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A SIMPLE ALGEBRA GENERATED BY INFINITE
ISOMETRIES AND REPRESENTATIONS

Eul-CHAI JEONG

ABSTRACT. We consider the C*-algebra O generated by infinite
isometries s1, s2, - - - on Hilbert spaces with the property > 7", s;87 <
1 for every n € N. We present certain type of representations of C*-
algebra Ooo on a separable Hilbert space and study the conditions for
irreducibility of these representations.

1. Introduction

Joachim Cuntz showed in 1977 that for each N = 2,3,---,00 the
C*-algebra from a system N orthogonal isometries, forming a partition
of 1, is separable and simple [4]. The existence of such infinite simple
C*-algebra was shown by J. Dixmier in 1964 [6]. It is now called the
Cuntz algebra. Recall that the Cuntz algebra Oy, N = 2,3,--- is the

C*-algebra generated by isometries s1, 2, - - , Sy, satisfying
N

(1.1) S:Sj = 61']'1 and Zsis;‘ =1
i=1

for 4,5 € {1,--- ,N}. The C*-algebra O« is the C*-algebra generated
by isometries s1, 89, - - - , satisfying

n
(1.2) s;8; = 0;;1 and Zsis’{ <1,

=1

for every n € N and i,5 € N. These C*-algebras are the famous ex-

amples whose representations are “bad”. A special type of representa-
tions of Oy, N for finite, on separable Hilbert spaces L2(R™) or L%(T™),

Received June 22, 1998. Revised September 14, 1998.

1991 Mathematics Subject Classification: Primary 47D30; Secondary 46145,
47D45, 47S50.

Key words and phrases: C*-algebra, irreducible representation, decomposition.



158 Eui-Chai Jeong

T = R/2nZ,n = 1.2,---, are known (e.g., [2], [3], [8],---). In a con-
nection between multiresolution wavelet theory of scale N and represen-
tation of the Cuntz algebra Oy, N for finite, the study of the decom-
position of representations, so called permutative representations (see
Definition 2.1), are recently developed. See [5] for multiresolution anal-
ysis from wavelets. Decomposition of this type of representations of
finitely generated C*-algebra has applications to

1. filter functions for multiresolutions from wavelet theory
2. limit problems in analytic number theory
3. multiplicity problems from noncommutative harmonic analysis.

See [2], [3], [4], and [7] in the references. However, representations of
O on a separable Hilbert space are not known in a particularly explicit
form. We will present permutative representations of the Cuntz algebra
Oco, which is similar to NV for finite, to see applications of the permu-
tative representations of O, in multiresolution analysis from wavelets,
and find the conditions for irreduciblity for these representations. This
problem is still left open in general. We will present examples; Example
3.6 for irreducible permutative representation, Example 3.7 for infinite
irreducible decomposition. We will also present that the answer is neg-
ative by showing the set € is not a measurable set, for application to
multiresolution analysis from wavelets under special condition, but we
rather get an example of infinitesimal coming from the permutative rep-
resentation of the Cuntz algebra O on L?(R). See the chapter 4 in
this paper. Unlike the case N for finite which has only finite irreducible
subrepresentations coming (2.9), the permutative representation of the
C*-algebra O, are decomposed into either finite or infinite irreducible
subrepresentations. Of course, the C*-algebra O, is also simple and
separable [4].

2. Permutative representations

We will say that ¢ is a non-degenerated representation of C*-algebra
O, With a slight abuse of terminology, if a representation ¢ satisfies the
condition Zke z 9(sks;) = 1, where the sum is in the strong operator
topology.

DEFINITION 2.1. A representation of the C*-algebra O, on a sepa-
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rable Hilbert space H is said to be permutative if there is an orthonormal
basis e,z € X for H such that

(2.1) o(sk)es € {en :n € X},

where X is a generic countable set for an orthonormal basis with k € Z
and z € X.

