A GENERALIZATION OF PREECE'S IDENTITY

YONG SUP KIM AND ARJUN K. RATHIE

ABSTRACT. The aim of this research is to provide a generalization of the well-known, interesting and useful identity due to Preece by using classical Dixon's theorem on a sum of $_3F_2$.

1. Introduction and preliminaries

The generalized hypergeometric function with p numerator and q denominator parameters is defined by

(1.1)
$${}_{p}F_{q}\begin{bmatrix}\alpha_{1},\ldots,\alpha_{p}\\\beta_{1},\ldots,\beta_{q}\end{bmatrix} = {}_{p}F_{q}(\alpha_{1},\ldots,\alpha_{p};\beta_{1},\ldots,\beta_{q};z)$$

$$= \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\ldots(\alpha_{p})_{n}z^{n}}{(\beta_{1})_{n}\ldots(\beta_{q})_{n}n!}$$

where $(\alpha)_n$ denotes the Pochhammer symbol (or the shifted factorial, since $(1)_n = n!$) defined by, α any complex number,

(1.2)
$$(\alpha)_n := \begin{cases} \alpha(\alpha+1)\dots(\alpha+n-1) & \text{if } n \in \mathbb{N} := \{1, 2, 3, \dots\}, \\ 1 & \text{if } n = 0. \end{cases}$$

Using the fundamental property $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$, $(\alpha)_n$ can be written in the form

(1.3)
$$(\alpha)_n = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)},$$

Received March 26, 1998. Revised August 8, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 33C20; Secondary 33C05, 33C10, 33C15.

Key words and phrases: Preece's identity, Watson's theorem, Dixon's theorem.

The first author was supported by research fund of Wonkwang University in 1998.

where Γ is the well-known Gamma function.

We just introduce some necessary identities related to the Pochhammer symbol and the Gamma function without proof:

(1.4)
$$(\alpha)_{n-k} = \frac{(-1)^k (\alpha)_n}{(1-\alpha-n)_k} \ (0 \le k \le n);$$

(1.5)
$$\frac{\Gamma(1-\alpha-n)}{\Gamma(1-\alpha)} = \frac{(-1)^n}{(\alpha)_n};$$

(1.6)
$$\Gamma(\alpha - n)\Gamma(1 - \alpha + n) = (-1)^n \Gamma(\alpha)\Gamma(1 - \alpha);$$

$$(1.7) \qquad (\alpha)_{2n} = 2^{2n} \left(\frac{\alpha}{2}\right)_n \left(\frac{\alpha+1}{2}\right)_n \quad (n \in \mathbb{N} \cup \{0\});$$

(1.8)
$$\Gamma(2\alpha) = 2^{2\alpha - 1}\Gamma(\alpha)\Gamma\left(\alpha + \frac{1}{2}\right) / \Gamma\left(\frac{1}{2}\right),$$

which is the well-known Legendre duplication formula for the Gamma function.

From the theory of differential equations, Professor Preece [3] established the following well known, interesting and useful identity involving product of generalized hypergeometric series:

(1.9)
$${}_{1}F_{1}(\alpha; 2\alpha; x) \times {}_{1}F_{1}(\alpha; 2\alpha; -x) = {}_{1}F_{2}(\alpha; \alpha + \frac{1}{2}, 2\alpha; \frac{x^{2}}{4}).$$

Later on Professor Bailey [1] generalized this identity and obtained the following very interesting and useful result:

$$_{1}F_{1}(\alpha;2\alpha;x) \times {}_{1}F_{1}(\beta;2\beta;-x) = {}_{2}F_{3}\left[egin{array}{c} rac{1}{2}(lpha+eta),rac{1}{2}(lpha+eta+1) \\ lpha+rac{1}{2},eta+rac{1}{2},lpha+eta \end{array};rac{x^{2}}{4}
ight]$$

by using classical Watson's theorem [2] on a sum of $_3F_2$:

provided Re(2c - a - b) > -1.

We are aiming at giving a generalization of (1.9) by using classical Dixon's theorem [2] on a sum of $_3F_2$:

provided $\operatorname{Re}(a-2b-2c) > -2$.

2. A Generalization of (1.9)

We want to show the following generalization of (1.9): For $l \in \mathbb{N}$,

$$(2.1) \ _1F_1(\alpha;\,l\alpha;\,x)\times {}_1F_1(\alpha;\,l\alpha;\,-x)={}_2F_3\left[\begin{matrix}\alpha,\,l\alpha-\alpha\\l\alpha,\,\frac{1}{2}l\alpha,\,\frac{1}{2}l\alpha+\frac{1}{2}\,;\,\frac{x^2}{4}\end{matrix}\right],$$

which, for the case l=2, reduces immediately to the Preece's identity (1.9).

