FUZZY r-PREOPEN SETS AND FUZZY r-PRECONTINUOUS MAPS

SEOK JONG LEE AND EUN PYO LEE

ABSTRACT. In this paper, we introduce the notions of fuzzy r-preopen (r-preclosed) sets and fuzzy r-precontinuous (r-preopen, r-preclosed) maps, and investigate some of their properties.

1. Introduction

As a generalization of sets, the concept of fuzzy sets was introduced by Zadeh. Chang [2] and Lowen [8] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Some authors [4,5,7,9] introduced new definitions of fuzzy topology as a generalization of Chang's fuzzy topology or Lowen's fuzzy topology.

Shahna [10] introduced the concepts of fuzzy preopen sets and fuzzy precontinuous maps in Chang's fuzzy topology. By generalizing these concepts, we introduce the concepts of fuzzy r-preopen sets and fuzzy r-precontinuous maps in fuzzy topological spaces. Then the concepts introduced by Shahna becomes a special case of our definitions.

2. Preliminaries

In this paper, I will denote the unit interval [0,1] of the real line and $I_0 = (0,1]$. A member μ of I^X is called a fuzzy sets of X. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Received May 4, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy r-preopen, fuzzy r-preneighborhood, fuzzy r-precontinuous.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a Chang's fuzzy topological space.

A fuzzy topology on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\bigvee \mu_i) \geq \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

For each $\alpha \in (0,1]$, a fuzzy point x_{α} in X is a fuzzy set of X defined by

$$x_{\alpha}(y) = \left\{ egin{array}{ll} lpha & ext{if} & y = x, \\ 0 & ext{if} & y
eq x. \end{array}
ight.$$

In this case, x and α are called the *support* and the *value* of x_{α} , respectively. A fuzzy point x_{α} is said to *belong* to a fuzzy set μ of X, denoted by $x_{\alpha} \in \mu$, if $\alpha \leq \mu(x)$. A fuzzy point x_{α} in X is said to be *quasi-coincident* with μ , denoted by $x_{\alpha}q\mu$, if $\alpha + \mu(x) > 1$. A fuzzy set ρ of X is said to be *quasi-coincident* with a fuzzy set μ of X, denoted by $\rho q\mu$, if there is an $x \in X$ such that $\rho(x) + \mu(x) > 1$.

DEFINITION 2.1 ([6]). Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is called

- (1) a fuzzy r-open set of X if $\mathcal{T}(\mu) \geq r$,
- (2) a fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \geq r$.

DEFINITION 2.2 ([3]). Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \mathcal{T}(\rho^c) \geq r \}.$$

Fuzzy r-preopen sets and fuzzy r-precontinuous maps

DEFINITION 2.3 ([6]). Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-interior is defined by

$$\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \ge \rho, \mathcal{T}(\rho) \ge r \}.$$

THEOREM 2.4 ([6]). For a fuzzy set μ of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$, we have:

- (1) $\operatorname{int}(\mu, r)^c = \operatorname{cl}(\mu^c, r)$.
- (2) $\operatorname{cl}(\mu, r)^c = \operatorname{int}(\mu^c, r)$.

DEFINITION 2.5 ([6]). Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\operatorname{int}(\rho,r) \leq \mu \leq \rho$.

DEFINITION 2.6 ([6]). Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-semiclosure is defined by

$$\mathrm{scl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \text{ is fuzzy } r\text{-semiclosed} \}$$

and the fuzzy r-semiinterior is defined by

$$\operatorname{sint}(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \geq \rho, \ \rho \text{ is fuzzy r-semiopen} \}.$$

DEFINITION 2.7 ([6]). Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ of X is called

- (1) a fuzzy r-neighborhood of x_{α} if there is a fuzzy r-open set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy r-quasi-neighborhood of x_{α} if there is a fuzzy r-open set ρ in X such that $x_{\alpha}q\rho \leq \mu$,
- (3) a fuzzy r-semineighborhood of x_{α} if there is a fuzzy r-semiopen set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (4) a fuzzy r-quasi-semineighborhood of x_{α} if there is a fuzzy r-semiopen set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

DEFINITION 2.8 ([6]). Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y,
- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X,
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

DEFINITION 2.9 ([6]). Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-semicontinuous map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-open set μ of Y,
- (2) a fuzzy r-semiopen map if $f(\mu)$ is a fuzzy r-semiopen set of Y for each fuzzy r-open set μ of X,
- (3) a fuzzy r-semiclosed map if $f(\mu)$ is a fuzzy r-semiclosed set of Y for each fuzzy r-closed set μ of X.

3. Fuzzy r-preopen sets

DEFINITION 3.1. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-preopen if $\mu \leq \operatorname{int}(\operatorname{cl}(\mu, r), r)$,
- (2) fuzzy r-preclosed if $\operatorname{cl}(\operatorname{int}(\mu, r), r) \leq \mu$.