Since the Cuntz relations for O, on a separable Hilbert space are
equivalently described as the C*-algebra generated by infinitely many
isometries whose ranges are mutually disjoint and the union of these
ranges is the whole space if we assume that > .., ¢(sxs;) = 1 with
the sum in the strong operator topology. From the definition of the
permutative representation, we can derive a function system ox,k € Z
for C*-algebra O, coming from

(2.2) #(sk)ez = Eoh(x)

where o) are the maps from index set X of an orthonormal basis for a
separable Hilbert space into itself. The Cuntz relations in (1.2) imply
that

(2.3.a) oy : X — X is injective, k € Z
(2.3.b) oe(X)Noy(X)=¢fork #1
(2.3.¢) Ukezok(X) =X

where | € Z. We can modify these formulas with N for finite instead of
Z. Conversely, if the maps oy, k € Z, satisfy conditions (2.3.a), (2.3.b),
and (2.3.c) one can verify that the operators ¢(sx) on a Hilbert space
H defined by (2.2) satisfy the Cuntz relations (1.2) N for infinite. In
fact, the condition (2.3.a) is coming from the definition of the isometrie
sk, the condition (2.3.b) is associated with the property sjs; = &;;1,
and the condition (2.3.c) is associated with .., #(sksz) = 1. Our
task finding a permutative representation of the Cuntz algebra Oy, on
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a separable Hilbert space H thus reduces to finding a countable index
set X for an orthonormal basis of the Hilbert space and a system of
functions o4 : X — X, k € Z, satisfying (2.3.a), (2.3.b), and (2.3.c).
With a system of functions o : X — X, k € Z, on X satisfying (2.3.a),
(2.3.b), and (2.3.c), we define an infinite to one map R (which is a joint
left inverse of functions oy for every k € Z) satisfying

(2.4) ROO’k=’idx,

for every k € Z. This joint left inverse R of the functions o,k € Z, can
be described as following and denoted by o; ifz € X, o(z) = (j1,72, )
defined inductively ; ji is the unique j € Z such that ¢(sj)ex # 0
and then ¢(s})e; € {ey : y € X}. When ji1,52, -+ ,jr_1 are defined
inductively, let jr be the unique j € Z such that

(2.5) ¢(s5)@(s5-1) - - - é(s1)ez # 0,

or to say exactly R*(z) = jx in o(z) = (j1,J2,---), for nonnegative
integer k. We will use both to mean joint left inverse of o through out
of this paper.

DEFINITION 2.2. (From [2]) The joint left inverse function o : X +—
Z* with a function system o, k € Z is called the coding map of the
function system o, € Z. We say that a function system oy, k € Z
is multiplicity free if the coding map o is injective. We say that the
coding map ¢ is partially injective if it satisfies the condition that if z €
X, i1, i € Z and o(z) = o(0s, - -- 04, (z)), then z = 0y, - -- 04, (),
and the function system is then said to be regular.

We now define an equivalence relation ~ on the index set X; we say
that z ~ y if there exist nonnegative integers k; and ks such that

(2-'6) L= 04y " ai2ai1Rk2 (y)

for z,y € X,i1, -+ ,ik1 € Z and ky € Z;. The formula (2.6) can be
rewritten as

(27) o= Blsin) - D505, )55, ) - Bls5s Ve,

for (E,yEX, ila"' aiklajla"' 7jk2 € Z.
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THEOREM 2.3. Consider a permutative representation of the Cuntz
algebra On, N € NU {oo}, on a separable Hilbert space H. Then the
closure of the subspace of H spanned by the vectors e, where x runs
through a ~ equivalence class, is an irreducible O..-module, if the func-
tion system is regular. Furthermore, if the functions oy, k € Z, is multi-
plicity free in the sense of Definition 2.2, all the modules corresponding
to different equivalence classes are unitary inequivalent.

PROOF. See the reference. (Theorem 2.7 in [2]) O

Let H, denote the closure of the subspace of H spanned by vectors
ez, where z runs through the ~ equivalence class. The restriction of
the permutative representation ¢ on H, is an irreducible representation
of On on the separable space H., both NV for finite or infinite. For a
permutative representation of O, on a separable space H., suppose that
the Hilbert space # is split into subspaces H,, and the representation ¢
is split into subrepresentations ¢; = @[y, of it, for ¢ € J for some index
set J C Z, then we have of forms

(2.8) ¢=EP¢: and H=EPH.

ieJ e

Needless to say, the subrepresentations ¢;, ¢ € J are the irreducible
subrepresentations of the Cuntz Algebra O on the Hilbert space #,,,
respectively. We now consider a transcendental number such as 7, e =
ltmp00(1 + 1/n)™ to construct suitable countable index set X of an
orthonormal basis for a separable Hilbert spaces H so that we can have
a permutative representation which is induced from a function system oy,
on X. We will use w for generic transcendental number which is strictly
bigger than 1. Let X be a set of polynomials in w with coefficients from
the integer set Z and digit set D a completely incongruent set modulo w
in X. See Example 3.6, Example 3.7, Example 4.1, and Example 4.2 for
the sets X and D. We now define a function system o on the countable
set X described above by

