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ISOMORHPHISMS OF
(4k — 1)-DIAGONAL ALGEBRA Algci#—Y

TAEG Young CHoOI

ABSTRACT. In this paper, we introduce the (4k — 1)-diagonal algebra
Al gl)(o‘ék"l) and investigate the necessary and sufficient condition that
. y (4k—-1) — .

isomorphisms of AlgLy are quasi-spatial.

1. Introduction

The study of reflexive, but not necessary self-adjoint, algebras of
Hilbert space operators has become one of the fastest growing specialties
in operator theory [4,5,6]. Recently, such algebras have been found to be
of use in physics, in electrical engineering, and in general systems theory.
Of particular interest to mathematicians are reflexive algebras with com-
mutative lattices of invariant subspaces. In [2], the 7-diagonal algebra
Algﬁg) which is reflexive algebra, is introduced. And we investigated
the necessary and sufficient condition that isomorphisms of Algﬁg,) are
quasi-spatial. In this paper we study isomorphisms of a certain reflexive
algebra Algﬁgf,k-l) which is a generalization of AlgL‘g,).

First we introduce the terminologies used in this paper. Let H be
a complex separable Hilbert space. A subspace lattice £ is a strongly
closed lattice of orthogonal projections on H, containing 0 and 1. If £
is a subspace lattice, AlgL denotes the algebra of all bounded operators
on H that leave invariant every orthogonal projection in £. AlgL is a
weakly closed subalgebra of B(H), the algebra of all bounded operators
on H. Dually, if A is a subalgebra of B(#), then LatA is the lattice of all
- projections invariant for each operator in 4. An algebra 4 is reflexive if
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A = AlgLatA and a lattice £ is reflexive if £ = LatAlgL. A lattice L is
a commutative subspace lattice, or CSL, if each pair of projections in £
commutes; AlgL is then called a CSL-algebra. An algebra A is (4k - 1)-
diagonal if there exists a countable partition {E;} of H so that every
A € Ais block (4k—1)-diagonal with respect to the sequence E, Eo, - - .
Let £; and £; be commutative subspace lattices. By an isomorphism
@ : AlgL; — AlgLs we mean a strictly algebraic isomorphism, that is,
a bijective, linear, multiplicative map. An isomorphism ¢ : Algl; —
AlgL, is said to be spatially implemented, or simply spatial, if there is
a bounded invertible operator T such that ¢(A) = TAT ! for all 4 in
AlgL,. A slightly weaker condition is that ¢ be quasi-spatial; in this
case we drop the assumption that T be bounded but we require that
T be one-to-one with dense domain D, that D be an invariant linear
manifold for AlgL;, and that

Q(A)Tf = TAf

for all A in AlgL; and f € D. Any quasi-spatial isomorphism is auto-
matically continuous in the norm topology [7]. If z;, =2, -+, Zm, are
vectors in some Hilbert space, we denote by [z1, Z2, - - , Tm] the closed
subspace spanned by the vectors z1, 2, -+ , ZTm.

Let H be infinite dimensional separable complex Hilbert space with
an orthonormal basis {e;,e2,---} and let k be some natural number.
Let Lg‘,k_l) be the subspace lattice of orthogonal projections generated
by {le2i—1), [e2i, €2i—2k+1,€2i—2k+3, -+ »€2it2k-1] : & = 1,2,---}, where
ep = 0if p < 0. Then Algﬁgik—l) is a (4k — 1)-diagonal algebra. If
k = 1, then the algebra Algﬁ((,g) is tridiagonal, which was introduced by
F. Gilfeather and D. Larson [5], and isomorphisms of this algebra are
quasi-spatial (7). If k > 2, then isomorphisms of Algﬁgik_l) need not
be quasi-spatial [2]. In this paper we will investigate the necessary and

sufficient condition that isomorphisms of Algﬁfﬁ,k_l) are quasi-spatial.

2. Isomorphisms of Algﬁc(,ik_l)

Subspace lattices £ need not be reflexive however, commutative sub-
space lattices are reflexive [1]. Since the lattice £5%=1 is commutative,
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it is reflexive CSL..If we put Algﬁgikul) = A, then LatAlngg‘ék—l) =
£g§k_1) and so LatA = [,f;f,k"l). From this we have the following theo-
rem. R
LEMMA 2.1. An algebra Algﬁgk‘l) is non-self-ad joint-‘reﬂexive CSL-
algebra.