THEOREM 3.2. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then the following statements are equivalent:

- (1) μ is fuzzy r-preopen.
- (2) μ^c is fuzzy r-preclosed.

Proof. It follows from Theorem 2.4.

REMARK 3.3. It is obvious that every fuzzy r-open (r-closed) set is a fuzzy r-preopen (r-preclosed) set. That the converse is false is shown by following example. It also shows that the intersection (union) of

any two fuzzy r-preopen (r-preclosed) sets need not be fuzzy r-preopen (r-preclosed). Even the intersection (union) of a fuzzy r-preopen (r-preclosed) set with a fuzzy r-open (r-closed) set may fail to be fuzzy r-preopen (r-preclosed).

EXAMPLE 3.4. Let $X = \{x, y\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{3}, \quad \mu_1(y) = \frac{2}{3};$$

and

$$\mu_2(x) = \frac{3}{4}, \quad \mu_2(y) = \frac{1}{4}.$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then, clearly, \mathcal{T} is a fuzzy topology on X.

- (1) Since $\operatorname{int}(\operatorname{cl}(\mu_2, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\tilde{1}, \frac{1}{2}) = \tilde{1} \geq \mu_2$, μ_2 is fuzzy $\frac{1}{2}$ -preopen. But μ_2 is not fuzzy $\frac{1}{2}$ -open, because $\mathcal{T}(\mu_2) = 0$.
- (2) In view of Theorem 3.2, μ_2^c is fuzzy $\frac{1}{2}$ -semiclosed which is not fuzzy $\frac{1}{2}$ -closed.
- (3) Note μ_1 is fuzzy $\frac{1}{2}$ -open and hence fuzzy $\frac{1}{2}$ -preopen. Since $\operatorname{int}(\operatorname{cl}(\mu_1 \wedge \mu_2, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\mu_1^c, \frac{1}{2}) = \tilde{0} \ngeq \mu_1 \wedge \mu_2, \ \mu_1 \wedge \mu_2$ is not fuzzy $\frac{1}{2}$ -preopen.
- (4) Clearly, μ_1^c and μ_2^c are fuzzy $\frac{1}{2}$ -preclosed, but $\mu_2^c \vee \mu_3^c = (\mu_2 \wedge \mu_3)^c$ is not fuzzy $\frac{1}{2}$ -preclosed.

Remark 3.5. That fuzzy r-semiopen sets and fuzzy r-preopen sets are independent notions is shown by following example.

EXAMPLE 3.6. Let $X = \{x\}$ and μ_1 , μ_2 and μ_3 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{4}, \quad \mu_2(x) = \frac{1}{3}, \quad \mu_3(x) = \frac{1}{5}.$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then, clearly, \mathcal{T} is a fuzzy topology on X.

(1) Note that $cl(int(\mu_2, \frac{1}{2}), \frac{1}{2}) = cl(\mu_1, \frac{1}{2}) = \mu_1^c \ge \mu_2$ and

$$\operatorname{int}(\operatorname{cl}(\mu_2, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\mu_1^c, \frac{1}{2}) = \mu_1 \ngeq \mu_2.$$

Thus μ_2 is fuzzy $\frac{1}{2}$ -semiopen which is not fuzzy $\frac{1}{2}$ -preopen.

(2) Note that $\operatorname{int}(\operatorname{cl}(\mu_3, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\mu_1^c, \frac{1}{2}) = \mu_1 \geq \mu_3$ and

$$cl(int(\mu_3, \frac{1}{2}), \frac{1}{2}) = cl(\tilde{0}, \frac{1}{2}) = \tilde{0} \ngeq \mu_3.$$

Thus μ_3 is fuzzy $\frac{1}{2}$ -preopen which is not fuzzy $\frac{1}{2}$ -semiopen.

THEOREM 3.7. (1) Any union of fuzzy r-preopen sets is fuzzy r-preopen.

(2) Any intersection of fuzzy r-preclosed sets is fuzzy r-preclosed.

Proof. (1) Let $\{\mu_i\}$ be a collection of fuzzy r-preopen sets. Then for each $i, \mu_i \leq \operatorname{int}(\operatorname{cl}(\mu_i, r), r)$. Thus we have

$$\bigvee \mu_i \leq \bigvee \operatorname{int}(\operatorname{cl}(\mu_i, r), r) \leq \operatorname{int}(\operatorname{cl}(\bigvee \mu_i, r), r).$$

Hence $\bigvee \mu_i$ is a fuzzy r-preopen set.

(2) It follows from (1) using Theorem 3.2.

