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AVERAGE DISTANCES AND OCTAHEDRAL NORMS
PieER LuiGl PAPINI

ABSTRACT. In (6], Godefroy defined octahedral norms to give an
isomorphic characterization of spaces containing ¢;. Here we will
show that such norms can be defined by using “average distances”, as
introduced in [1]. Also, we indicate some other properties of average
distances: in particular, 'we give some estimates for their values in
the product of two spaces, furnished with the max or the sum norm.

1. Introduction and notation

Let (X, ||.|l) be a Banach space, of dimension at least two, over the
real field R.

We shall use the following notations:

Sx = {z € X; |z|| = 1}; we shall simply write .S instead of Sx when
no confusion can arise;

X* will denote the dual of X;

F(S) = {F C S; F is finite and nonempty}.
If F={x,25,---,2,} C Sand z € X, we set

1 n
W(F,2) = =3 |z = al]
i=1

We do not exclude, when we write F' = {1, 2y, - ,Z,}, that z; = z; for
some pairs i, j.
For F € F(S), we also set

w(F,S) = {a > 0; there exists z € S such that u(F,z) = a};

pa(F) = inf{p(F, S)};
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pa(F) = sup{u(F, S)}.
Given F' € F(S), since S is connected, u(F, S) is an interval; so u(F, S) =
(11 (F), pa(F)]. Now set

m(X) = sup{m (F); F € F()}

and
p2(X) = inf{p(F); F € F(5)}.
We recall the following result (See [10], p. 332):

LEMMA 1.1. For any Banach space X we have

(1.1) (X)) < pa(X).
For any F € F(S) (and any X) we have:
(1.2) max{1, p1(F)} < pi(X) < pa(X) < pao(F) < 2.

Note that [iul(X)nu2(X)] = n{“(Fv S)a Fe F(S)}
If 4 € [pu(X), p2(X)], then p is called an average distance for X.

For general results on average distances, see [1]-[3] and [7]-[9].

In sections 2 and 3 of this paper we study the condition p(X) = 2,
which is strictly connected with the property of containing a copy of ¢;;
in sections 4 and 5 we study how u; and us behave when we consider
the product of two spaces: we indicate results concerning the “extreme
cases”, of products performed with the max or the sum norm.

2. A characterization of octahedral norms

The following definition was introduced in [6].

DEFINITION 1. We say that a norm in X is octahedral if for every finite
dimensional subspace F of X and a every n > 0, there exists y € Sx such
that for every z € F', we have

(2.1) le+yll = (1 —mn)- (=l +1).
Recall the following result (see [4], Theorem III1.2.5).
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PROPOSITION 2.1. For any Banach space X the following are equiva-
lent:

(a) X contains a subspace isomorphic to ¢y;

(b) there exists an octahedral norm on X.

Next theorem is the main result of this section.

THEOREM 2.1. For a normed space X, the following are equivalent:

(c) the norm of X is octahedral;

(d) pa(X) = 2.

Proof. Tt is clear that if X has an octahedral norm, then for every
finite subset ® of Sx we have py(®) = 2, thus pa(X) = 2: so (c) implies
(d).

Now we prove that (d) implies (c). Let pg(X) = 2. Take a finite dimen-
sional subspace F of X and let n € (0,1); if y is an arbitrary point of
Sy, then for any x € X we have:

le+yll o lll=ll =1
EES HfCll +17
if ||z]| > 1, then the last term is = 1 —

2.1-i .
=—1;if llz]| < 1, then the last term is = I|z||+1
ol < 5% =1- %2 Nowset O = {r e iz < 2 S2-1}: Cis
a compact subset of F, so we can find, for any ¢ € (0,1), a finite e-net
for it, say G. Let G contain n elements, say g1,92," " , gn; et g; = 1o

(note that © ¢ G if € is small enough).

