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SURFACES OF 1-TYPE GAUSS MAP
WITH FLAT NORMAL CONNECTION

CHANGRIM JANG* AND KEUN PARK

ABSTRACT. In this paper, we proved that the only surfaces of 1-type
Gauss map with flat normal connection are spheres, products of two
plane circles and helical cylinders.

1. Introduction and Preliminaries

The notion of submanifolds of finite type was introduced by B.-Y. Chen
in the late seventies [2]. Since then many works were done to characterize
or classify submanifolds in terms of finite type. The study of finite type
submanifolds provided a natural way to combine spectral theory with the
geometry of smooth maps, in particular, Gauss map. In [3] B.-Y. Chen and
P. Piccinni gave a general study of submanifolds with finite-type Gauss
map. In [1] C. Baikoussis, B.-Y. Chen and L. Verstraelen classified ruled
surfaces and tubes with finite-type Gauss map. Also D.-S. Kim and S.-B.
Kim proved that the only hyperquadrics with finite type Gauss map are
hyperplanes, hyperspheres and spherical cylinders [8]. The classification
problem for surfaces of 1-type Gauss map in Euclidean 3-space was solved
by Y. H. Kim and the first author [7], [9]. In this article we continuously
investigated surfaces with 1-type Gauss map in Euclidean n-space E™
and proved that the only surfaces of 1-type Gauss map with flat normal
connection in E™ are spheres, a product of two plane circles and helical
cylinders. (By a helical cylinder we mean the product of a straight line
and a circular helix. If the torsion of the circular helix is zero, then the
helical cylinder is nothing but an ordinary circular cylinder in E3.) Since
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a surface in E® has spontaneously flat normal connection, this can be a
generalization of Theorem in [7].

In general, a smooth map ¢ of a Riemannian manifold M into a Eu-
clidean space is said to be of finite type if it is decomposed as a finite sum
of E™-valued eigenfunctions of the Laplacian A on M, that is,

¢=d¢o+ b1+ + by,

where ¢ is a constant function and ¢y, - -- , ¢, are nonconstant functions
satisfying Ag; = \ig, A; being constants, i = 1,2,--- , k. In particular, if
A1y Ag, -+« , A are mutually different, we say that ¢ is of k-type.

Let M? be a connected surface in E* and let €1,€3, - ,€n_1,€, be an
oriented orthonormal local frame on M? such that ey, e, are tangent to M2,
€3, -+ , €, are normal to M?2. From now on, the indices i, 7, k run over the
range {1,2} and the indices r, s over {3,--- ,n}, unless stated otherwise.
Let V and V' be the Levi-Civita connections on M? and E", respectively.
Denote by wf, A,B =1,2,--- ,n, the connection forms. Then we have

Ve.ei = Vee;+ h(ee;),
(1.1) Veiej = Zw}“(ei)ek,

k
h(eie;) = Y hler,

(1.2) V.er = Dg,e, — Z hi;e;, Dee, = Zwﬁ(ei)es.
7 s

where h is the second fundamental form, D is the normal connection
and hi; are the coefficients of the second fundamental form h. The Ricci
equation of M? implies that

RP(eisejier,e5) = > (Righiy — hiyhiy),
k

where R? is the normal curvature tensor of M2. Let G be the Gauss map
of M? into G(2,n) which is the Grassmannian manifold of the oriented
2-planes in E™. Also, G(2,n) can be identified with the decomposable 2-
vectors of norm 1 in (g)-dimensional Euclidean space A’E™ = EV, where
N = (’2’) Then, ’

G:M?* — G(2,n) c EN
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can given by G(p) = (e1 A e2)(p), p € M2. Following [3] we can calculate
AG, where A is the Laplacian on M? and G = e; A ey is the Gauss map
of M2, as follows

(1.3) AG = D,HAes+eAD,H
-—22 RP(ey,ex;€,,e)er A es — ||h]|%e1 A eg,

r<s

where H =tr h =), h(e;, ;) is the mean curvature vector of M? in E"
and [|Al? = 3, (hi;)? is the square length of the second fundamental
form h.

2. Surfaces of 1-type Gauss map with flat normal connection

Let M? be a connected surface in E™ and let its Gauss map G be of 1-
type. Then there exist a constant A and a constant vector ¢ in A2E™ = EN
such that

(2.1) AG = XG - ).