DEFINITION 3.8. Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-preclosure is defined by

$$\operatorname{pcl}(\mu,r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \text{ is fuzzy r-preclosed} \}$$

and the fuzzy r-preinterior is defined by

$$pint(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \geq \rho, \ \rho \text{ is fuzzy } r\text{-preopen} \}.$$

Obviously $\operatorname{pcl}(\mu, r)$ is the smallest fuzzy r-preclosed set which contains μ and $\operatorname{pint}(\mu, r)$ is the greatest fuzzy r-preopen set which contained in μ . Also, $\operatorname{pcl}(\mu, r) = \mu$ for any fuzzy r-preclosed set μ and $\operatorname{pint}(\mu, r) = \mu$ for any fuzzy r-preopen set μ . Also we have

$$\operatorname{int}(\mu, r) \leq \operatorname{pint}(\mu, r) \leq \mu \leq \operatorname{pcl}(\mu, r) \leq \operatorname{cl}(\mu, r).$$

Moreover, we have the following results.

THEOREM 3.9. Let (X, \mathcal{T}) be a fuzzy topological space and

$$pcl(pint): I^X \times I_0 \to I^X$$

the fuzzy r-preclosure (r-preinterior) operator in (X, \mathcal{T}) . Then for $\mu, \rho \in I^X$ and $r \in I_0$,

- (1) $\operatorname{pcl}(\tilde{0}, r) = \tilde{0}, \operatorname{pcl}(\tilde{1}, r) = \tilde{1}; \operatorname{pint}(\tilde{0}, r) = \tilde{0}, \operatorname{pint}(\tilde{1}, r) = \tilde{1}.$
- (2) $pcl(\mu, r) \ge \mu$; $pint(\mu, r) \le \mu$.
- (3) $\operatorname{pcl}(\mu \vee \rho, r) \geq \operatorname{pcl}(\mu, r) \vee \operatorname{pcl}(\rho, r); \quad \operatorname{pint}(\mu \wedge \rho, r) \leq \operatorname{pint}(\mu, r) \wedge \operatorname{pint}(\rho, r).$

(4) $\operatorname{pcl}(\operatorname{pcl}(\mu, r), r) = \operatorname{pcl}(\mu, r)$; $\operatorname{pint}(\operatorname{pint}(\mu, r), r) = \operatorname{pint}(\mu, r)$.

Proof. It is obvious.

THEOREM 3.10. For a fuzzy set μ of a fuzzy topological space X and $r \in I_0$,

- (1) $\operatorname{pint}(\mu, r)^c = \operatorname{pcl}(\mu^c, r)$.
- (2) $\operatorname{pcl}(\mu, r)^c = \operatorname{pint}(\mu^c, r)$.

Proof. (1) Since $pint(\mu,r) \leq \mu$ and $pint(\mu,r)$ is fuzzy r-preopen in X, $\mu^c \leq pint(\mu,r)^c$ and $pint(\mu,r)^c$ is fuzzy r-preclosed in X. Thus

$$\operatorname{pcl}(\mu^c, r) \leq \operatorname{pcl}(\operatorname{pint}(\mu, r)^c, r) = \operatorname{pint}(\mu, r)^c.$$

Conversely, since $\mu^c \leq \operatorname{pcl}(\mu^c, r)$ and $\operatorname{pcl}(\mu^c, r)$ is fuzzy r-preclosed in X, $\operatorname{pcl}(\mu^c, r)^c \leq \mu$ and $\operatorname{pcl}(\mu^c, r)^c$ is fuzzy r-preopen in X. Thus

$$\operatorname{pcl}(\mu^c, r)^c = \operatorname{pint}(\operatorname{pcl}(\mu^c, r)^c, r) \leq \operatorname{pint}(\mu, r)$$

and hence $pint(\mu, r)^c \leq pcl(\mu^c, r)$.

(2) Similar to (1).

THEOREM 3.11. For a fuzzy set μ of a fuzzy topological space X and $r \in I_0$,

- (1) $\operatorname{pint}(\operatorname{pcl}(\operatorname{pint}(\operatorname{pcl}(\mu,r),r),r),r) = \operatorname{pint}(\operatorname{pcl}(\mu,r),r).$
- (2) $\operatorname{pcl}(\operatorname{pint}(\operatorname{pcl}(\operatorname{pint}(\mu,r),r),r),r) = \operatorname{pcl}(\operatorname{pint}(\mu,r),r).$

Proof. (1) Since $pint(pcl(\mu, r), r)$ is fuzzy r-preopen and $pint(pcl(\mu, r), r) \leq pcl(pint(pcl(\mu, r), r), r)$,

it follows that

$$pint(pcl(\mu, r), r) = pint(pint(pcl(\mu, r), r), r)$$

$$< pint(pcl(pint(pcl(\mu, r), r), r), r).$$

Conversely, since $pint(pcl(\mu, r), r) \leq pcl(\mu, r)$ and $pcl(\mu, r)$ is fuzzy r-preclosed in X, it follows that

$$\operatorname{pcl}(\operatorname{pint}(\operatorname{pcl}(\mu,r),r),r) \leq \operatorname{pcl}(\operatorname{pcl}(\mu,r),r) = \operatorname{pcl}(\mu,r).$$

Thus pint(pcl(pint(pcl(μ , r), r), r), r) \leq pint(pcl(μ , r), r). (2) Similar to (1).