(2.9) or(z) = wr + di

where dr, = k modulo w for k£ € Z. Then one can check that the functions
o on X satisfy the Cuntz related conditions (2.3.a), (2.3.b), and (2.3.c).
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N for finite, we define ox(z) = Nz + dj, for the representation of Oy,
where {d;,--- ,dn} is a residue set modulo N in Z. The associated
representation of the C*-algebra Oy coming from ox(z) = Nz + dji on
the Hilbert space L?(X) is given by

(2.10) $(sk)€(z) = a¥¢(2N),

where z € X, and ¢ € L?(X). This type of representations of the
Cuntz algebra Oy, N for finite, originating from the multiresolution
wavelet theory with X = R™ or T",n = 1,2,---, are introduced if we

consider X is an index set of an orthonormal basis for these Hilbert
spaces L2(R™) or L%(T"),n = 1,2,---. See [2], [3], 5], and [8].

THEOREM 2.4. The representations of the Cuntz algebra O, coming
(2.9) on L?(X) is regular, thus the representation of O, coming from
(2.9) is completely split into irreducible subrepresentations.

ProOF. With Theorem 2.3, the only thing that we need to show is
the function system o, k € Z coming (2.9) is regular. However, it can be
showed easily by an elementary calculation with a completely mutually
incongruent set D. O

The following questions arise immediately:

Q1. What are the conditions for the irreducibility of the representa-
tion ¢ derived from (2.9) if exist. '

Q.. What are the conditions for finiteness, in the sense of (2.8), of
the decomposition of the representation ¢ derived from (2.9) if exist.

Q3. Is there a representation ¢ derived from (2.9) having infinitely
many subrepresentations.

Q4. Are there application of these representation to multiresolution
analysis from wavelets.

We present some results for these questions.

3. Decomposition of the representations

Let D be a residue set in X modulo w for a digit set. D = Z is an
example for obvious case or see the examples in this paper. Define

(3.1.a) Dy, = sup{deg(d) : d € D}
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(3.1.b) D,,, = min{deg(d) : d € D}.

where deg(d):=the degree of d in the form of polynomial in w.
LEMMA 3.1. Let x € X and Dps < 0o. Then

(3.2.a) deg(R(z)) = —1+deg(z), if Dp < deg(z) and 0 < deg(z),

(3.2.b) . Dy — 1< deg(R(z)), if deg(z) < Dm,
loosely speaking

(3.2.a") deg(R(z)) < deg(z), if Dy < deg(x)
(3.2.b") deg(z) < deg(R(z)), if 0 < deg(z) < Dp,.

PROOF. Let z € X with deg(z) = [, tosay z := ap + aqw + -+ - +
aw' for some ag,a1, - ,a; € Z and a; # 0. We first assume Dy <
deg(z) and 0 < deg(z). There then exists a unique d; such that z =d,
modulo w. Let dy = bg+bjw+---+b,w? withv < [,and by,bo,-+- ,b, €
Z, note that ag = bg if and only if z = d; modulo w, then we have

T —dg

(3.3) R(z) =

=z1+z2w+---+zlwl_1

where 2; = a; — b; for 1 £ i <Swvand 2; = a; for v <i <1 — 1. Since
v £ Dy < deg(x) = and 1 £ 1, we have deg(R(z)) = —1+ deg(x). For
D, — 1 £ deg(R(z)), if deg(z) < D,, we can assume that deg(z) < D,
and 0 < D,,,. In this case, we have

Rix)=2z +zw+ -+ zuw*™?
where z; = a; —b; for 1 £ i £ deg(z) and 2; = —b; for deg(z) < Sv-1.
Hence we have deg(R(z)) = —1 + deg(d;) 2 D, — 1. O

The formula (3.2.a) and (3.2.b) ensure that the sequence
{deg(:z:), deg(R(x))7 deg(R2($)), e }

is decreasing as long as deg(RF(z)) > D)y, similarly it is increasing as
long as deg(R*(z)) < D.
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COROLLARY 3.2. If Dy is finite, then there exists a positive integer
n, for each x such that

(3.4) D,, —1 £ deg(R™*(x)) < Dm
if1 £ Dp,.