Let ¢ and j be two nonzero natural numbers. Then Ej; is the ma-’
trix whose (¢, j)-component is 1 and all other entries are zero. If p:
Algﬁgik*l) - Algﬁff,k_l) is an isomorphism such that p(E;;) = E;; for
alli=1,2,---. then p(Eij) = p(Ei,;EijEjj) = Eiip(Eij)Ejj- From this
we have the following theorem.

THEOREM 2.2. Let p: AlgAC(‘“c 1 Algﬁ(‘”c D be an isomorphism
such that p(E;) = Ey for all i = 1,2,--- . Then there exist nonzero
complex numbers v;; such that p(E;;) = v E;; for all Ey; in AlgLEFD,

THEOREM 2.3. Let p: Algﬁgék b Alg[,gék Y be an isomorphism

such that p(EM) = E" for all i = 1,2,--- and let p(Eij) = 'YijEij,
vi; # 0, for all Ey; in AlgCV. 1r TpaTse = Yot for all p,q,s
and t with Epq, E, Epe and Fyg in AlgL8FY then there is a diagonal

(possibly unbounded) operator T defined on the (non-closed) linear span
D of the basis vectors such that p(A)T'z = TAx for all £ € D and

A€ AlgrldY,
PROOF. Let T =diag(ty,ts,- ), where

tl = 1)
ty = 71—21a
-1 i—~1
t2i-1,2i-1 = H ’72j+1,2j(H 72;;—1,23')—1,
j_l j—l
2101 = H Y25+1, 23([[ V2j~1, 21)

_7«1

foralli=1,2,---. Let A= [aij] be in Algﬁgék‘l). Then comparing the
components of p(A)T with those of TA we have p(A)T = TA. O
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THEOREM 2.4. Let p be as in Theorem 2.3. If p is quasi-spatially
implemented by some one-to-one operator T with dense domain D, then
T is diagonal and YpqYst = Ypt'Vsq for all pairs (p, q), (s,t), (p,t) and (s, q)
with Epq, Egt, Ep and Eq in Algﬁg?,k_l).

PROOF. Let T = [t;;] be a one-to-one operator with dense domain
D such that p(A)Tz = T Az for all A in Algﬁggk—l) and z € D. Since
p(E:;)T = TE;; and p(Ey;) = Ej; for alli = 1,2, -+, we have E;T =
TE;;. So t;; =0 for all 4,35(i # j) and ¢;; # 0 for all s = 1,2,--- . Hence
T is diagonal. Let T = Z;’:l tiiEii and p(Eij) = ’)’.,;jEij for all E,;j in
Algﬁgik_l). Then for any p, q(p # q) with Epq in Algﬁgk_l),

P(Epg)T = YpqEipq (Z tiiEii) = TralagEpq

i=1

and
TE,q = (Z ti,-E,-,-> Epq = tppEpq.
=1

Since p(Epq)T = T'Epq, We have Ypatqq = tpp. Hence ypq = typt . If By
is in Alg[,gik_l), then vs¢ = tosts; Hence v,q7st = Ypt7sq for all p,g, s
and t with Epg, Est, Ept and E,q in AlgLs =, 0

LEMMA 2.5 [5]. Let £; and L2 be commutative subspace lattices on
Hilbert spaces H; and Ha,respectively, and suppose that ¢ : AlgLy —
AlgLo is an algebraic isomorphism. Let M be maximal abelian self-
adjoint subalgebra (masa) contained in AlgL;. Then there exists a
bounded invertible operator Y : ‘H; — Hs and an automorphism p :
AlgLly — AlgL, such that

(i) p(M) = M for all M in M and

(ii) p(A) = Yp(A)Y ! for all A in AlgL;.

LEMMA 2.6. Let ¢ : Algﬁf,ik—l) — Alg[,gik_l) be an isomorphism.
Then there exists a bounded invertible operator Y in B(#) and an iso-
morphism p : Algﬁgékgl) — Algﬁgék_l) satisfying p(E;;) = E;; for all
i=1,2,--- such that o(A) = Yp(A)Y ! for all A in Algﬁg‘ék—l).
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PROOF. Let M = (Azgcg‘é’““,”)n(Alng‘é’“‘”)*. Then M is a masa
of AlgLS Y and B isin M for all i =1,2,--- . By Lemma 2.5, there
exist a bounded invertible operator Y in B(’H) and an automorphlsm :
p: Alg£(4k b Alg£(4k b satisfying p(Em) =E; forall i =1,2,-
such that p(A) = Y p(A)Y ! for all A in Algls" V. : m

LEMMA 2.7. Let ¢, p and Y be as in Lemma 2.6 and let Y = [y;;].
Then we have the following.