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \geq r \}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Recall [4] that a fuzzy topology $T^r: I^X \to I$ is defined by

$$T^r(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \\ r & ext{if} & \mu \in T - \{ ilde{0}, ilde{1}\}, \\ 0 & ext{otherwise}. \end{array}
ight.$$

The next two theorems show that a fuzzy preopen set is a special case of a fuzzy r-preopen set.

THEOREM 3.12. Let μ be a fuzzy set of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy r-preopen (r-preclosed) in (X, \mathcal{T}) if and only if μ is fuzzy preopen (preclosed) set in (X, \mathcal{T}_r) .

Proof. Straightforward.
$$\Box$$

THEOREM 3.13. Let μ be a fuzzy set of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is fuzzy preopen (preclosed) in (X,T) if and only if μ is fuzzy r-preopen (r-preclosed) in (X,T).

Proof. Straightforward.
$$\Box$$

4. Fuzzy r-preneighborhoods

Now, we are going to introduce fuzzy r-preneighborhoods and fuzzy r-quasi-preneighborhoods.

DEFINITION 4.1. Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ of X is called

- (1) a fuzzy r-preneighborhood of x_{α} if there is a fuzzy r-preopen set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy r-quasi-preneighborhood of x_{α} if there is a fuzzy r-preopen set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

THEOREM 4.2. Let (X, \mathcal{T}) be a fuzzy topological space and $r \in I_0$. Then

- (1) a fuzzy set μ of X is fuzzy r-preopen if and only if μ is a fuzzy r-preneighborhood of x_{α} for every fuzzy point $x_{\alpha} \in \mu$,
- (2) a fuzzy set μ of X is fuzzy r-preopen if and only if μ is a fuzzy r-quasi-preneighborhood of x_{α} for every fuzzy point $x_{\alpha}q\mu$.

Proof. (1) Let μ be fuzzy r-preopen of X and $x_{\alpha} \in \mu$. Put $\rho = \mu$. Then ρ is fuzzy r-preopen of X and $x_{\alpha} \in \rho \leq \mu$. Thus μ is a fuzzy r-preneighborhood of x_{α} .

Conversely, let $x_{\alpha} \in \mu$. Since μ is a fuzzy r-preneighborhood of x_{α} , there is a fuzzy r-preopen set $\rho_{x_{\alpha}}$ in X such that $x_{\alpha} \in \rho_{x_{\alpha}} \leq \mu$. So we have

$$\mu = \bigvee \{x_{\alpha} \mid x_{\alpha} \in \mu\} \le \bigvee \{\rho_{x_{\alpha}} \mid x_{\alpha} \in \mu\} \le \mu$$

and hence $\mu = \bigvee \{\rho_{x_{\alpha}} \mid x_{\alpha} \in \mu\}$. Since each $\rho_{x_{\alpha}}$ is fuzzy r-preopen, μ is fuzzy r-preopen.

(2) Let μ be fuzzy r-preopen of X and $x_{\alpha}q\mu$. Put $\rho = \mu$. Then ρ is fuzzy r-preopen of X and $x_{\alpha}q\rho \leq \mu$. Thus μ is a fuzzy r-quasi-preneighborhood of x_{α} .

Conversely, let x_{α} be any fuzzy point in μ such that $\alpha < \mu(x)$. Then $x_{1-\alpha}q\mu$. By hypothesis, μ is a fuzzy r-quasi-preneighborhood of $x_{1-\alpha}$. Thus there is a fuzzy r-preopen set $\rho_{x_{\alpha}}$ in X such that $x_{1-\alpha}q\rho_{x_{\alpha}} \leq \mu$.

Hence $\alpha < \rho_{x_{\alpha}}(x)$ and $\rho_{x_{\alpha}} \leq \mu$. So we have

$$\mu = \bigvee \{x_{\alpha} \mid x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha < \mu(x)\}$$

$$\leq \bigvee \{\rho_{x_{\alpha}} \mid x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha < \mu(x)\}$$

$$\leq \mu$$

and hence $\mu = \bigvee \{ \rho_{x_{\alpha}} \mid x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha < \mu(x) \}$. Since each $\rho_{x_{\alpha}}$ is fuzzy r-preopen, μ is fuzzy r-preopen.