PROOF. The proof follows immediately from Theorem 2.3 and the
proof of Lemma 3.1. O

For each dix € D, there exists unique integer ny such that dp = ng
modulo w in X. With ¢x = di — nx and C = {ck : k € Z}, define a set
T., in R and a subset PreF, in R by

(3.5) Too = {Z wck, : Ck,; € C’}

i=1
and
(3.6) PreFo = —TeoN{z € X : Dy, — 1 S deg(x) £ Dy — 1}
for D, 2 1.
Foo :={x € X : Dy — 1 S deg(z) £ Dn — 1,
coefficients of z are of the form
—¢1—Cio—---—c¢ty, t S Dy — 1 and ¢; € Ce(D)}

LEMMA 3.3. For each x € X there exists a positive integer m; such
that
R™=(z) € PreF.

PROOF. Let n, be the least positive integer satisfying Dy — 1 <
deg(R™ (x)) £ Dy — 1 and denote R™(x) = ap + ayw + - - - + aw’ for
some D,, —1 <t £ Dy — 1. By the definition of the joint left inverse R
we have

Rtl(z)=a; +agw+---+ awt™! — ¢ w!
(1]

............

_cilw_ —_ e _cil_lw_ _cit
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where d; = a; modulo w and d; = ¢; + a; for i = i, --- ,7:. Hence
R™z(x) € PreFy for some large positive integer m,. O

As we described above, there is an one to one and onto map f:Zw D
naturally defined by f(n) = d,, satisfying

n = d,, modulo w.
We can rewrite d,, € D of the form
dn=n+ Pd,.

where Py, is the corresponding polynomial in w obtained by eliminating
constant term of d,, in the form of polynomial in w. Let the set Ce(D)
denote the set of all nonzero coefficients of the polynomial P, for d, €
D.. The set Ce(D) is possibly infinite which is also one of the major
differences between permutative representations of the Cuntz algebra
On, N for finite and the ones of the Cuntz algebra O.

THEOREM 3.4. If Ce(D) is a finite set and Dy, is a finite integer,
then for every z € X the sequence {R'(z)}, is eventually periodic in
a finite set, i.e., the permutative representations defined from (2.9) are
split into finite irreducible subrepresentations.

PROOF. We can see easily from the proof of Lemma 3.3, the both
constant terms of z and d;; in action R(z) disappear. For k = ng+(I+1),
N, is the number described in Corollary 3.2.

Rk(ﬂ’) = —¢t — WL — ... g (tFD)

with ¢; € C. R*(z) can be rewritten as following.

Rk(:c) =ag+ aw+ - + qw'
for some D, —1 S 1S Dy —1witha; = —¢jp —¢ig — - — Ci(Dpr—1)
for some ¢;; € Ce(D) U {0}, = 0,1,---,l and j = 1,2,--- ,Dp; — 1.

Therefore we have
R*(z) € Fy
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for s large enough, where F, is a subset of PreF,, as defined. Thus the
cardinality of the set Foo is at most (card(Ce(D))F, where the number
Pis Dy from (Dar—1)+1. Hence the sequence {R(z)}$2, is eventually
periodic in the finite set Foo. The second statement follows from follow-
ing argument; for every z € X the sequence {RY(z)}2, is eventually
periodic in Fo, which implies  ~ y for some y € F.,. Thus the number
of inequivalent classes are finite which is at most the cardinality of the
set F,. By Theorem 2.3, the permutative representation coming from
(2.9) is decomposed into finite subrepresentations. O

REMARK. The sequence {R'(z)}{2, is eventually periodic for every
z € X does not imply the finite decomposition of the permutative rep-
resentation induced by (2.9). See the example 3.7.

EXAMPLE 3.6 (for irreducible representation). Let [ be a fixed posi-
tive integer and a digit set D = {e'+z : z € Z}. Since the only coefficient
except constant term is 1, the set Ce(D) is a singleton set {1}. Further-
more we have D,, —1 = Dy —1 =1 — 1. By Theorem 3.4, we have
the singleton set PreFo, = Foo = {—-1—w — -+ — w'~1}. Therefore, for
everyz € X wehaver ~ -1 —-w—---— w'~l. Thus the permutative
representation of the Cuntz algebra O is an irreducible representation.