(1) y2i2j-1=0foralli,j=1,2,- : ;

(2) Ifygie; # 0, then yor 01 =0 for aII positive mt;egers k andl such
that k # 4,1 # 5.

(3) If yas—12j—1 # O, then yox_1,21-1 = 0 for all positive integers k
and | such that k # 1,1l # j.

PROOF. Let o(A) = [bi;] and p(A) = [as;] be in AlglLs ™ and let
Y = [yi;]. Then from Lemma 2.6, ¢(A)Y = Yp(A). Comparing the
components of p(A4)T with that of T'p(A), we have above result. O

From Lemma 2.7, we have the following lemma.

LEMMA 2.8. Let ¢ : Algﬁgﬁk‘l) — Algﬁgék‘l) be an isomorphism.
Then for all j = 1,2,---,

P(B2j-1,2j-1) = Bap-1,2p-1 + 20, 2p-1,21Ep-1,21

o(F2j,25) = Bagag + 2 @2m-1,2¢F2m—1,2¢
for some p,q = 1,2,--- and some complex numbers azp._.]_ 2l Ogm—1.2q
with Bap_1,21, Bam—1,2¢ in Alg8FD),

With the similar proof as Theorem 3.6 and Theorem 3.8 in [4], we
can get the following theorem.

LEMMA 2.9. Let ¢ : AlgrlF=1 Algﬂggk“l) be an isomorphism.
Then there is nonzero complex numbers B;; and complex numbers a;;
for all i, j(i # j) with E;; in AlgL$¥" such that

O(E2p-1,2p-1) = Eop-1,9p-1+ 2, a2p-12F2p-1,2;,
¢(Enq,29) = Eag0q = 205 025-1,29F25-1,2 and
@(E2p—1,2q) = ,sz—l,2qE2‘p—1,2q for all Egp;172q in Algﬁ(o?,k—l).
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LEMMA 2.10. Let ¢, p and Y be as in Lemma 2.6. Then Y is in
(4k—1)
Algls .

PROOF. Since p(E3;_12i—1)Y = Y p(E2;-1,2:-1), we have

<E2i—1,2i—1 + Z 021—1,2q> Yi;] = [Yij]E2i—1,2i-1-
q

Hence ym 2;-1 = 0 for all m with m # 2 — 1. Since p(F2;2;)Y =
Y p(E2;,2;), we have

<Ezj,2j +> azp—1,2j> [Wis] = [yij] E2j25-

P

Hence y2j,» = 0 for all m with m # 2j and yak12j+m,2; = 0 for all
m,j = 1,2,---. Since ¢(E11)Y = Yp(E11) and ygr 2k+2: = 0 for all
1=1,2,--- ,kand t =1,2,--, we have yj og+2t =0 forallt =1,2,--- .
Since Lp(E33)Y = Yp(E33) and Y21+2,2k4+2t = 0 for all | = 1,2,- . ,k

and t = 2,3,---, we have y3oxto¢ = 0 for all ¢ = 2,3,---. Similarly
Y2i—1,2k+2: = 0 for t =4,5+1,--- . Hence Y is in AlglSsFD. O

If we summarize Lemmas, then we can get the following theorem.

THEOREM 2.11. Let ¢ : Alg/lgék_l) — Algﬁgk_l) be an isomor-
phism. Then there is a bounded invertible operator Y in Al gﬁg‘ék_l) and
an isomorphism p : Algﬁg‘ék_l) — Algﬁc(,?,k_l) satisfying p(E;;) = E;; for
alli=1,2,-- such that p(A) = Yp(A)Y ! for all A in AlgL 1.

From Theorem 2.4 and Theorem 2.11, we have the following theorems.

THEOREM 2.12. Let ¢ : Algﬁggk_l) — Alg[:((,f,k_l) be an isomor-

phism. If ¢ is quasi-spatially implemented by T, then T is an one-to-one
operator of the form T = ) t;;E;; for all i, j with E;; in Algﬁgik_l).
LEmMMA 2.13. Let ¢, p and Y = [y;;] be as in Theorem 2.11. Let
P(E2p-1,2q) = Yop-1,2¢F2p-1,2¢ and ¢(E2p_1,2q) = B2p—1,2¢F2p—1,2 for
all Enp_1 29 in AlgLS ™. Then Bap1q = Yag2q¥2p—1,2p—172p—1,2q-
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PROOF.. Let Egp_l 2g € Alg£(4k'1). Comparing the (2p — 1,2¢)-

component of Y(Ep-1.04)Y with that of Y p(Eazp_1,24); we have

ﬂ2p—1,2qy2q,2q = Y2p-1,2q¥2p—1,2p—1-

Hence : '
=1 s
f32p—_~1,2q = ¥Yag,2¢Y2p—1,2p-172p—1,2¢-
O

LEMMA 2.14. Let P Algﬁ“k 1 Algll“k b be.an .nsomorphzsm
and p : AlgeF1 — AlglLids~ D an isomorphism satisfying p(Ey;) = w
for all i = 1,2, - such that (A) = Yp(A)Y ! for all A in Al_gL’,(‘”c B
Then p-is quas;-spaztxal if and only if ¢ is quas:—sp&tzal