Take y € Sx such that 1 5°7 |y —gjl| > 2— &, thus [y — gl 2 2n—e -
2(n — 1) = 2 — ¢ for every 1. :
For any z € C, we can choose a point in G, say g, such that [z +g|| <e:
let g = tg’ with ||¢’{] = 1 and some ¢t > 0. We obtain:

||xl|+1’ and so > 1 —7 when ||z}| >

—~1,and so it is > 1—n when

ly+all S lly—gll~¢
fzll+1 7~ 1+lgll +¢
Then consider f(7) = ||y — 7¢'||; note that f(0) = 1 and f(1) > 2 —¢;
if t < 1, by using the fact that f(r) is 1-Lipschitz, we obtain: f(t) >
2 — ¢ — (1 — t), which implies
|ly—-gll—-e>1-—e+t—€_ 3
1+lgll+e = 1+t+e = 14+t+e
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Since the last function increases with ¢ (0 <t < 1), we obtain
ly-gll— 3
1+|lgll+e = 1+4¢€

If t > 1, by using the fact that f(r) is convex we obtain:

2—e<|ly—gll=fM<1-1)-fO+;-fO=Q-D+i-ly—dl,
and so f(t) = |ly —g|| > t(2—¢€) —t+ 1 =1+t — &t; therefore,

lly + z| S l1+t—et—¢

lz||+1 =~ 1+t+e
The last function increases with ¢, so we obtain
|ly+ar:||Z Bk o1 3e .
llz|| +1 2+¢ l+e¢
Therefore, if 1‘% <7 (@ €< 3—_’7_;) we obtain: "Zﬁrﬂ < 1 — 1, which
concludes the proof. O

REMARK 1. Our result proves that X contains (isomorphically) ¢,
if and only if there is a renorming of X for which us(X) = 2. This
shows that the condition ps(X) < 2 is not invariant for renormings: for
example, y(¢s) = 3/2 (see [8], Proposition 5); but since it contains ¢;,
the space /, has a renorming which is octahedral (u; = 2).

But something different can be said.

Recall the following proposition (see [1], Theorem 8.1).
PROPOSITION 2.2. For any space X, we have

(2.2) [ (X, (X)) € [pa(X), pa(X)]

We know that ps(cp) = 3/2 (see [8]), and of course ua(X) < 2 for any
X obtained by renorming ¢y (since ¢y does not contain ¢;); same results
for the space c. For £, (the bidual of ¢; and ¢), according to Proposition
2.3, we must have p5(4) < 3/2 (in fact, equality holds). Also: if £y is
the bidual of ¢y renormed in some way, then we must have u,(fy) < 2.
The renorming of £, for which y; = 2 is not “a bidual norm”: in fact
(according to (3.2)), the predual should contain ¢;. But |£}*| = 2¢ and
o] = c.
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The following question was raised in [5], p. 12: if X contains ¢;, does
there exist a renorming of X such that the bidual norm is octahedral in
X**?

If the answer to the above question is yes, then according to (2.2) the
renorming of X must be octahedral.

3. Octahedral norms and vicinities

Consider now the following conditions:

d) pa(X) = 2;

e) X contains ¢; isomorphically;

h) X contains ¢; isometrically.

k) p2(X) = 2 and such value is attained.

The following implications (and no others) hold:

= (h) =

(k) (e)

= (d) =

The space #; shows that d) and h) together do not imply k) (see [8]).
k) = h) was proved in [9], Proposition 2.

e) does not imply d): see [2], Section 4.

The following examples A and B will show that conditions d) and h) are
independent.

EXAMPLE 1. Let X = £, endowed with the following (strictly convex)
_ 2\ 1/2
norm: if 7 = (1, T, ++), st llalll = Ly ol + (22, )

This space does not contain £, isometrically, and nevertheless ps(X) = 2;
this shows that d) does not imply h).

EXAMPLE 2. Take K = {c}Ula, b] with ¢ & [a, b]; then for X = C(K),
which contains #; isometrically, we have p;(X) = pp(X) = 3/2 < 2 (see
[9], Proposition 3). This shows that h) does not imply d).
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4. Average distances and product of spaces with the max
norm

In this section we indicate some results concerning u; and gy when
the product of two spaces is done in the sense of /..

