Bull. Korean Math. Soc. 36 (1999), No. 2, pp. 217-224

ON THE FINSLER SPACES WITH f-STRUCTURE
HoNG-SUH PARK AND IL-YONG LEE

ABSTRACT. In this paper the properties of the Finsler metrics com-
patible with an f-structure are investigated.

1. Introduction

The f-structure in a Riemannian manifold is defined by a tensor
field f of (1,1) type such that f3 + f = 0 [7). The f-structure may be
regarded as a generalization of the almost complex structure and the
almost contact structure.

On the other hand, the Finsler space admitting an almost complex
structure was introduced by several authors. Moreover, I. Hasegawa, K.
Yamauchi and H. Shimada [2] introduced the almost contact structure
on Finsler space. Recently, Y. Ichijyo [4] introduced the notion of the
Finsler metrics compatible with f-structure which is generalization of
the almost complex structure and the almost contact structure. And
the first author of the present paper and H. Y. Park [6] introduced the
notion of the Finsler metrics compatible with ¢(4,2)-structure.

In the present paper, we treat the Finsler spaces whose metrics is
compatible with f-structure. These Finsler spaces will be called (f, L)-
manifolds. First, we find the condition for the Finsler metric on (f, L)-
manifolds to be a Riemannian metric. Secondly, some properties of the
(f, L)-manifolds with vanishing h-covariant derivative of f-structure are
investigated.
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2. Preliminaries

Let M be an n-dimensional differentiable manifold admitting a ten-
sor field f%;(z) of type (1,1) satisfying

(2.1) ftjfrtfir-i-fij = 0.

If we put

(22) eij = _fi'r'frﬁ mi.’i = firfrj + 5ij:
we have

eij + mij — 51._7': frjeir — erjfir — fij>
(2.3) ﬂjeir = fij, m"jmi,. = mij, frjftréit = —[ij,

T 3 T gl T i L
fjmr=mjfr=0, ejmr=mj£1-=0.

Hence, the operators £*; and m*; applied to the tangent space T'(M)
at each point of M are complementary projection operators. Thus there
exist complementary distribution £ and M corresponding to £'; and
m'; respectively. If the rank of f¢; is r, then we call such a structure
an f-structure of rank r [7]. The manifold admitting an f-structure
of rank r is called an f-manifold. Moreover f*; is an almost complex
structure operator on £ and, at same time, f*; is null operator on M.
If the rank of f is n, then £*; = —§%; and m’; = 0, so that we find the
f-structure of rank n is an almost complex structure.

It is well known that, in an f-manifold, there exists a positive definite
Riemannian metric a;;(x) with respect to which the distribution £ and
M are orthogonal and such that

(2.4)  aij(z) = apg(2) fPi fU5 + aip(z)mPy,  fij = —fii

where fi; = aip fP;.
The integrability condition of distribution £ is given by [7]

(2.5) 0 04(0,mty, — Bymiy) =0 (8, = 8/da").
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The integral manifold of £ may be represented by parametric equation
¢ = zH(u®),a = 1,2,--- ,r. If we put B, = 8,2 (8, = 8/0u®), we
can induce an almost complex structure / f¢;, on integral manifold of £
by 'f% = By’B%; f7;, where B%; satisfies BBy = §%, and B*B,J =
;. Let Ny, Nkji be the Nijenhuis tensors for the almost complex
structure ' f%, and the f-structure f%; respectively. It is well known
that 'N® and Ny;® is related as follows [7]

(2.6) 'Ney® = B By B, Nj;*.

When the distribution £ is integrable and the almost complex structure
induced on the integral manifold by f-structure is also integrable, we
say that the f-structure is partially integrable.

3. (f, L)-manifold

Let us assume that a differentiable n-manifold M admits a Finsler
metric function L(z,y). This Finsler metric function L(x,y) satisfies
L(z,ky) = kL(z,y) forany k>0,

(3.1) igi s . .
gij(z,y)E*€?  is positive definite,

where g;;(z,y) = 3:0;L*(z,v)/2 (b = 8/dy).