PrOOF. Suppose that p is quasi-spatial. Then there is an invertible
operator T' defined on the linear span D of the basis vector such that

p(A)Tz = TAz for all z in D and A in AlgL Y. Since Y lp(A)Y =
p(A), we have Y=2p(A)Y Tz = T Az for all z in D and A in AlgCSF Y.
Hence p(A)Y Tz =YT Az for all z in D and A in Algﬁ{‘m"l). O

THEOREM 2.15. Let ¢ : AlgL¥F ™V 5 MgV be an isomor-
phism and (Ey;) = ;B for all 4,j(i # j) with Eij in AlgliY.
Then BpeBst = BpiBsq for all p,q,s and t with Eyq, Egs, Epy and E,, in
Alg £(4k Y if and on]y if @ Is quasi-spatial.

PROOF. Suppose that e Algﬁgék—'l) Alglfgék-l) is an isomor-
phism such that ©(A4) -—-~‘Yp(fv1‘)¥"1 for all A in Alg$%=D and A Ei)
= E;; for all i=1,2,- Then there exist nonzero complex numbers
7vi; such that p(E;;) = fyzg i for all 4,5(% # 3) with E;; in Algﬁ(%'”l)
By Lemma 2.13, Bop-1,3; = Usy2q¥2p-1,2p-172p-1,29, Where ¥ = [yg].
Hence By¢Bs¢ = BpiBsq for all p,q,s and t with Epg, Eg, By and B,
in AlgLMk* ) if and only if Ypqvst = YpeYsq for all p,g,s and t with
Epq, Est, By and Esq in AlgcsY 1f and only if p is quasi-spatial if
and only if ¢ is quasi-spatial. O
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THEOREM 2.16. Let T be an invertible operator of the form T =
S ti;E;j for all i, with Ey; in AlgLSe™"). Then TAT-! € AlgLl ™"
for all A in Algﬁ((;l,k_l) if and only if

sup {

PROOF. Suppose that TAT! € AlgLE* for all A in AlgcD.
Let A be the matrix whose (2n — 1,2n + 2¢ — 2)-component is 1 for all
positive integers n and all (1 < ¢ < k) and all other entries are 0. Then
A € AlgLE D and so TAT ! € AlgLE* V. Now the (2n — 1,2n +
2i — 2)-component of TAT ! is tzﬂi’:; ::;;_2 for all positive integers
n and all (1 < ¢ < k). Hence ,

sup {

Let B be the matrix whose (2n+2i—1, 2n)-component is 1 for all positive
integers n and all (1 < i < k) and all other entries are 0. In the same
way we can show that

sup {

Let C be the diagonal operator whose (2n—1, 2n—1)-component is 1 and
(2n, 2n)-component is 2 for all positive integers n. Then C' € Algﬁgk_l)
and so TCT 1 e Algﬁgék_l). Since TCT ! is the matrix whose

(1) (2n,2n)-component is 2
(2) (2n —1,2n — 1)-component is 1
(3) (2n —1,2n + 2 — 2)-component is ~22=120%2=2_ for ] < § < k

tan4+2i~2,2n+2i—2

(4) (2n + 2i — 1,2n)-component is W for1<i<k

(5) all other entries are 0 for all positive integers n,

tan—2it12n | |f2n+2i—12n
ton,2n ton,2n
1<i<kn=12---} < oo

ton42i-1,2n42i—1
t2n,‘2n

ton—2i+1,2n—2i+1

)

t2n,2n

ton—12n—-1

n=12--. andlgigk}<oo.

ton+2i—22n+2i~2

ton+2i—12n+2i—1

n=12.-. andlSiSk}<oo.

t2n,2n
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we have
ono19n42i tont2i- . .
Sup{ 2n-tont2iz2 | tamt2im12nl g g 10 L cooo)
ton+2i-2,2n+2i-2 ton,2n
Thus
sup { ton—2i+1,2n—2i+1| |tant2i-12nt2i-1| |t2n—2it1,2n| |t2nt2i-12n
t2n,2n t2n,2n t2n,2n t2n,2n

:1<i<kn=12---}<o0.