ExXAMPLE 3.7 (for infinite irreducible decomposition). If we take a
digit set D = {zw + z : z € Z— {0}} U{w}, then D, —1 =Dy ~1=0
and Ce(D) = Z—{0}. Therefore we have Foo = Z—{0}. Since Dy, —1 =
Dy — 1 =0, for every z € X there exists exactly one z € Z satisfying
r — z modulo w. For nonzero integers z € Z, d, € D satisfying z = d,

modulo w is d; = zw + z. We now check action o on the set Z, which is
o(z) = z —(zw+ 2) __
w

and
—z—(z2w—2) _

o(—2) = z.

w

Thus the sequences { R (x) }§2, is eventually in the set {2, 2, } for some
ze € Zy for every z € X. Hence for every = € X there is a positive
integer 2, € Z, satisfying £ ~ 2z, thus the permutative representa-
tion coming (2.9) is decomposed into infinitely many, as many as the
cardinality of the set Z.., irreducible subrepresentations.
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4. Realizations of the representations on L%(Q,u) and con-
cluding remarks

The permutative representation of the Cuntz algebra Oy, N for finite,
can be considered to be realized on Hilbert space L2((, 1), where Q is a
measure space and p is a probability measure on Q. The representations
are defined in terms of injective maps o; : Q +— Q with the properties
p(o:(R) No;(R)) = 0 for all i # j, and if p; = w(o;()) then p; > 0
and Ei\,:l pi = 1. In this case the set {51(Q)o,2(Q), -+ ,on(Q)} is a
partition of 2 up to.measure zero. One such measure space § for N
finite is a fractal set

oo
T = {Z di, N7% i dy, € D}
i=1

with p; = —11\7, where D is a residue set modulo NV in Z. This fractal sets
T’ were studied in various papers (1], [3], [7] and [9] to study multiresolu-
tion analysis from wavelet basis. Furthermore the sets o100 - - - o (§2)
generate the measurable sets in cases of N for finite. The question is
“Can we have this realization with a permutative representation of the
Cuntz algebra Ou, on Hilbert space L2(T,,)?”, where Ts, is a subset of
R defined by

o
{Z dkiw_i :dr, € D, D is a residue set modulo w in X}
i=1

The answer is negative if we have the condition pu(00(Two)) = 1(03(Teo ))
which condition is naturally coming from the translation invariant prop-
erty of the Lebesgue measure in R, for all i € Z. In fact, if we take
0 := p(00(Tw)), the countable sum of & should be the same as the
measure of the set T,,. Since Lebesgue measure of the set T, is fi-
nite with the property T, compact in R, § should be an infinitesimal.
Of course it is still open if we do not apply the conditions = T, or
#(00(Teo)) = w(0i(Tso)) for all 4 € Z. One of the cases we can try is
with a sequence {p;},i € Z with
1

po = i’pi =2"%"1for j Zy and p; :=2"% fori € Z_
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for further study.
We here present a few examples of decompositions of the permutative
representations.

EXAMPLE 4.1. Let the digit set D = {w®+2:2 =0,1,2,---} U
{2w3+z:2z=-1,-2,---}. Since Dy, —1 = Dp — 1 = 2, we only need
" to consider elements of the form z = ag + ajw + agw?. Then we have
Ce(D) = {1,2} and

R(z) = a1 + aqw — bhw?, b €{1,2},

Rz(x) =ay —bhw-— b2'w2, b1,be € {1,2},

and
R3(z) = —b1 — bow — baw?, by,bs,b3 € {1,2},

Since —b;,7 € {1,2,3} are negative and = ~ 2w3 + z for all negative
z, we have R*(z) = —2 — 2w — 2w? for all 6 < n for every z € X.
Therefore for any y € X the sequence {R!(z)}{2, converges to —2—2w —
2w?. Thus corresponding permutative representation is an irreducible
representation even though 1 < D,, —1 = Dy — 1 and the set Ce(D) is
not a singleton set.

This example shows that the set Ce(d) is a single is not a sufficient
condition for irreducibility of the permutative representation.

EXAMPLE 4.2. Let D = {w!®l + 2z : z € Z}. With a long calculation,
we get either £ ~ —lorz ~ —2or z ~ w for z € X. Therefore
a corresponding permutative representation is decomposed into three
irreducible subrepresentations even though D) is not finite.

As we showed in the examples, the necessary and sufficient conditions
on the digit set D for irreducible representation, finite decomposable
representations or infinitely many decomposable representations are un-
known.
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