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WEYL’S THEOREM FOR ISOLOID
AND REGULOID OPERATORS

AN-HYuN KiM AND SUNG UK Y00

ABSTRACT. In this paper we find some classes of operators for which
Weyl’s theorem holds. The main result is as follows. If T € L(H)
satisfies the following:

(i) Either T or T* is reduced by each of its eigenspaces;
(i) Weyl’s theorem holds for T;
(iii) T is isoloid,

then for every polynomial p, Weyl’s theorem holds for o(T).

1. Introduction

Throughout this paper let X denote an infinite dimensional Banach
space and let H denote an infinite dimensional Hilbert space. Let L(X)
denote the set of bounded linear operators on X. If T € L(X), write
N(T) and R(T) for the null space and range of T; p(T) for the resolvent
set of T' ; o(T) for the spectrum of T mo(T) for the set of eigenvalues
of T; mos(T) for the eigenvalues of finite multiplicity; mo;(T) for the
eigenvalues of infinite multiplicity; moo(T") for the isolated eigenvalues of
finite multiplicity. Recall ([6],(7]) that T € £(X) is called regular if there
is an operator 7" € £L(X) for which T = T'T'T. It is familiar that if T is
regular then T has closed range and that its converse is also true in the
Hilbert space setting. An operator T € £(X) is called left-Fredholm if it
has closed range with finite dimensional null space and right- Fredholm
if it has closed range with its range of finite co-dimension. If T is either
left- or right-Fredholm, we call it semi-Fredholm and if T is both left-
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and right-Fredholm, we call it Fredholm. The indez of a semi-Fredholm
operator T € L(X) is given by

ind (T') = dim N(T') — dim X /R(T).

An operator T € L(X) is called Weyl if it is Fredholm of index zero.
An operator T € L£(X) is called Browder if T is Fredholm and T — \I is
invertible for sufficiently small A # 0 in C. The essential spectrum o.(T),
the Weyl spectrum w(T') and the Browder spectrum o(T) of T € L(X)
are defined by

0e(T) = {A € C: T — Al is not Fredholm};
w(T)={A e C:T — Al is not Weyl};
op(T) = {A € C: T — Al is not Browder} :

evidently
(0.1) 0e(T) Cw(T) Cou(T) = 0e(T) Uacco(T),

where we write acc K for the accumulation points of K € C. If we write
isoK = K\ accK and

(0.2) poo(T) := o(T) \ ov(T)

for the Riesz points of T, then

(0.3) is00(T') \ 0e(T) = isoo(T) \ w(T) = poo(T) < moo(T).
We say that Weyl’s theorem holds for T € L(X) if there is equality
(0.4) o(T) \ w(T) = moo(T).

H. Weyl ([17]) showed that the equality (0.4) holds for hermitian oper-
ators. Weyl’s theorem has been extended from hermitian operators to
hyponormal operators and to Toeplitz operators by L. Coburn ([4]), to
several classes of operators including seminormal operators by S. Berbe-
rian ([2],[3]), and to a few classes of Banach space operators by many
authors ([10],{11},{13]). In this paper we try to find some classes of op-
erators for which Weyl’s theorem holds.
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1. Reguloid operators

IfT € L(X), write 7(T) for the spectral radius of T'. It is familiar that
r(T) < ||T||. An operator T € L(X) is called normaloid if (T") = ||T|
and isoloid if iso o(T') C mo(T). An operator T' € L(X) is said to satisfy
condition (Gy) if (T — AI)~! is normaloid for all A ¢ o(T'). An operator
T € L(X) is called reguloid ([9, Definition 13]) if T — AI is regular for
each A € isoo(T).

We begin with:

LeEmMMA 1.1. If T € £(X) then
(1.1.1) T satisfies (G1) = T is reguloid => T is isoloid.

PROOF. The first implication is known from [9, Theorem 14]. For
the second implication, suppose T € £(X) is reguloid and ) € isoo(T).
Assume to the contrary that T—\I is one-one. Then since by assumption
T — M is left invertible (cf. [7, (3.8.3.12)]), so that A cannot lie on the
boundary of ¢(T). This contradicts to the fact that A € isoo(T'). O

We introduce the conditions that an operator T' may satisfy (cf. [2]):
(B) Each point of o(T') is a bare point of o(T), in the sense that it lies
on the circumference of some closed disc that contains o(T).

