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HARDY-LITTLEWOOD MAXIMAL
FUNCTIONS IN ORLICZ SPACES

YooN JAE Yoo

ABSTRACT. Let M f(z) be the Hardy-Littlewood maximal function
on R™. Let & and ¥ be functions satisfying ®(t) = fg’ a(s)ds and
¥(t) = fot b(s)ds, where a(s) and b(s) are positive continuous such
that [° ﬂsﬂds = oo and b(s) is quasi-increasing. We show that if

there exists a constant ¢; so that fd’ ﬂtﬂdt < e1b(eys) for all s > 0,
then there exists a constant ¢; such that

(0.1) [ a0i@yiz < [ wleals(ehae

for all f € L*(R™). Conversely, if there exists a constant cp sat-
isfying the condition (0.1), then there exists a constant c¢; so that

53 ggtﬂdt < e1b(e1s) for all § > 0 and s > 4.

1. Introduction

The Hardy-Littlewood maximal function M f(x) on R™ is defined by

1
(1.1) M (@) = sup oo /Q 1F)ldy

where the supremum is taken over all open cubes ) C R™ with z € Q.

The purpose of this paper is to give a necessary and sufficient condi-
tions for M f in terms of Orlicz space L%. In [2], this problem is studied
when f is given in unit circle.
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DEFINITION 1.1. Let ¥(t) be a nondecreasing continuous function
such that lim;_,o, ¥(¢) = 0o. Put

LY = {f : /oo Y (e|f(x)|)dz < oo for some € > 0}
0

Then the space LY is called an Orlicz space ([3] and [5]).

DEFINITION 1.2. Let a(s) and b(s) be positive continuous function
defined on [0, 00) satisfying the following properties:

() fy°22ds = oo.
(ii) b(s) is quasi-increasing, that is, if there exists a constant ¢, so that

(1.2) b(s1) < eob(cos2)
for all 0 < s; < s9. Define
(iii) ®(t) = fot a(s)ds and ¥(t) = fot b(s)ds for t > 0.

2. Main theorems
LEMMA 2.1. If ¥ satisfies (iii), then LY c L}(R™).

Proof. Since b(s) is quasi-increasing, the following inequalities

1> [ iz [ b (o) = 5 (1)

/2 Co Jit/2 2¢o 2¢, \2¢,
implies LY c L}(R™). a

THEOREM 2.1. Let a(s), b(s), ®(t), and ¥(t) be functions satisfying
the above properties (i)-(iii). If there exists a constant ¢, so that

(2.1) /0 ) #)-dt < erb(ers)

for all s > 0, then there exists a constant cy such that
(2.2) / B(M f(z))dz < c3 / (e f ()]} dz
n IR"
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for all f € L}(R"™)
Conversely, if there exists a constant ¢; satisfying the condition (2.2),
then there exists a constant ¢, so that for any § > 0

(2.3) /: @dt < bl s)

for all s > 6.
Proof. To prove (2.2), observe that

L #0s@)dz = [~ 12041 > Niax
(2.0 = [ 105) > 27 e
= [ 105 > Hlatt)as
Since the maximal function M is simultaneously of weak type (1,1)

and of type (00,00) it follows that the well known result (page 92,
Torchinsky [4]) that there exist constants c3, ¢4 such that

5@ > 01 $ [ 117> shas

for all t > 0. Hence it follows from Tonelli’s theorem that

B (a))do = [ T M F(@) > @ (e

Rn

-/ "M f(@) > t)]a()dt

(2.5) = c3 /Ooo %)— (/;:4 {1f1 > 8}|d3> dt
:c3/0°o|{|f|>s} (/0048@(#) ds

< ccs /000 HIf] > s}|b(creas)ds
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b(t)dt

C3 b i
_e ]{m >t
¢4 Jo C1C4

=2 [ feealf] > b0
4 JO

C
=2 | O(cieqlf(z)|)dz,
C4 JRn

which proves (2.2).
Conversely, suppose that (2.2). If (2.3) does not hold, then there
exist a sequence {s,} and § > 0 such that s > 0 for £ > 1 and

Sk
(2.6) / @ > 2Fb(k2%s;)
é
for all k£ > 1. Choose a collection of disjoint open cubes {Qx} so that
1
2.7 = o
( ) le' 2k‘1,(2k3k)
and
o0
(2.8) > " 1Qk! < oo.
k=1
Put
€ oo
(2.9) f(@)= é > 2% sexqu
k=1

where x(, is the characteristic function of Q) and €, will be chosen in
a moment. Then by (2.6) and (2.7) we have

/Rn \p(czlf(x)l)dx:;/Qk (ca|f(z)))dz

=) W(e,2"s1) Qx|

1

(2.10)
< Z ‘P(2k8k)m
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Since LY ¢ L'(R") by lemma 2.1, it follows that f € L*(R™) and so
0 < ||f|lL1@n) < co. Hence choose ¢, so that ||f|[r1 (&) = 1.
Now we will show that

(2.11) /n (M f(z))dz = oo.

But this leads to a contradiction, which will finish the proof. To show
(2.11), put g = 8f, where § is given in (2.6). There exists a constant ¢
so that

(212) 1> M125 [ lot@ias

for all X > ||g||L1rn) = 6. (For this inequality, see Torchinsky [4], p.
93.) Hence by (2.11) and (2.12) we have
(2.13)

[ seM(sa)ds - [ s0(g(a)ds

R™ n
- /Ooo {Mg > A}®'(\)dA

2o ( Loy lg(w)ldw) 2 4
e [ ([ lo@lxasniiz) <o
= [ lo(a)! ( /” o f‘(/\—’\)dx> dz

QHLI(RH)

B lg(=)l a(})
= /. lg(z)] (/6 —)‘—d)\> dzx.

If z € Iy, then g(z) = %stk. Thus from (2.6) it follows that

o 91 g(X)
/R RUCOEEE)S /Q 1o(2) ( /5 TdA) dz
C5€€0 6603:8 a()
o ;2k8k (/ —)‘—d)\) | Qx|

é

(2.14)

229



Yoon Jae Yoo

65660 Z2k ( / e d)‘) 2k\Il(12ksk)

65660 Z 2% 5.b(k2% sy,
k=1

(2.14) .
2k\I’(2kSk) )

Since b(s) is quasi-increasing, we have

¥(2*sy) = /0 o b(s)ds

2.15 2¥ sk
(2.15) < / Ccob(co2¥ sy )ds
0

= COstkb(co2ksk)
and so from (2.15) we have

csdeo o b(k2Fsy)
/Rn S(6M(f(x))dz > 2 £t b(co2¥sk)

— 0

as k — oo. Since ® is increasing, [, ®(M f(z))dr = co. This is what
we needed. O

/0 a(t)dt = lim /:, %t—)dt

then the following holds:

If we define

COROLLARY 1. Let a(s), b(s), ®(t), and ¥(t) be functions satis-
fying the above properties (i)-(iii) of Definition 1.2. Then following
statements (a) and (b) are equivalent:

(a) There exists a constant c; so that

/s @dt S clb(cls)
o ¢
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for all s > 0.
(b) There exists a constant c such that

/ (M@ < [ Welf(E)ds

for all f € L*(R™).

COROLLARY 2. Let a(s) and ®(t) be functions satisfying (i-iii) of
Definition 1.2. Then following statements (a) and (b) are equivalent:
(a) There exists a constant c; so that

/8 it)dt < c1a(e18)
o ¢

for all s > 0.
(b) There exists a constant co such that

/ B(Mf(z))dz < 5 /R ¥(er] () )ds
for all f € L}(R™).
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