MARKOV-BERNSTEIN TYPE INEQUALITIIES FOR POLYNOMIALS

  • Kwon, K.H. (Department of Mathematics, KIST) ;
  • Lee, D.W. (Topology and Geometry Research Center, Kyungpook National University)
  • Published : 1999.02.01

Abstract

Let $\mu$(x) be an increasing function on the real line with finite moments of all oeders. We show that for any linear operator T on the space of polynomials and any interger n $\geq$ 0, there is a constant $\gamma n(T)\geq0$, independent of p(x), such that $\parallel T_p\parallel\leq\gamma n(T)\parallel P\parallel$, for any polynomial p(x) of degree $\leq$ n, where We find a formular for the best possible value $\Gamma_n(T)\;of\;\gamma n(T)$ and estimations for $\Gamma_n(T)$. We also give several illustrating examples when T is a differentiation or a difference operator and $d\mu$(x) is an orthogonalizing measure for classical or discrete orthogonal polynomials.

Keywords

References

  1. Constr. Approx. v.10 Markov-Bernstein-Type Inequalities for Classes of Polynomials with Restricted Zeros P. Borwein;T. Erdelyi
  2. Trans. Amer. Math. Soc. v.347 Some inequalities of algebraic polynomials with nonnegative coefficients W. Chen
  3. An Introduction to Orthogonal Polynomials T. S. Chihara
  4. SIAM J. Math. Anal. v.18 New inequalities of Markov type P. Dorfler
  5. Mh. Math. v.109 A Markov Type Inequality for Higher Derivatives of Polynomials P. Dorfler
  6. Sitzungsber. Abt.Ⅱ.Osterr. Akad. Wiss. Math. Naturwiss. v.Kl 200 Uber die bestmogliche Konstante in Markov-Ungleichungen mit Laguerre-Gewicht P. Dorfler
  7. J. Math. Anal. Appl. v.182 Weighted $L^2$-analogues of Bernstein's inequality and classical orthogonal polynomials A. Guessab;G. V. Milovanovic
  8. The Theory of Matrices(2nd, ed.) P. Lancaster;M. Tismenetsky
  9. SIAM J. Math. Anal. v.14 An inequality of the Markov-Bernstein type for polynomials L. Mirsky
  10. Classical Orthogonal polynomials of a Discrete Variable A. F. Nikiforov;S. K. Suslov;V. B. Uvarov
  11. AMS Coll. Publ. v.23 Orthogonal Polynomials G. Szego
  12. Mathematica (Cluj) v.2 Remark on a theorem by Erhard Schmidt P. Turan