THEOREM 4.3. Let x_{α} be a fuzzy point in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then $x_{\alpha} \in \operatorname{pcl}(\mu, r)$ if and only if $\rho q \mu$ for all fuzzy r-quasi-preneighborhood ρ of x_{α} ,

Proof. Suppose that there is a fuzzy r-quasi-preneighborhood ρ of x_{α} such that $\rho \not q \mu$. Then there is a fuzzy r-preopen set λ such that $x_{\alpha} \not q \lambda \leq \rho$. So $\lambda \not q \mu$ and hence $\mu \leq \lambda^c$. Since λ^c is fuzzy r-preclosed, $\operatorname{pcl}(\mu,r) \leq \operatorname{pcl}(\lambda^c,r) = \lambda^c$. On the other hand, since $x_{\alpha} \not q \lambda$, $x_{\alpha} \notin \lambda^c$. Hence $x_{\alpha} \notin \operatorname{pcl}(\mu,r)$. It is a contradiction.

Conversely, suppose $x_{\alpha} \notin \operatorname{pcl}(\mu, r)$. Then there is a fuzzy r-preclosed set η such that $\mu \leq \eta$ and $x_{\alpha} \notin \eta$. Thus η^c is fuzzy r-preopen and $x_{\alpha} \operatorname{q} \eta^c$, and hence η^c is a fuzzy r-quasi-preneighborhood of x_{α} . By hypothesis, $\eta^c \operatorname{q} \mu$ and hence $\mu \not\leq (\eta^c)^c = \eta$. It is a contradiction.

Clearly, every fuzzy r-neighborhood (r-quasi-neighborhood) of x_{α} is also a fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_{α} . The converse does not hold as in the following example.

EXAMPLE 4.4. Let $X=\{x\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{4}, \quad \mu_2(x) = \frac{4}{5}.$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then, clearly, \mathcal{T} is a fuzzy topology on X. Let $\alpha = \frac{1}{3}$. Then μ_2 is a fuzzy $\frac{1}{2}$ -preneighborhood of x_{α} which is not a fuzzy $\frac{1}{2}$ -neighborhood of x_{α} . Also μ_2 is a fuzzy $\frac{1}{2}$ -quasi-preneighborhood of x_{α} which is not a fuzzy $\frac{1}{2}$ -quasi-neighborhood of x_{α} .

The next two theorems show the relation between a fuzzy preneighborhood and a fuzzy r-preneighborhood.

THEOREM 4.5. Let x_{α} be a fuzzy point of a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ is a fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_{α} in (X, \mathcal{T}) if and only if μ is a fuzzy preneighborhood (quasi-preneighborhood) of x_{α} in (X, \mathcal{T}_r) .

l

THEOREM 4.6. Let x_{α} be a fuzzy point of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy preneighborhood (quasi- preneighborhood) of x_{α} in (X,T) if and only if μ is a fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_{α} in (X,T^r) .

Proof.	Straightforward.	Г	-
	Straightforward.	L	

5. Fuzzy r-precontinuous maps

DEFINITION 5.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-precontinuous map if $f^{-1}(\mu)$ is a fuzzy r-preopen set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-preclosed set of X for each fuzzy r-closed set μ of Y,
- (2) a fuzzy r-preopen map if $f(\rho)$ is a fuzzy r-preopen set of Y for each fuzzy r-open set ρ of X,
- (3) a fuzzy r-preclosed map if $f(\rho)$ is a fuzzy r-preclosed set of Y for each fuzzy r-closed set ρ of X.

REMARK 5.2. It is obvious that every fuzzy r-continuous (r-open, r-closed) map is also a fuzzy r-precontinuous (r-preopen, r-preclosed) map. That the converse is false is shown by the following example.

Example 5.3. Let $X=\{x\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \frac{1}{3}, \quad \mu_2(x) = \frac{1}{4}.$$

Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \left\{ egin{array}{ll} 1 & ext{if} & \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} & \mu = \mu_1, \ 0 & ext{otherwise}; \end{array}
ight.$$

and

$$\mathcal{T}_2(\mu) = \left\{ egin{array}{ll} 1 & ext{if} \;\; \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if} \;\; \mu = \mu_2, \ 0 & ext{otherwise}. \end{array}
ight.$$

Then, clearly, \mathcal{T}_1 and \mathcal{T}_2 are fuzzy topologies on X.