Indeed, let

(A)
$${}_{1}F_{1}(\alpha; l\alpha; x) \times {}_{1}F_{1}(\alpha; l\alpha; -x) = \sum_{n=0}^{\infty} a_{2n}x^{2n},$$

since the left-hand side of (A) is an even function of x.

Beginning with the left-hand side of (A), we find

$${}_{1}F_{1}(\alpha; l\alpha; x) \times {}_{1}F_{1}(\alpha; l\alpha; -x)$$

$$= \left[\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{(l\alpha)_{n}} \frac{x^{n}}{n!} \right] \left[\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{(l\alpha)_{n}} \frac{(-x)^{n}}{n!} \right]$$

$$= \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \frac{(\alpha)_{n-k}(\alpha)_{k}(-1)^{k}}{(l\alpha)_{n-k}(l\alpha)_{k}(n-k)!k!} \right] x^{n},$$

in which, using the identity (1.4), we have

(B)
$$a_n = \frac{(\alpha)_n}{n!(l\alpha)_n} \sum_{k=0}^n \frac{(-n)_k(\alpha)_k (1 - l\alpha - n)_k}{(1 - \alpha - n)_k (l\alpha)_k k!}$$
$$= \frac{(\alpha)_n}{n!(l\alpha)_n} {}_3F_2 \begin{bmatrix} -n, \alpha, 1 - l\alpha - n \\ 1 - \alpha - n, l\alpha \end{bmatrix}.$$

Replacing n by 2n in (B), we obtain

(C)
$$a_{2n} = \frac{(\alpha)_{2n}}{(2n)!(l\alpha)_{2n}} {}_{3}F_{2} \begin{bmatrix} -2n, \alpha, 1 - l\alpha - 2n \\ 1 - \alpha - 2n, l\alpha \end{bmatrix}; 1$$

To apply Dixon's theorem (1.12) to (C) by setting $a=-2n,\ b=\alpha$ and $c=1-l\alpha-2n,$ we have

(D)
$$a_{2n} = \frac{(\alpha)_{2n}}{(2n)!(l\alpha)_{2n}} \frac{\Gamma(l\alpha)}{\Gamma(l\alpha+n)} \frac{\Gamma(l\alpha-\alpha+n)}{\Gamma(l\alpha-\alpha)} \cdot \frac{\Gamma(1-n)}{\Gamma(1-2n)} \frac{\Gamma(1-2n-\alpha)}{\Gamma(1-n-\alpha)}.$$

Now, making use of identities (1.6) and (1.8), we find

(E)
$$\frac{\Gamma(1-n)}{\Gamma(1-2n)} = (-1)^n \left(\frac{1}{2}\right)_n 2^{2n}.$$

Also using (1.5), we have

(F)
$$\frac{\Gamma(1-2n-\alpha)}{\Gamma(1-n-\alpha)} = (-1)^n \frac{(\alpha)_n}{(\alpha)_{2n}}.$$

If we put (E) and (F) into (D) with the aid of (1.3) and (1.7), we readily obtain

(G)
$$a_{2n} = \frac{(\alpha)_n (l\alpha - \alpha)_n}{2^{2n} n! \left(\frac{l\alpha}{2}\right)_n \left(\frac{l\alpha}{2} + \frac{1}{2}\right)_n (l\alpha)_n}.$$

Finally applying (G) to (A) produces immediately our desired result (2.1).

3. Concluding remarks

We conclude by saying that the generalization (2.1) of the Preece's identity (1.9) given in section 2 cannot be derived with the help of classical Watson's theorem.

On the other hand, for another very short proofs of (1.9) and (1.10) and a few other interesting contiguous results, see references [4], [5], [6] and [7].

ACKNOWLEDGMENT. The present investigation was initiated while the second named-author's visit at Wonkwang University in December 1997. The authors are grateful to the referee for making certain useful suggestions.

References

- [1] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. 28 (1928), 242-254.
- [2] _____, Generalized hypergeometric series, Cambridge University Press, London (1935), reprinted by Stechert-Hafner, New York (1964).
- [3] C. T. Preece, The product of two generalized hypergeometric functions, Proc. London Math. Soc. 22 (1924), 370-380.
- [4] Arjun K. Rathie, A short proof of Preece's identities and other contiguous results, Rev. Mat. Estat., (1997), accepted for publication.
- [5] _____, On two results contiguous to Preece's identity, Analele Univ. din Timisora, (1997), accepted for publication.

- [6] Arjun K. Rathie and Junesang Choi, A note on a generalization of Preece's identity and other contiguous results, Bull. Korean Math. Soc. 35 (1998), 339-344.
- [7] _____, A note on an identity due to Preece, Far East J. Math. Sci. 6 (1998), 205-209.

Yongsup Kim
Department of Mathematics
Wonkwang University
Iksan 570-749, Korea
E-mail: yspkim@wonnms.wonkwang.ac.kr

Arjun K. Ratie Department of Mathematics Govt. Dungar College (M.D.S. University) Bikaner-334001, Rajasthan State India