Suppose that M? has flat normal connection, i.e., R? = 0, and that
e1, €y, -+ , e, are orthonormal frame on M? such that e;, e, are tangent
to M2, e3,--- ,e, are normal to M2. Then without loss of generality we
may assume that the coefficients A; of the second fundamental form h are
given by

_— z, 0
(22) [hz]]z{ 0 yr],r=3,...,n
and the normal frame e3,--- , e, are parallel(De, =0, » = 3,--- /n) [2].

Since (2.2) implies that H = " .(z, + y,)e,, from (1.3) and (2.1) it
follows that

(2.3) =Ac¢ = {i ei(z, + y,)e,} ANeg+er A {Z ex(z, + y,)e,}

r=3 r=3
—(I2l* + Nex Aea.
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Let X be a tangent vector field on M?. Taking the covariant differentiation
of (2.3) in the direction X, we have

{ (Z X(eyz, + yr)) er + Z e1(z, + yr)V'Xe,} A ey

r=3 r=3

+ (Z ez + yr)er) A Ve + Vier A (Z ea(z, + Z/r)er)

r=3 r=3

+e1 A {Z X(eo(zr + yr))er + Z es(z, + yr) 'Xe,}

r=3 r=3
—X(J|AI2+ Ney A ey — (|RlI2 + M) Vier A ea — (J|B]|? + Ner A Vies
= 0.

If we take X as e; and collect the coefficients of ey A eg(A < B), with the
help of (1.1), (1.2), then we obtain the following equalities:

(24) ZL',-€2(.’ES + ys) — $s€2($r -+ yr) =0 ('r 7& s, 18=3,--- ’n),

(2.5) > zeei(z, +yr) +ea(|[Bl* + A) =0,
r=3
(2.6) eres(zr +y,) — w%(el)e2(xr +y) = Z'r(“h”2 +A) (r=3,---,n),
erea(z, +y,) —wilee(z, +y,) = 0 (r=3,---,n).
Similarly, taking X as e, we get

(2.7) yre1(zs +ys) — yser(z, +y,) =0 (r#s, r,5=3,---,n),

(2.8) > yrea(z: + vr) + e(BIF +X) =0,
r=3
(2.9) ezea(zr +yr) — wé(e2)el(mr +y,) = yr(”h“2 +A) (r=3,---,n),
eser(z, +yr) — wi(ed)es(z, +y,) = 0 (r=3,---,n).
Note that the Coddazzi equations imply
(2.10) eyr = w%(e2)(yr - ;)
(2.11) erx, = wi(e)(z, —y)(r=3,---,n).
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And (2.3) yields
(212) ) ez 3P+ ) {ealz +y)P + (IRIF+ 2 =4,

where d = ()¢, Ac) for the usual Euclidean metric (, ) of EV. Let M; (i =
0,1, 2) be the set of points of M? at which the dimension of the first normal
space Im h = Span{h(X,Y)|X and Y are tangent vectors on M?} is i.

LEMMA 2.1. Every component of M, is contained in a 4-dimensional
affine subspace of E™.

PROOF. Let V be a component of M,. Then without loss of generality
we may assume that z3y, — z4y3 # 0 on V. Thus there exist differentiable
functions a,,b,, r =5, ---n such that

(2.13) [‘”’]=ar[x3]+b,[‘”4].
By (2.4), we find
33462(3},. + yr) - xr62($4 + y4) = 0,
1'362($r + yr) - $T€2($3 + y3) = O‘ (1" = 5, .. ’n)

Using (2.13) and zses(z4+ys) — z4€2(x3+ys) = 0, from the above equation
it follows that

za{(z3 + ys)eza, + (T4 +ys)ezb,} = 0,

z3{(z3 + y3)e2a, + (T4 + ya)ezb,} = 0.
So we get
(2.14) (23 + y3)eza, + (24 + yq)e2b, = 0.
From (2.11) and (2.13) we find
(2.15) z3e2a, + T4e3b, = 0.
Similarly, by (2.7), (2.10) and (2.13) we have
(2.16) (z3 + y3)era, + (24 +yg)erb, = 0,
(2.17) ysera, +yserb, = 0.