The tangent space T;(M) at any point = in M can be regarded as n-
dimensional normed linear space such that the norm ||y|| of any tangent
vector y in T,(M) as follows

(3.2) lyll = L(z, v).

Then it is easy to verify that T,(M) is a finite Banach space. The
distribution £ at z is considered as the tangent subspace in T,(M) and
the f-structure can be considered as an almost complex structure on
L. For any complex number é = |c|(cos @+ sin8), we define the scalar
product of é and tangent vector fy on L as follows

¢ by = |¢|(cos @ 6;- +sind f"j)gjkyk
= |&(cos 0 £'y* + sinf f'ry*)
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for any 6. If we put @s*; = cosf 6;'- +sin@ f*;, we have from (3.2)
1€ - eyll = |ellivolyll = I€|L(x, poly)-

Therefore, £ is a complex Banach space if and only if

(3.3) L(z, poty) = L(z, ty).

From the homogeneity of g;;(z,y) in y it is easy to verify that (3.3) is
equivalent to
(3.4) 9pq(T, 0oly)pePrpetl il ; = gpg(x-Ly)LPill;.

The manifold satisfying (3.3) or (3.4) is said to be an (f, L)-manifold.

On the other hand, M. Fukui [1] and Y. Ichijyo [3] proved that if a
Finsler metric g;;(x,y) and an almost complex structure F';(x) satisfy
the condition

gij(.’z, y) = gpq(x, y)F”inj,
then g;; is a Riemannian.

Now we consider the result above analogously on an (f, L)-manifold.
We suppose that an (f, L)-manifold satisfies

(35) 9ij ((L‘, ey) = gpq(xa Zy)fp,;qu,

where fP; is an f-structure.
Differentiating (3.5) with respect to y*, we have

(3.6) Cijr(z, €y) 0" = Cpgr(z, ty) fPi f15 Lk,

where 2C;;-(z,y) = 0rg:5(z, ).
Transvecting (3.6) with ¢/, and using (2.3), we have

(37) Cij'r‘(xa ey)erkejs = pqr(za Ey)fpiquerk-
On the other hand, by the symmetry of Cj;, in all indices, we get
Cijr(:v,éy)érkfjs = Cijr(:l:, éy)é’sejk,
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that is,

(3.8) Cpar(@, 2y) fPif 1€k = Cpgr(, ty) [P fIL’ 5.
From (3.6) and (3.8), we have

(3.9) Cijr(z,y) k. = Cpgr(z, £y) i [kl ;- -

Using (2.3), (3.9) is rewritten as

Cijk(z, by) — Cijr(x, by)m

= qu(x,fy)fpiqu - Cpqr(a’a y) fPiflem” ;.

Transvecting (3.10) with f%; 7%, and using (2.3), we get
Ciji(@, ty) f1ef? o n = —Chpgs (2, L) Po fIn S5,

that is, Cijk(z,8y)f'ef?sl*» = 0 by virtue of (3.8). Hence, from
(3.6) we have Cyjr(z,fy)lx = Oxgii(x,y) = 0, that is gi;(z, fy) is a
Riemannian metric.

Thus we have

(3.10)

THEOREM 3.1. Ifan (f,L)-manifold satisfies (3.5), then g;;(z, fy) is
a Riemannian metric.

4. An (f, L)-manifold with vanishing h-covariant derivative
of f-structure

In an (f, L)-manifold, let FT = (I3, G%;, Cijx), BT = (Gijx,G'5,0)
be the Cartan Finsler connection and the Berwald connection respec-

*
tively, and let Vg, %k be the h-covariant derivatives with respect to FT'
and BT respectively, where G%j = 8, G' 4

We shall consider an (f, L)-manifold analogous with a Kaehlerian
Finsler manifold. Let us assume that an (f, L)-manifold admits vanish-
ing h-covariant derivative of the f-structure with respect to FT'. Then
we have

Vift = 0kf' + Dok f™5 = frml ™5k = 0.