(8') Each point of mos(T) is a semibare point of o(T'), in the sense that
it lies on the circumference of some closed disc that contains no
other points of (7).

We now add a condition to the above.

(8") Each point of moz(T) is called a pseudo-bare point of o(T), in the

sense that it lies on a circle that contains no other points of o(T').

Evidently, (3) = (8’) = (8"). In general the reverse implications
are not true. For example if

0; 0 0
T=|10 U-1I 0
0 0 U+1

(where 0; is the one-dimensional zero operator and U is the unilateral
shift on £5) then

o(T)={z:]2—1<1}U{z: |2+ 1} <1}.
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Thus 0 cannot lie on the circumference of any closed disc that contains no
other points of 0(T). However, evidently, 0 lies in the circle {z : |z —-2| =
2}, which intersects with o(T’) at only 0. Thus 0 is a pseudo-bare point
of o(T'), but not a semibare point of o(T).

S. Berberian ([2, Corollary 2]) has shown that if every direct sum-
mand of T satisfies the property (G;) and if T satisfies (3’), then Weyl’s
theorem holds for 7. We can prove more:

THEOREM 1.2. If T € L(X) is reguloid and satisfies (3" ) then Weyl’s
theorem holds for T'.

PROOF. Suppose A € moo(T). Since T is reguloid, we have that T—AJ
is left-Fredholm. Write 0 K for the boundary of K C C. Since A €
90 (T), it follows from the continuity of the (semi-Fredholm) index that
ind (T — AI) = 0. Therefore mpo(T) C o(T) \ w(T). For the reverse
inclusion assume that A € o(T) \ w(T). Then 0 < dim (T — AI)~1(0) <
oo. But since by assumption, A is a pseudo-bare point, it follows that
X € 90(T). Thus by the punctured neighbourhood theorem (cf. [7],(8]),
we must have that \ € isoo(T") and therefore A € moo(T'). a

REMARK. If in Theorem 1.2, the “reguloid” condition is replaced by
the “isoloid” condition, then Theorem 1.2 may fail. For example, if
T : €5 — {5 is defined by

(1.2.1) T(z1,Z2, ) = (=, =, =, "),

then 0 € moo(T) = mos(T) is a pseudo-bare point of o(T'), while Weyl’s
theorem does not hold for T. Note that T is isoloid, while T is not
reguloid.

THEOREM 1.3. If T € L(X) is reguloid and mos(T) C isoo(T), then
(1.3.1) w(p(T)) = p(w(T)) for every polynomial p.

Thus in particular, for every polynomial p, Weyl’s theorem holds for
p(T).
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PrOOF. If mos(T) C isoo(T), then evidently, each point of mos(T)
is a pseudo-bare point of ¢(T). Thus by Theorem 1.2, Weyl’s theorem
holds for T. For (1.3.1) suppose p ¢ w(p(T)). Writing p(\) — p =
ap(A — A1) -+ - (A= An), we have that

p(T) — I = ao(T — MI)--- (T — M)

is Weyl. Thus T' — A;I is Fredholm for each ¢ =1,--- ,n and

(1.3.2) zn: ind (T — M) = 0.

1=1
We now claim that
(1.3.3) ind (T — A1) <0 foreachi=1,--- ,n.

To the contrary we assume that ind (7" — A\;I) > 0 for some ¢, so that
0 < dim N(T — A\ I) < oo. Thus we have that \; € m¢(T) and hence
by assumption, A; € isoo (7). But then it follows from the continuity of
the index that ind (T' — A\;I) = 0, a contradiction. Therefore by (1.3.2)
and (1.3.3), T — A1 is Weyl for each ¢ = 1,--- ,n, so that u ¢ p(w(T)).
This gives that p(w(T)) C w(p(T)). The reverse inclusion holds for any
operator T € L(X). This completes the proof of (1.3.1). The second
assertion follows from the first assertion and Theorem 1 of K. Oberai
((14]) which states that if T is isoloid and Weyl’s theorem holds for T
then Weyl’s theorem holds for p(T') if and only if w(p(T")) = p(w(T)).O

Note that the “reguloid” condition cannot also be relaxed to the
“isoloid” condition in Theorem 1.3: for example consider the operator
in (1.2.1).