From (2.14), (2.15), (2.16) and (2.17) it follows that a,, b, are constants.
Hence e, — a,e3 — bye4 are constant normal vectors. Thus V is contained
in a 4-dimensional affine subspace of E™. 0
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LEMMA 2.2. Let V be a component of the interior of My. ThenV is
contained in a 3-dimensional affine subspace of E™ or an open part of a
helical cylinder.

PROOF. We may assume that (z3,y3) # (0,0) in V. Then there exist
differentiable functions a, such that

Tp =0 T3, Yr = QY3 T =4, M.

From (2.10) and (2.11) we have yseja, = z3esa, = 0. If z3y3 # 0, then a,
are constants. In this case V' is contained in 3-dimensional affine subspace
of E™. Otherwise we may assume that y3 = --- = y, = 0. Then (2.10)
implies that wj}(ez) = 0. Also we have e;a, = 0 by (2.11). Thus from (2.8)
we have epz3 = 0. This and (2.11) imply wi(e;) = 0. All these imply that
ez is a constant tangent vector and V. e; = 0. Thus V is an open part of
a cylinder C' x E', where C is a curve in E"!. Since C must have 1-type
Gauss map, C' is a circular helix. Consequently V is an open part of a
helical cylinder. O

For the time being assume that M? is contained in 4-dimensional Eu-
clidean space E*, i.e,, n = 4. Then we have the following equalities from
(2.4), (2.5), (2.7), (2.8), (2.10) and (2.11)

(2.18) (z3+ 2ys)erys + 3zae1xq + (T4 + 2ys)e1ys = —3z3e173,

(2.19) Ya€1Ys — Ys€1T4 — Y3€1Ys = —Ys1T3,

(2.20) (Ya — za)erys — (Y3 — z3)erys = O,

(2.21) Syseays + (Ya + 2z4)e2xs + 3yseays = —(2x3 + ys3)eoxs,
(2.22) Tg€2Y3 + T3€2Tq + T3€2lYy = Ty€2Z3,

(2.23) (Ya — za)eaz3 — (ys — z3)eaxy = 0.

Also the following sublemmas hold.

SUBLEMMA 2.3. Under the assumption n = 4, the following equality
holds.

e1(z3 + ys)ea(xs + ys) — er1{zq + ya)ea(z3 + y3) = 0.
PROOF. Acting the laplacian A to the map e3 A e4, we get
Afes N ey)
(2.24) =e1(z3+ ys)ea N ey —ea(z3+ y3)ea A ey
~e1(zs +ys)es A ey — é2(x4 + ys)es A ey — ||h||%es A ey
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Since (—Ac, e3 A eq) = 0 by (2.3), we obtain
(225) A(—/\C, ez N\ €4> = (—)\C, A(e;; N 64)) =0.

Thus we have e;(z3+ y3)ea (x4 +ys) — e1(z4 + ys)e2(z3+y3) = 0 from (2.3),
(2.24) and (2.25). O

SUBLEMMA 2.4. If 3 = ys or T4 = y4 In an open subset V in M2,_
then z3,ys, x4 and y, are all constants in V.

PROOF. Suppose that 3 = y;. Then (2.10) and (2.11) imply that
e1ys = eax3 = 0. Hence z3 and y; are constants in V. Thus, from (2.18)
and (2.19) the followings hold

—yse1Z4 — Yse1Ys = 0, 3zge124 + (24 + 2yq)e1y, = 0.

If y3 # 0, then the above equations imply that e;z4 = e1ys = 0. We also
find eyz4 = egy; = 0 in a similar way. Thus we can conclude that z, and
Y4 are constants. If y3 = 0, then V is contained in E®. Then by Theorem
in 7], &4, y4 are constants. In the case x4 = y,, the similar arguments lead
to the same conclusion. O

From sublemmas we get the following lemma, which will be the crucial
point in the proof of our main theorem.

LEMMA 2.5. If M? is contained in E* and if e;x3 # 0 or eyz4 # 0 in
a connected open subset V' of M?, then y3 = y4 = 0 in V. Similarly, if
eys #0oreys; #0inV, thenz3 =24=0inV.

PrOOF. For notational simplicities, we will use the following abbrevi-
ations.

