ANTI-LINEAR INVOLUTIONS ON A G-VECTOR BUNDLE

SUNG SOOK KIM AND JOONKOOK SHIN

ABSTRACT. We study the anti-linear involutions on a real algebraic vector bundle with a compact real algebraic group action.

1. Introduction

Let G be a compact real algebraic group and Ω be a real G-module. An affine real algebraic G-variety is a G-invariant set

$$X = \{x \in \Omega \mid p_1(x) = \dots = p_m(x) = 0\}$$

for polynomials $p_1, \ldots, p_m : \Omega \to \mathbb{R}$, *i.e.*, X is a real algebraic variety with G-action.

DEFINITION. An algebraic G-vector bundle $E \to X$ is a vector bundle on X with an algebraic G-action such that the following holds:

- (1) The total space E and the base space X are affine algebraic G-varieties.
- (2) The projection $\pi: E \to X$ is a G-equivariant polynomial map.
- (3) The G-action is linear on the fibers $E_x := \pi^{-1}(x)$, (i.e., for every $g \in G$ and $x \in X$ the map $v \to gv : E_x \to E_{gx}$ is linear).

In this paper we are concerned with equivariant vector bundles in an algebraic category. In Section 2, we analyze anti-linear involutions on a vector bundle. But the arguments in Section 2 work in any category such

Received December 8, 1997. Revised November 18, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 57R22.

Key words and phrases: anti-linear involution, G-vector bundle, complex G-line bundle, principal isotropy group.

This present studies were supported by the Basic Science Research Institute program, Ministry of Education, 1996, Project number BSRI-96-1428.

as in topological and smooth ones. In Section 3, we prove some theorems which hold in an algebraic category but not in a smooth category. Antilinear involutions come out when we study the relation between real G-vector bundles and complex G-vector bundles. First, take a real G-vector bundle and complexify with $\mathbb C$. Then we get a complex G-vector bundle with an anti-linear action. The fixed point set of the anti-linear action on complex G-vector bundle is an original real G-vector bundle. So it is useful to study anti-linear involutions on a G-vector bundle to understand the relation between real G-vector bundles and complex G-vector bundles.

2. Anti-linear involutions on a vector bundle

Let G be a compact real algebraic group and let X be an affine real algebraic G-variety. Let $\pi: E \to X$ be a real algebraic G-vector bundle. We denote by $\operatorname{Aut}_{\mathbb{R}}(E)^G$ the group of real G-vector bundle automorphisms of E.

REMARK. Aut_R(E)^G depends on the category. For example, let E be a trivial vector bundle with trivial action, i.e., $E = B \times \mathbb{R}^n$, where B is the base space. Then $\operatorname{Aut_R}(E)^G$ can be viewed as the set of maps from B to $GL(n,\mathbb{R})$, where the maps are smooth in a smooth category or algebraic (i.e., polynomial map) in an algebraic category. In general, there are many more smooth maps than polynomial maps from B to $GL(n,\mathbb{R})$. For example, if $B = \mathbb{R}$ and n = 1, then only the nonzero constant maps are polynomial maps from $B = \mathbb{R}$ to $GL(1,\mathbb{R}) = \mathbb{R}^*$, while there are many non-constant smooth maps from \mathbb{R} to \mathbb{R}^* . One of them is the exponential map.

DEFINITION. We say that $\iota \in \operatorname{Aut}_{\mathbb{R}}(E)^G$ is a complex structure on E if $\iota^2 = -1$, and E with ι is called a complex G-vector bundle. (Note that each fiber over x in X admits a structure of complex G_x -module given by $(a + b\sqrt{-1})w = aw + b\iota(w)$ where $a, b \in \mathbb{R}$ and $w \in E$.)

In the following we assume that E is a complex G-vector bundle (with ι as the complex structure) and denote by $\operatorname{Aut}_{\mathbb{C}}(E)^G$ the group of complex G-vector bundle automorphisms of E, *i.e.*, the group consisting of elements in $\operatorname{Aut}_{\mathbb{R}}(E)^G$ which commute with the complex structure ι .

DEFINITION. We say that $\tau \in \operatorname{Aut}_{\mathbb{R}}(E)^G$ is anti-linear if $\tau\iota = -\iota\tau$ (in other words, if $\tau(cw) = \bar{c}\tau(w)$ for $c \in \mathbb{C}$ and $w \in E$) (see [2]). Furthermore, if $\tau^2 = 1$, then it is called an anti-linear involution. We denote by $\operatorname{AL}(E)^G$ the set of anti-linear involutions of E.

LEMMA 1. If $\tau \in AL(E)^G$, then the fixed part $\pi|E^{\tau}: E^{\tau} \to X$ is a real G-vector bundle of $\dim_{\mathbb{C}} E$ and $E = E^{\tau} \oplus \iota(E^{\tau})$.

PROOF. Any element $w \in E$ is expressed as

$$w = (w + \tau(w))/2 + (w - \tau(w))/2.$$

Since τ is an involution, the two terms on the right hand side are eigenvectors of τ with eigenvalues 1 and -1 respectively. The anti-linearity of τ implies that the eigenspaces with eigenvalues 1 and -1 are isomorphic via ι . This proves the lemma.

DEFINITION. Two elements τ and τ' in $AL(E)^G$ are said to be *conjugate* if there is $\Phi \in Aut_{\mathbb{C}}(E)^G$ such that $\tau' = \Phi \tau \Phi^{-1}$.

LEMMA 2. Two elements τ and τ' in $AL(E)^G$ are conjugate if and only if E^{τ} and $E^{\tau'}$ are isomorphic.