Conversely suppose that
sup {

Let A = [a;5] € Algﬁg‘ék‘l). Then TAT 1! has the matrix representation
whose

ton—2i4+1,2n | |t2n+2i-12n
ton 2n ton,2n
1<i<kn=12,---} <o0.

ton+2i-1,2n+2i-1
ton,2n

ton—2i41,2n-2i+1
t2n,2n

(1) (n,n)-component is ann
(2) (2n —1,2n + 2i — 2)-component is

_1 s\
tont2i-2,2n+2i—2(t2n—1,2n+2i—2(A2n+2i-2,2n+2i~2 — G2n—1,2n—1)
+ton—1.2n-102n-1,2n+2i~2)

(3) (2n + 2i — 1, 2n)-component is

—1
ton an(ton+2i-1,20(02n,2n — G2n+2i-1,2n+2i~1)
+ton+2i—1,2n42i-102n+2i—1,2n)

(4) all other entries are 0

for all positive integers n and 1 <7 < k.

Let By be the diagonal operator whose {r,n)-component is a,, for all
positive integers n. Let Bj; be the matrix whose (2n — 1,2n + 2i — 2)-
component is

t2n—1,2n+2i—-2(a2n+2i—2,2n+2i~—2 - a2n-1,2n——1)
ton+2i—2,2n+2i~2
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for all positive integers n and 1 < ¢ < k and all other entries are 0 and
let B] ; be the matrix whose (2n — 1,2n + 2¢ — 2)-component is

ton—1,2n—102n—1,2n+2:-2
lon+2i—2,2n+2i—2

for all positive integers n and 1 < ¢ < k and all other entries are 0. Let
By ; be the matrix whose (2n + 2¢ — 1, 2n)-component is

ton+2i—1,2n(02n,2n — G2n+2i—1,2n+2i—1)
t2n,2n

for all positive integers n and 1 < 7 < k and all other entries are 0 and
let Bj ; be the matrix whose (2n + 2i — 1,2n)-component is

ton42i—1,2n+2i—102n+42i—1,2n
t2n,2n

for all positive integers n and 1 < ¢ < k and all other entries are 0. Then
TAT' = By+ Y% \(Byi + B} ; + Ba; + B ;). By the hypothesis,

sup {

ton—12n-1 ton42:i—1,2n

b
ton4+2i-2,2n+2i—2

ton—1,2n42i—2

) ?

ton+2i—2,2n+2i—2 ton,2n

lon4+2i—1,2n4+2i—1

11<i<kn=12,---} < o0.

t2n,2n

Since

sup{|@2n42i—2,2n+2i—2 — @2n—1,2n—1/, |G2n,2n — Q2n+2i—1,2n+2i—1]
11<i<k,n=12---} < o0,

Bo, By, By ;, Bz,; and Bj; belong to AlgLS* ™ for all i(1 < i < k).
Thus TAT ! belongs to AlgLiaF—1). 0
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THEOREM 2.17. A map ¢ : Algﬁgk'l) — Alg[lgék“l) is an isomor-
phism such that ¢ is implemented by a (possibly unbounded) T, that is
o(A) = TAT~V if and only if

sup {

\

ton+2i-1,2n42i—1
t?n,2n

ton—2i+4+1,2n=2i+1
t2n,2n

ton—2i+12n| |f2n+2i—1.2n |
t2n,2n t2n,2n
1<i<kn=12---} < o0

PROOF. Suppose ¢(A) = TAT™! for some invertible operator (not
necessary bounded) T = [t;;]. By Theorem 2.12, T = [t;;] is a matrix of

the form T = ) t;;F;; for all 4, j with E;; in AlgL$ ™. From Theorem
2.16,

sup {

Conversely, suppose that T = Y ¢;; E;; for all E;; in Algﬁgék'l) satisfy-
ing

sup {

Define ¢ : AlgLEF Y — Alge Y by o(A) = TAT-! for all A in
AlgLE Y. Then TAT ! is in AlgLE Y for all A in AlgL Y and
so ¢ is well define. It is clear that ¢ is an isomorphism. 0

ton+2i—1,2n+2i—1
t2n,2n

ton—2i4+1,2n~2i+1
t2n,2n

ton-2i+1,2n] |tont2i-12n I
ton,2n lon,2n
1<i<kn=12--}<oo.

ton—2i41,29n—2i+1
t2’n,2n

ton—2i+1,2n| |t2n+2i-12n |
t2n,2n t2n,2n
1<i<kn=12-}<oo.

tont2i—1,9n+2i—1 }
t2n;2n
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