(s — ys)* + (za — wa)?,
Z3Y3 + TaYa,
= [Ihl® = 23 + 43 + 25 + 4,
= 2y3P + 3(ys — 23)Q, g = 3(z3 — y3)Q-

Assume that e;jz3 # 0 in V. It’s enough to consider this case because
the other cases can be dealt in similar fashions. We will work in V. Now

~ o O o
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suppose that f # 0. Then (2.18), (2.19) and (2.20) imply that

(2.26) e1ys = %613?3,
1

(2.27) ery = ?{2y4P + 3(ys — z4)Q}er23,
1

(228) €1Ys = ?3(I4 - y4)Q61$3.

If Q =0, then we have e,y3 = e;y4 = 0 from (2.26) and (2.28). Hence we
get yse;z3 + yse1z4 = 0 by differentiating ¢ = 0 in the direction e;. From
this and (2.19), e;jz3 # 0 implies y4 = y3 = 0, which contradicts f # 0.
Thus we may assume that g # 0 by Sublemma 2.4. From (2.21), (2.22)
and (2.23) we obtain

1

(229) €Yy = 5{—2$3P + 3(y3 — CL‘3)Q}62$3,
1

(2.30) ey = 53(934 — Y1) Qeaxs,
1

(231) €Yy = 5{—2324}) + 3(y4 — (174)Q}62$3.

From (2.26) ~ (2.31) and Sublemma 2.3 it follows that
(.'173y4 - y3.’L‘4)P€1$362$3 = 0.

If 23ys — ysz4 = 0, then from (2.27), (2.30) and y4 = % it follows that
e1T4 = %:61133 and ey = %‘2622}3. This implies el(g) = 62(%;) = 0. Hence
z, = azs for a constant a, from which z3y; —y3z4 = 0 implies that y4 = ays.
Therefore aes — e4 is a constant normal vector field. So V is contained in
a 3-dimensional affine subspace of E*. Then by Theorem in [7] z3 and y3
are constants in V, which will contradict the assumption e;z3 7# 0. Hence

we must have eyz3 = 0. Therefore we get esys = esxy = eoyy = 0 from
(2.29), (2.30) and (2.31). This and (2.9) imply that

—wj(ez)er(zs + y3) — ys(||RI* +A) =0,

or
€1Y3
3 — Y3

e1(z3 + ys) — ya(||RII> + A) = 0.
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This and (2.26) mean
AR+ A
6PQ

Since ej(z3 + y3) = 2%}Zelmg and e;(z4 +y4) = Z%‘;Eela:;;, (2.3) and (2.6)
imply

(2.32) (erz3)’ =

zqe1(ysU) = zze1(yaU),
2P

where U = €173, Thus we find

(Tays — zaya)erU = (z3e1ys — zae1y3)U.
From this, using (2.26), (2.28) and (2.32) we obtain

(2.33) elU = ||hl? + A
From (2.5), (2.26), (2.27) and (2.28) the followings hold
2Q(2Q — R) (R-2Q)25+3Q),

(234) €1R = ———f——— 1Z3, elQ = f

where S = yZ + y2. Differentiating U? = g(—@i%g@ in the direction e;
and multiplying by 3Q? we have

(2.35) 3UeiUQ*=e{(R+ A)(R-2Q)}Q — (R+ N)(R-2Q)e1Q.
(2.34) implies

e {(R+N)(R-2Q)} = %‘”—“(4@ —2R){(4Q +2S)(R+ )) + (B — 2Q)Q}.
Substituting this into (2.35) and using (2.32), (2.33) we find
(2.36) 6(R+MQ* = —2Q{2(2Q+ S)(R+ ) + (R -2Q)Q}

—(R+ N)(R —2Q)(2S + 3Q).
By (2.26), (2.27), (2.28) and (2.32), the equation (2.12) becomes
2(R — 2Q)(R+ \)S +3Q(R + \)? = 3dQ.
Thus we find

_ 3Q
(2.37) §=3

d—
R=3QE+ )
Substituting (2.37) into (2.36), the following holds,
(2.38) (4Q — 3A)R? + (3d — 33 + 20Q — 24Q*)R — 4Q*(4) — 2Q) = 0.