221



Hong-Suh Park and Il-Yong Lee

From the relation [¥i,,y™ = G, we get
(4.1) Y O i + Gl ™ — fimG™; = 0.

Differentiating (4.1) with respect to y*, we have
& 1 i i m i m
(4.2) Vil =0l +Gmef";— f'mG™ ik =0.

. <

If Vif'; =0, we have from (2.2) and (4.2) Vim®; = 0, that is,
akmij = —-Girkm’"j + Grjkmi,..

Therefore, we have

h h
om”s — Osm”y

4.3
( ) = _Gh'rtmrs + Grstmh'r + Ghrsmrt - Grtsmhr = 0.

From (2.4) and (4.3), the integrability condition of the distribution £
is satisfied.
Thus we have

THEOREM 4.1. For an (f, L)-manifold, if the h-covariant derivative
of f-structure with respect to FT' vanishes, then the distribution £ is
integrable.

Next, the Nijenhuis tensor constructed from the f-structure is given
(4.4) NPy = 100" = £150.f" — (8ft5 — ;') ™.
Substituting (4.2) in (4.4), we have
(4.5)

Nhy = (=GP mef™ 5 + [P mG™j0)

= (=GPt f7 + [ G ™)
— (=Gl i f™5 + oG+ Gl f™s — f1mG ™) fe = 0.

Thus, from (2.5), (4.5) and Theorem 4.1 we have
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THEOREM 4.2. For an (f, L)-manifold, if the h-covariant derivative
of the f-structure vanishes, then the f-structure is partially integrable.

Next, let H, hijk be the h-curvature tensor of BI'. That is
Hpljk = 0kG'hj + 8;Ghi + G*rkG hj — GG hi,
where 0y = O, — G" 1Oy
Applying the Ricci identity for %k to f*; [5], we have
(4.6) H s — o H i = 0.
Let M™ be a constant curvature space, that is,
(4.7) Hi"ji = K{gi;(z,)6¢ — gix(z, )0} }.

Substituting (4.7) in (4.6), we have
(4.8)

K{grj(z,9)88 — gric(2,9)07 } f7s = FrK{gij(,y) 8% — gin(2, )0} }-

Let us assume that

(4.9) 9ir(%,9) 75 + 9r(x,9) f75 = 0.

If f*; is an almost complex structure, then the condition (4.9) means
that the Finsler metric becomes to the Riemannian metric [1], [3]. Here,
since f%; is an f-structure, we can see easily that the condition (4.9)
reduces to Cjjk(z.y) f?i = 0, that is, the contraction of the derivative
of Finsler metric g;x(z,y) with respect to y* and f-structure f7; is a
function of position alone.

Now, we suppose K # 0, then we have

(4.10) gr(z,y) f7 0"k — grk(,9) FT:0"; = fPrgii(z,y) — f*j9(z-y).

Contracting (4.10) with respect to h and j and using the second equa-
tion of (2.4), we find

(1 —n)gre(z, ) fTi = —grk(z,9) 74,

from which gri(z,y)f7i = 0 for n > 2 by using (4.9). Therefore we
have f*; = 0. That is a contraction. Consequently we obtain K = 0.
Thus we have
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THEOREM 4.3. Let M™(n > 2) be an (f,L)-manifold with con-
stant curvature. If the h-covariant derivative of the f-structure with
respect to the Cartan connection vanishes and satisfies (4.9), then the
h-curvature tensor of the Berwald connection vanishes.

REMARK. If the rank of f is n (n > 2), then f is an almost complex
structure and the metric is a Riemannian one. Hence the h-curvature
tensor H—ihjk coincide with the Riemannian-Christoffel’s curvature ten-
sor. Thus Theorem 4.3 reduces to the well-known Bochner’s theorem:
If a Kaehlerian manifold is of constant curvature, then it is of zero
curvature.
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