PROOF. If τ and τ' are conjugate, then there is a $\Phi \in \operatorname{Aut}_{\mathbb{C}}(E)^G$ such that $\tau'\Phi = \Phi\tau$. This means that Φ maps E^{τ} onto $E^{\tau'}$, and Φ is an isomorphism.

Conversely, suppose that E^{τ} and $E^{\tau'}$ are isomorphic and let $\phi: E^{\tau} \to E^{\tau'}$ be an isomorphism. By Lemma 1, ϕ extends to an element $\Phi \in \operatorname{Aut}_{\mathbb{C}}(E)^G$ by

$$\Phi(u + \iota(v)) = \phi(u) + \iota\phi(v)$$

where $u, v \in E^{\tau}$. Then one sees that $\tau' = \Phi \tau \Phi^{-1}$.

Multiplication on fibers of E by a non-zero complex number gives an element of $\operatorname{Aut}_{\mathbb{C}}(E)^G$, so we regard $\mathbb{C}^* = \mathbb{C} - \{0\}$ as a subgroup of $\operatorname{Aut}_{\mathbb{C}}(E)^G$.

THEOREM 3. If $\operatorname{Aut}_{\mathbb{C}}(E)^G = \mathbb{C}^*$, then E^{τ} and $E^{\tau'}$ are isomorphic for any $\tau, \tau' \in \operatorname{AL}(E)^G$.

PROOF. Since $\tau'\tau$ is an element of $\operatorname{Aut}_{\mathbb{C}}(E)^G$, it follows from the hypothesis that $\tau' = \lambda \tau$ for some $\lambda \in \mathbb{C}^*$. Note that $|\lambda| = 1$ since both τ and τ' are anti-linear involutions. Let μ be a square root of λ . Then $\mu\tau\mu^{-1} = \lambda\tau$, which shows that τ' is conjugate to τ . The theorem then follows from Lemma 2.

3. Equivariant vector bundles in an algebraic category

In this section, we are concerned with some properties of equivariant vector bundles which hold in an algebraic category but not in a smooth category. First, we shall give a case where $\operatorname{Aut}_{\mathbb{C}}(E)^G = \mathbb{C}^*$. Henceforth we assume that the base space X is a real G-module of finite dimension.

DEFINITION. Let H be a closed subgroup of G. A complex G-module of finite dimension is called *multiplicity free* with respect to H if when viewed as an H-module, each irreducible H-module occurs with multiplicity at most 1.

Remark. Any complex G-module of dimension one is multiplicity free with respect to any closed subgroup H.

THEOREM 4. If the fiber E_0 of E over the origin $0 \in X$, where X is a real G-module, is irreducible as a G-module and multiplicity free with respect to the principal isotropy group H of X, then $\mathrm{Aut}_{\mathbb{C}}(E)^G = \mathbb{C}^*$.

PROOF. The restricted bundle $E|X^H|$ decomposes into eigenbundles ([1], Th 1.6.2) as H-vector bundles:

$$E|X^H = \bigoplus_{\gamma \in Irr(H)} E_{\gamma}$$

where Irr(H) denotes the isomorphism classes of complex irreducible H-modules and E_{χ} is the eigenbundle of type χ . Let A be an element of $\operatorname{Aut}_{\mathbb{C}}(E)^G$. The multiplicity free condition and the Schur's lemma ([4], Ch. 2, Prop. 4) imply that A gives multiplication by a non-zero complex number on each fiber of E_{χ} . Therefore $A|E_{\chi}$ can be viewed as a nowhere zero complex valued polynomial function on X^H . Since every non-constant polynomial has a complex root, this means that the polynomial is a constant a_{χ} . Note that the origin 0 lies in X^H and A

restricted to the G-module E_0 is an automorphism of E_0 . Since E_0 is irreducible as a G-module by assumption, $A|E_0$ gives a scalar multiplication, again by the Schur's lemma. This means that constants a_{χ} are independent of χ . Thus A gives a scalar multiplication on $E|X^H$. It follows from the equivariance of A that A gives a scalar multiplication on E restricted to the G-orbit GX^H of X^H . Since H is the principal isotropy group of X, the closure of GX^H agrees with X; so A gives a scalar multiplication on the whole of E by continuity.

REMARK. Theorem 4 does not hold in a smooth category. See "Remark" in Section 2.

COROLLARY 5. If E is a complex G-line bundle over a real representation space X, then E^{τ} and $E^{\tau'}$ are isomorphic for any $\tau, \tau' \in AL(E)^G$.

PROOF. $\operatorname{Aut}_{\mathbb{C}}(E)^G=\mathbb{C}^*$ by Theorem 4 and the Remark above Theorem 4. So it follows from Theorem 3.

REMARK. In a smooth category, any G-vector bundle over a representation space is trivial. But in algebraic category, there are non-trivial complex vector bundles over a representation space (see [3] for the real vector bundles and see [5] for the complex vector bundles).

ACKNOWLEDGMENTS. We would like to thank Mikiya Masuda for his help and encouragement and also the refree for valuable comments.

References

- [1] M. F. Atiyah, K-theory, New York, Benjamin, 1964.
- [2] _____, K-theory and Reality, Quart. J. Math. 17 (1966), 367-386.
- [3] H. Miki, Non-linearizable real algebraic actions of $O(2,\mathbb{R})$ on \mathbb{R}^4 , Osaka J. Math. 33 (1996), 387-398.
- [4] J. P. Serre, Linear representations of finite groups, New York Berlin Heidelberg, Springer-Verlag, 1977.
- [5] G.W. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris Ser. 1 309 (1989), 89-94.

Sung Sook Kim Department of Applied Mathematics Paichai University Taejon 302-735, Korea

Joonkook Shin Department of Mathematics Chungnam National University Taejon 305-764, Korea