An operator T € L(X) is said to be polynomially compact if there
exists a nonzero complex polynomial p such that p(T') is compact. It is
familiar that every polynomially compact operator has a nontrivial in-
variant subspace. Also the structure of polynomially compact operators
has been described by F. Gilfeather ([5]) and C. Olsen ([15]). Recall
([1],[16]) that an operator T' € L(X) is said to satisfy the condition (C3)
if A € moo(T) implies that R(T — AI) is closed. We now have:
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THEOREM 1.4. If T € L(X) is polynomially compact, and satisfies
(C3) then Weyl’s theorem holds for T.

PROOF. Suppose p(T') is compact for some nonzero polynomial p.
Since the essential spectrum of any compact operator is contained in
{0}, it follows that p(oe(T)) = o.(p(T)) C {0}, which says that o.(T)
is finite, say oe(T) = {A1,--,An}. We now claim that acco(T) C
{A1,"-+ ,An}. Indeed, if T — Al is left-Fredholm but not invertible
then since A € into(7T) implies that o.(T) is infinite, it follows that
A € 80(T). Then by the punctured neighborhood theorem, we should
have that A € isoo(T). Therefore o(T) \ w(T) C mpo(T). The reverse
inclusion follows from the observation that if A € mgo(T") then by our
assumption T — A[ is left-Fredholm, and hence by the continuity of the
(semi-Fredholm) index we have that A ¢ w(T). Therefore Weyl’s theo-
rem holds for T'. a

2. Operators reduced by each of its eigenspaces

Suppose that T' € L{H) is reduced by each of its eigenspaces. If

M= \/ N(T — M\I) (where \/() denotes the closed linear span),
AGT&’o(T)

then 91 reduces to T'. Write
(2.0.1) Ty :=T|9M and Tp:=TM.

Then we have ([3, Proposition 4.1))
(i) T1 is a normal operator with pure point spectrum;
(i) mo(T1) = mo(T);
(iii) o(Th) = clmo(T);
(iv) 7T0(T2) = (Z)
The Weyl spectrum and the Browder spectrum coincide when the
operator is reduced by each of its eigenspaces.

LemMA 2.1. IfT € L(H) is reduced by each of its eigenspaces then
(2.1.1) w(T) = op(T).
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PROOF. Since w(T) C 04(T) in general, it suffices to show
(2.1.2) op(T) Cw(T).

For (2.1.2) suppose A € ¢(T) \ w(T). Then T — X is Weyl but not
invertible. Observe that if w(T}) = 0.(T1) (e.g., T1 is normal), then

(2.1.3) w(T) = w(Th) Uw(Ts).

But since mo(T>) = @, we should have that T — AI is one-one and hence
invertible. On the other hand since 7 is normal it follows from Weyl’s
theorem that A € moo(71) and therefore A € isoo(T'), which implies that
A ¢ op(T). This proves (2.1.1). O

We now have:

THEOREM 2.2. If T € L(H) satisfies the following:

(i) Either T or T™* is reduced by each of its eigenspaces;
(ii) Weyl’s theorem holds for T’;
(iii) T is isoloid,
then for every polynomial p, Weyl’s theorem holds for p(T).