- (1) Consider the map $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x. Then $f^{-1}(\tilde{0})=\tilde{0}$, $f^{-1}(\tilde{1})=\tilde{1}$ and $f^{-1}(\mu_2)=\mu_2$ are fuzzy $\frac{1}{2}$ -preopen sets of (X,\mathcal{T}_1) and hence f is fuzzy $\frac{1}{2}$ -precontinuous. On the other hand, $f^{-1}(\mu_2)=\mu_2$ is not fuzzy $\frac{1}{2}$ -open in (X,\mathcal{T}_1) and hence f is not fuzzy $\frac{1}{2}$ -continuous.
- (2) Consider the map $f:(X,\mathcal{T}_2)\to (X,\mathcal{T}_1)$ defined by f(x)=x. Then $f(\tilde{0})=\tilde{0},\ f(\tilde{1})=\tilde{1}$ and $f(\mu_2)=\mu_2$ are fuzzy $\frac{1}{2}$ -preopen sets of (X,\mathcal{T}_1) and hence f is fuzzy $\frac{1}{2}$ -preopen. On the other hand, $f(\mu_2)=\mu_2$ is not fuzzy $\frac{1}{2}$ -open in (X,\mathcal{T}_1) and hence f is not fuzzy $\frac{1}{2}$ -open.
- (3) Consider the map $f:(X,\mathcal{T}_2)\to (X,\mathcal{T}_1)$ defined by f(x)=x. Then $f(\tilde{0})=\tilde{0}, f(\tilde{1})=\tilde{1}$ and $f(\mu_2^c)=\mu_2^c$ are fuzzy $\frac{1}{2}$ -preclosed sets of (X,\mathcal{T}_1) and hence f is fuzzy $\frac{1}{2}$ -preclosed. On the other hand, $f(\mu_2^c)=\mu_2^c$ is not fuzzy $\frac{1}{2}$ -closed in (X,\mathcal{T}_1) and hence f is not fuzzy $\frac{1}{2}$ -closed.

Now, we characterize fuzzy r-precontinuity by fuzzy r-closure and fuzzy r-interior.

THEOREM 5.4. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-precontinuous map.
- (2) $\operatorname{cl}(\operatorname{int}(f^{-1}(\mu),r),r) \leq f^{-1}(\operatorname{cl}(\mu,r))$ for each fuzzy set μ of Y.
- (3) $f(\operatorname{cl}(\operatorname{int}(\rho,r),r)) \leq \operatorname{cl}(f(\rho),r)$ for each fuzzy set ρ of X.

Proof. (1) \Rightarrow (2) Let f be a fuzzy r-precontinuous map and μ a fuzzy set of Y. Then $\operatorname{cl}(\mu, r)$ is a fuzzy r-closed set of Y. Since f is fuzzy r-precontinuous, $f^{-1}(\operatorname{cl}(\mu, r))$ is a fuzzy r-preclosed set of X. Thus

$$f^{-1}(\operatorname{cl}(\mu, r)) \ge \operatorname{cl}(\operatorname{int}(f^{-1}(\operatorname{cl}(\mu, r)), r), r) \ge \operatorname{cl}(\operatorname{int}(f^{-1}(\mu), r), r).$$

 $(2) \Rightarrow (3)$ Let ρ be a fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. By (2),

$$f^{-1}(\operatorname{cl}(f(\rho),r)) \ge \operatorname{cl}(\operatorname{int}(f^{-1}f(\rho),r),r) \ge \operatorname{cl}(\operatorname{int}(\rho,r),r).$$

Hence

$$\operatorname{cl}(f(\rho), r) \ge ff^{-1}(\operatorname{cl}(f(\rho), r)) \ge f(\operatorname{cl}(\operatorname{int}(\rho, r), r)).$$

(3) \Rightarrow (1) Let μ be a fuzzy r-closed set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. By (3),

$$f(\text{cl}(\text{int}(f^{-1}(\mu), r), r)) \le \text{cl}(ff^{-1}(\mu), r) \le \text{cl}(\mu, r) = \mu.$$

So

$$\operatorname{cl}(\operatorname{int}(f^{-1}(\mu), r), r) \leq f^{-1}f(\operatorname{cl}(\operatorname{int}(f^{-1}(\mu), r), r)) \leq f^{-1}(\mu).$$

Thus $f^{-1}(\mu)$ is a fuzzy r-preclosed set of X and hence f is fuzzy r-precontinuous. \square

The definition of fuzzy r-precontinuity can be restated in terms of fuzzy r-preclosure and fuzzy r-preinterior.

THEOREM 5.5. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-precontinuous map.
- (2) $f(pcl(\rho,r)) \le cl(f(\rho),r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{pcl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ of Y.
- (4) $f^{-1}(\operatorname{int}(\mu, r)) \leq \operatorname{pint}(f^{-1}(\mu), r)$ for each fuzzy set μ of Y.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set of X. Since $\operatorname{cl}(f(\rho), r)$ is a fuzzy r-closed set of Y, $f^{-1}(\operatorname{cl}(f(\rho), r))$ is a fuzzy r-preclosed set of X. Thus

$$\operatorname{pcl}(\rho, r) \leq \operatorname{pcl}(f^{-1}f(\rho), r)$$

$$\leq \operatorname{pcl}(f^{-1}(\operatorname{cl}(f(\rho), r)), r) = f^{-1}(\operatorname{cl}(f(\rho), r)).$$

Hence we have

$$f(\operatorname{pcl}(\rho, r)) \le ff^{-1}(\operatorname{cl}(f(\rho), r)) \le \operatorname{cl}(f(\rho), r).$$