(R+ X))



198 Changrim Jang and Keun Park

Differentiating (2.38) in the direction e;, we have
{2(4Q — 3\ R + (3d — 24Q* — 3X* + 2)Q)}es R
+{4R? + (—48Q + 2\)R + (24Q* — 32Q\)}e1Q = 0.
From this, using (2.34) and (2.37), we find
2{2(4Q — 3\ R + (3d — 24Q* — 3)\* + 2)Q)}
3d — 3(R + \)?
_{(R +))(R-2Q)
=0.
After some computations the above equation becomes
(2.39) (20Q)R® — (184Q% + 32)\Q + 3d) R?
+{120Q°% — 248)\Q® — 94)2Q + 66dQ} R
+1200Q% — 6402Q* — 36dQ° — 42X°Q + 42d\Q = 0.

Consider the following two polynomials in a polynomial ring R[u, v] over
real field R.

Fi(u,v) = (4u—3\)v*+ (3d — 322 + 2u — 24u’)v — 4u?(4) — 2u).
Fy(u,v) = (20u)v® — (184u? + 32)u + 3d)v?

+{120u® — 248)u® — 94)\%u + 66du}v

+1200u® — 64X%0% — 36du? — 42X°u + 42d)u.

It is easy to see that F(u,v) is irreducible in Ru, v]. And Fi(u,v) cannot
divide Fy(u,v) in R[u,v]. Thus Fy(u,v) and Fy(u,v) are relatively prime
in R[u,v]. Therefore there exist only finitely many solutions satisfying
Fi(u,v) = 0 and Fy(u,v) = 0 [5]. Since Q, R satisfy F1(Q,R) = 0 and
F»(Q, R) = 0 by (2.38) and (2.39), Q, R are constants. Then (2.34) implies
that 3 = y3 and 24, = y4 = 0. This with Sublemma 2.4 contradicts the
assumption e;z3 # 0. Therefore we can conclude f = 0. Then from (2.18),
(2.19) and (2.20) we know (ys — Z4)(Z4ys + z3y3) = 0. This and Sublemma
2.4 mean that z4y4 + z3y3 = 0. Subsequently this and f = 0 imply that
y3 = 0. And (2.19) implies that y, = 0. O

+ 3}{4R? 4 (—48Q + 2)\)R + (24Q°* - 32Q))}

Now we will state the main theorem and will prove it.

THEOREM 2.6. Let M? be a connected surface of 1-type Gauss map
with RP =0 in E*. Then M? is one of the followings:

1) an open part of a sphere,
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2) an open part of a product of two plane circles,
3) an open part of a helical cylinder.

PROOF. Assume that e, e, - , e, are orthonormal frame on M? such
that ey, e, are tangent to M2, e3,--- e, are normal to M? and let M; de-
note the set points of M? at which the dimension of the first normal space
Im h is i. Also suppose that the coefficients [h];] of the second funda-
mental form A are given by (2.2) and that the normal frame es, - - - , e, are
parallel in the normal bundle. Let V be a component of M,. Then V is
contained in a 4-dimensional Euclidean space by Lemma 2.1 and thus we
may assume that n = 4. Lemma 2.5 implies that if e;x3 # 0 or e;z4 # 0,
then dim/m h < 1. Thus we can conclude that e;z3 = e;z4 = 0 in V.
Similarly we have e3ys = egys = 0. These and (2.18) ~ (2.23) imply that
T3, Y3, L4, Y4 are all constants in V', which implies that ¢ = 0 in (2.3). If the
interior of M; is nonempty, then every component of the interior of M, is
contained in E3 or an open part of a helical cylinder by Lemma 2.2. If a
component of M, is contained in E3, then it is easy to see that ¢ = 0 in
(2.3) by theorem in [7]. Subsequently we can conclude that ¢ = 0 in (2.3)
or M? = M; U M, (In this case the interior of M, consists of open parts of
helical cylinders fully contained in 4-dimensional Euclidean spaces.). In
the latter case since every component of the interior of M; has nonzero
constant mean curvature |H| by Lemma 2.2, M? = M; or M? = M, by
continuity. But the case M? = M, can’t occur. This implies that if ¢ # 0
in (2.3), then M? is is an open part of a helical cylinder fully contained
in 4-dimensional Euclidean space. If ¢ = 0 in (2.3), then M? has paral-
lel mean curvature vector, constant square length of second fundamental
form and flat normal connection. Thus M? is possibly an open part of a
sphere or a circular cylinder or a product of two plane circles by Lemma
2.5 in [4, page 108] and Theorem 3.1 in [6]. Conversely, it is easy to see
that these surfaces have 1-type Gauss map. g
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