PROOF. If Weyl’s theorem holds for an isoloid operator T then by
Theorem 1 of [14], for any polynomial p Weyl’s theorem holds for p(T)
if and only if p(w(T)) = w(p(T)). Thus it will suffice to show that
p(w(T)) = w(p(T)) for any polynomial p. If T is reduced by each of
its eigenspaces, write T' = T; @ 15 as in (2.0.1). Then p(T) = p(T1) &
p(T2) shows that p(T}) is normal and hence w(p(T1)) = 0(p(T1)), and
mo(p(T2)) = p(mo(12)) = p(@) = @ and hence w(p(Tz)) = o(p(T)).
Therefore by (2.1.3) we have
(2.2.1)

5(p(T)) = ob(p(T1)) U b (p(T2)) = w(p(T1)) U w(p(T2)) = w(p(T)),

where the first equality follows from the same argument as (2.1.3) with
oy in place of w. But since the Browder spectrum obeies the spectral
mapping theorem it follows from (2.1.1) and (2.2.1) that

p(w(T)) = p(ob(T)) = op(p(T)) = w(p(T)).
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If instead T™ is reduced by each of its eigenspaces, write T* = S1 & S
as in (2.0.1), where S; is normal with pure point spectrum and my(Sz) =
0. Then T = S} & S3, where S} is normal and I'(S}) = 0, where
I'(S3) denotes the compression spectrum of S3, i.e., I'(S3) = mo(S2)~.
Therefore p(T') = p(S7) @ p(S5) shows that p(S}) is normal and hence

w(p(S7)) = 0b(p(S7)), and T(p(S3)) = p(I'(S3)) = p(mo(S2)~) = p(0) =
@ and hence w(p(S3)) = o(p(S3)). Therefore by the same argument as
the above, we have that w(p(T)) = p(w(T)). This completes the proof.0]

COROLLARY 2.3 ([12]). If T € L(H) is seminormal then for every
polynomial p, Wey!’s theorem holds for p(T).

ProOF. This follows from the fact that seminormal operators satisfy
assumptions of Theorem 2.2. ‘ O

The following example shows that Theorem 2.2 may fail if any one of
three conditions is dropped:

ExXAMPLE 2.4. (1) If U is the unilateral shift on £5, define T on £y ®¥2
by
T=U+DHeU*-1).

Then we have

s =w(T)={reC:1-AN<1}[J{reC: 1+ <1}

and 7!'00(T) = 0

Thus T is isoloid and Weyl’s theorem holds for T. But T is not reduced
by each of its eigenspaces. To see this let 9 be the eigenspace of T
corresponding to the eigenvalue —1, so that

M= {0} ® N(U*), and hence M’ =4, NU*)" .
But for some z ® y € M+,
Tzoy)= U+ DNz & (U*~Iy¢m-

because (U* —I)y ¢ N(U*)* for y = (0,1,0,---) € N(U*)*, which says
that T is not reduced by its eigenspaces. Also the same argument as
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the above gives that T™ is not reduced by its eigenspaces. On the other
hand we observe that o(T?) is the Cardioid {re®® : r < 2(1+cos6)} (use
the spectral mapping theorem). We however have

T~ I=(T+)(T-1)=(U+2D)oU") (Ue U* -21),

so that ind (T2 — I) = ind (U*) + ind (U) = 1 + (~1) = 0, which says
that 1 ¢ w(T?). Thus we have that 1 € ¢(T?) and 1 ¢ w(T2) U moo(T2),
which implies that Weyl’s theorem does not hold for 7°2.

(2) To show that the “isoloid” condition is essential in Theorem 2.2,
we may borrow an example due to K. Oberai ([14]). Let on ¢,

L2 I3

T, o) = -2 2 ..

1(.’171,-'1/'2, ) (.’1,‘1,0, 97 9 )
— ml _xz —.—xs * .

and T2(:L‘1,:172, ) = (0, —2 s 3 3 4 ’ )

Define T on £2@® 4y by T = T1®(T>—1I). Then T is not isoloid and Weyl’s
theorem holds for T' but fails for T2 (see [14, Example 1]). We need to
show that T is reduced by each of its eigenspaces. Since mp(T7) = {1}
and mo(T2—1I) = 0, it follows that mo(T") = {1}. Let O be the eigenspace
of T' corresponding to the eigenvalue 1, so that 90 = N(U*) @ {0}. Then
evidently T'() C M and M+ = N(U*)* @¢y. Alsosince Ti (N(U*)L) C
N(U*)* and hence T(90t+) C ML, it follows that T is reduced by each
of its eigenspaces.
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