 $(2) \Rightarrow (3)$ Let μ be a fuzzy set of Y. By (2),

$$f(\text{pcl}(f^{-1}(\mu), r)) \le \text{cl}(ff^{-1}(\mu), r) \le \text{cl}(\mu, r).$$

Thus we have

$$\operatorname{pcl}(f^{-1}(\mu), r) \le f^{-1}f(\operatorname{pcl}(f^{-1}(\mu), r)) \le f^{-1}(\operatorname{cl}(\mu, r)).$$

 $(3) \Rightarrow (4)$ Let μ be a fuzzy set of Y. Then μ^c is a fuzzy set of Y. By (3),

$$\operatorname{pcl}(f^{-1}(\mu)^c, r) = \operatorname{pcl}(f^{-1}(\mu^c), r) \le f^{-1}(\operatorname{cl}(\mu^c, r)).$$

Thus we have

$$f^{-1}(\operatorname{int}(\mu, r)) = f^{-1}(\operatorname{cl}(\mu^c, r)^c) \le \operatorname{pcl}(f^{-1}(\mu)^c, r)^c = \operatorname{pint}(f^{-1}(\mu), r).$$

(4) \Rightarrow (1) Let μ be a fuzzy r-open set of Y. Then $\operatorname{int}(\mu, r) = \mu$. By (4),

$$f^{-1}(\mu) = f^{-1}(\mathrm{int}(\mu,r)) \leq \mathrm{pint}(f^{-1}(\mu),r) \leq f^{-1}(\mu).$$

Thus $f^{-1}(\mu) = \text{pint}(f^{-1}(\mu), r)$. Hence $f^{-1}(\mu)$ is a fuzzy r-preopen set of X. Therefore f is fuzzy r-precontinuous.

THEOREM 5.6. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a bijection and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-precontinuous map.
- (2) $f(\operatorname{pcl}(\rho, r)) \leq \operatorname{cl}(f(\rho), r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{pcl}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{cl}(\mu, r))$ for each fuzzy set μ of Y.
- (4) $f^{-1}(\operatorname{int}(\mu,r)) \leq \operatorname{pint}(f^{-1}(\mu),r)$ for each fuzzy set μ of Y.
- (5) $\operatorname{int}(f(\rho), r) \leq f(\operatorname{pint}(\rho, r))$ for each fuzzy set ρ of X.

Fuzzy r-preopen sets and fuzzy r-precontinuous maps

Proof. By Theorem 5.5, it suffices to show that (4) is equivalent to (5). Let ρ be any fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. Since f is one-to-one,

$$f^{-1}(\operatorname{int}(f(\rho), r) \le \operatorname{pint}(f^{-1}f(\rho), r) = \operatorname{pint}(\rho, r).$$

Since f is onto,

$$\operatorname{int}(f(\rho), r) = ff^{-1}(\operatorname{int}(f(\rho), r)) \le f(\operatorname{pint}(\rho, r)).$$

Conversely, let μ be any fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. Since f is onto,

$$int(\mu, r) = int(ff^{-1}(\mu), r) \le f(pint(f^{-1}(\mu), r)).$$

Since f is one-to-one,

$$f^{-1}(\operatorname{int}(\mu,r)) \le f^{-1}f(\operatorname{pint}(f^{-1}(\mu),r) = \operatorname{pint}(f^{-1}(\mu),r).$$

Hence the theorem follows.

THEOREM 5.7. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-preopen map.
- (2) $f(\operatorname{int}(\rho,r)) \leq \operatorname{pint}(f(\rho),r)$ for each fuzzy set ρ of X.
- (3) $\operatorname{int}(f^{-1}(\mu), r) \leq f^{-1}(\operatorname{pint}(\mu, r))$ for each fuzzy set μ of Y.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set of X. Clearly $\operatorname{int}(\rho, r)$ is a fuzzy r-open set of X. Since f is a fuzzy r-preopen map, $f(\operatorname{int}(\rho, r))$ is a fuzzy r-preopen set of Y. Also since $f(\operatorname{int}(\rho, r)) \leq f(\rho)$,

$$f(\operatorname{int}(\rho,r)) = \operatorname{pint}(f(\operatorname{int}(\rho,r)),r) \leq \operatorname{pint}(f(\rho),r).$$

(2) \Rightarrow (3) Let μ be a fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. By (2),

$$f(\operatorname{int}(f^{-1}(\mu), r)) \le \operatorname{pint}(ff^{-1}(\mu), r) \le \operatorname{pint}(\mu, r).$$

Thus we have

$$\operatorname{int}(f^{-1}(\mu), r) \le f^{-1}f(\operatorname{int}(f^{-1}(\mu), r)) \le f^{-1}(\operatorname{pint}(\mu, r)).$$

 $(3) \Rightarrow (1)$ Let ρ be a fuzzy r-open set of X. Then $\operatorname{int}(\rho, r) = \rho$ and $f(\rho)$ is a fuzzy set of Y. By (3),

$$\rho = \operatorname{int}(\rho, r) \le \operatorname{int}(f^{-1}f(\rho), r) \le f^{-1}(\operatorname{pint}(f(\rho), r)).$$

So we have

$$f(\rho) \le ff^{-1}(\operatorname{pint}(f(\rho), r)) \le \operatorname{pint}(f(\rho), r) \le f(\rho).$$

Thus $f(\rho) = \text{pint}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy r-preopen set of Y. Therefore f is fuzzy r-precontinuous.

