| fWe i@y <N fWa llz=(-anan)s  f € GANPy.

By the definition of w, ,(W,;z) and (3.7), we have, for all f € GANP,,

N fWe llzowy < I FWa llzo(-anan)

n

(3-8) < & (a—); | fWa |l o),

n

therefore, (3.7) holds for all z € R.
For the upper bound, we have

; © fP()WE(t
wnp(Wei 7) = feé%\rp /_ —%cg,%gdt
we [ EOPWIR)

< —_——
s 2 /_ O

- }\[n]+1,p(Wa; .'I)),
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hence, Theorem 2.3 is proved. (]

PROOF OF THEOREM 2.4. Let W,(z) = exp(—|z|*), @ > 1;and 0 <
p <r < oo. For r = 00, we already proved Theorem 2.4 - see (3.8). Now
suppose that 0 < p < r < 0o. Then for f € GANP,, ,

| Wl = [ : @ Wal@) 1/ () Wa(z)Pd
- < l‘.f‘dcz ”;;Z%R)” fWe ”i;(R)

-
n\r- —
< e(2) 1Ml W Py

n

hence, Theorem 2.4 follows by taking pth root. a

PROOF OF THEOREM 2.5. Let ¢ > 0. Let Wy (z) = exp(—|z|*), @ > 0,
and 0 < p<r <oo. Let
s=_>1 and o =— .
P s—1

Let f € GANP, , n > e. Then, by Theorem 2.1 and Hélder’s inequality,
we have

[ it@m@re < o [ s@weiaypas

caan

€28n % C2an ;1’
< ( / If(w)Wa(w)l‘”dw) ( / da:) \,
—C2Qn \V ~CaQn

_ ( [ |f<z)‘wa<x>rdw)£ (2030,

C2an

< CS(an)L:E | fWe ”pr(n) . .
Taking pth root yields Theorem 2.5. O
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