THEOREM 5.8. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-preclosed map.
- (2) $pcl(f(\rho), r) \leq f(cl(\rho, r))$ for each fuzzy set ρ of X.

Proof. (1) \Rightarrow (2) Let ρ be a fuzzy set of X. Clearly $\operatorname{cl}(\rho, r)$ is a fuzzy r-closed set of X. Since f is a fuzzy r-preclosed map, $f(\operatorname{cl}(\rho, r))$ is a fuzzy r-preclosed set of Y. Since $f(\rho) \leq f(\operatorname{cl}(\rho, r))$,

$$\operatorname{pcl}(f(\rho),r) \leq \operatorname{pcl}(f(\operatorname{cl}(\rho,r)),r) = f(\operatorname{cl}(\rho,r)).$$

(2) \Rightarrow (1) Let ρ be a fuzzy r-closed set of X. Then $\operatorname{cl}(\rho,r)=\rho$. By (2),

$$\operatorname{pcl}(f(\rho),r) \leq f(\operatorname{cl}(\rho,r)) = f(\rho) \leq \operatorname{pcl}(f(\rho),r).$$

Thus $f(\rho) = \operatorname{pcl}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy r-preclosed set of Y. Therefore f is fuzzy r-preclosed.

THEOREM 5.9. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a bijection and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy r-preclosed map.
- (2) $\operatorname{pcl}(f(\rho), r) \leq f(\operatorname{cl}(\rho, r))$ for each fuzzy set ρ of X.
- (3) $f^{-1}(\operatorname{pcl}(\mu,r)) \leq \operatorname{cl}(f^{-1}(\mu),r)$ for each fuzzy set μ of Y.

Fuzzy r-preopen sets and fuzzy r-precontinuous maps

Proof. By Theorem 5.8, it suffices to show that (2) is equivalent to (3). Let μ be any fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. Since f is onto,

$$pcl(\mu, r) = pcl(ff^{-1}(\mu), r) \le f(cl(f^{-1}(\mu), r).$$

Since f is one-to-one,

$$f^{-1}(\operatorname{pcl}(\mu, r)) \le f^{-1}f(\operatorname{cl}(f^{-1}(\mu), r)) = \operatorname{cl}(f^{-1}(\mu), r).$$

Conversely, let ρ be any fuzzy set of X. Then $f(\rho)$ is a fuzzy set of Y. Since f is one-to-one,

$$f^{-1}(\operatorname{pcl}(f(\rho), r)) \le \operatorname{cl}(f^{-1}f(\rho), r) = \operatorname{cl}(\rho, r).$$

Since f is onto,

$$\operatorname{pcl}(f(\rho),r) = ff^{-1}(\operatorname{pcl}(f(\rho),r)) \leq f(\operatorname{cl}(\rho,r)).$$

Hence the theorem follows.

The next two theorems show that a fuzzy precontinuous map is a special case of a fuzzy r-precontinuous map.

THEOREM 5.10. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r \in I_0$. Then f is fuzzy r-precontinuous (r-preopen and r-preclosed, respectively) if and only if $f:(X,\mathcal{T}_r) \to (Y,\mathcal{U}_r)$ is fuzzy precontinuous (preopen and preclosed, respectively).

THEOREM 5.11. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to another Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy precontinuous (preopen and preclosed, respectively) if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy r-precontinuous (r-preopen and r-preclosed, respectively).

Seok Jong Lee and Eun Pyo Lee

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness : fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [5] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82.
- [6] S. J. Lee and E. P. Lee, Fuzzy r-semiopen sets and fuzzy r-semicontinuous maps, Proc. of Korea Fuzzy Logic and Intelligent Systems Society 7 (1997), no. 1, 29-32.
- [7] _____, A generalization of a lattice fuzzy topology, Comm. Korean Math. Soc. 12 (1997), 113–126.
- [8] R. Lowen, Fuzzy topological space and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633.
- [9] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375.
- [10] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308.

SEOK JONG LEE, DEPARTMENT OF MATHEMATICS, CHUNGBUK NATIONAL UNIVERSITY, CHEONGJU 361-763, KOREA

E-mail: sjlee@cbucc.chungbuk.ac.kr

EUN PYO LEE, DEPARTMENT OF MATHEMATICS, SEONAM UNIVERSITY, NAMWON 590-711, KOREA

E-mail: eplee@tiger.seonam.ac.kr