THEOREM 4.1. Let Z = (X ®Y)w. Then:
(4.1) p2(Z) 2 min(pz(X), p2(Y)).

Proof. Consider any F' = {21, 29, ,2,} C Sz, with z; = (z;, %) (i =
1,2,---n). Then for every ¢ we have either z; € Sy or y; € Sy : assume -
that (if any) @1, ,z; € Sx and ygy41,--- , 90 € Sy (0 < k < n); if
0<k<mset 1 ={z1, - ,z4}; Fo={ys1, "+, ¥Un}-

Let z € Sx, y € Sy, s0 z = (z,y) € Sz; set u(F,z) = o; p(Fa,y) = B.
We obtain:

npz(F) > nu(F, z)

=Y =) = (@ w)l =D max(lz — )], |y — wll)
i=1 =1

k n
> lle—zll+ > lly—ull = ka+ (n - k)8
i=1 i=k+1
> n - min{e, 8}.

Since pa(X) < pa(F1), we can choose z so that @ = pp(X); similarly, we
can choose y so that 8 = uy(Y'): we thus obtain uy(F3) > min(a, §) 2
min{pz(X), p2(Y)}.

Iftk=0o0rk=n, then FF=F, of F = F}: so in any case us(F) > py(Y)
or pa(F) > pa(X).

In any case, since one of the two inequalities is true for ' C Sy arbitrary,
we obtain p3(Z) > min{us(X), p2(Y)} which is (4.1). O

REMARK 2. The estimate given by (4.1) is sharp (we have equality in
many simple cases).
In particular, let X or Y contain ¢;, so according to Theorem 2.2 we
can find an octahedral norm in one of these spaces; then the product
(X ®Y)w gives automatically an octahedral norm for the product space.
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THEOREM 4.2. Let Z = (X @ Y). Then:
(4.2) 1(Z) 2 min(py(X), m(Y)).
Proof. For any € > o, we can find sets F; C Sx, F; C Sy, such that

p(F) > m(X) =& m(F) 2mY) —e

Without loss of generality, we can assume that F; and F, contain the
same number of elements: in fact, let F} contain k elements and F
contain h elements; then we can “count” h times each element of F} and
k times each element of Fj, so as to obtain “sets” F] and F; having each
n = kh elements (and the same value as Fy, F; for py). Let z; = (2, %)
withz; € F|, y; € Fy, i = 1,2,--- ,n; then set F = {z,--+,2,} : of
course, FF C Sz.

Take now any element z = (z,y) € Sz; we must have either z € Sx or
y € Sy. In the first case we obtain:

WP, 2) = =3 max(le = ol Iy = )

> (e =@l + e+ llz = 2al) = m(F ).
2 wm(F) 2 m(X) -5

similarly, if |ly]| = 1, we obtain u(F,2) > u(Y) — e. In any case, we
obtain (for any element z € Syz) :

p(F, z) > min(pi(X), 1a(Y)) — ¢,
which implies p3(Z) > pi(F) > min(pi(X), p1(Y)) — €. Since ¢ > 0 is
arbitrary, this proves (4.2). |

REMARK 3. According to Theorem 4.2, y41(Z) =1 (Z = (X ®Y)),
implies p1(X) =1or ;(Y) =1.

5. Average distances and product of spaces with the “sum”
norm

In this section we indicate some estimates concerning y; and po when
the product is done in the sense of /;.
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THEOREM 5.1. Let Z = (X @ Y);, with min(u(X), pe(Y)) < 2.
Then:

4 — wa(X)pa(Y)

5.1 Z) < .
(5:) wal2) < 4 = po(X) — pa(Y)
Proof. Given any € > 0, we can find finite sets F; = {z1, 29, ,Z,} C
Sx and Fy = {y1, Y2, -+ ,Yn} C Sy such that
(5.2) pa(F1) < pa(X) +&  pa(Fr) < po(Y) +e

It is not a restriction to assume that F; and F) have the same number
of elements (for example, if they have respectively h and k elements, we
may “count” k times each element of F; and h times each element of F,
to obtain new “sets” with n = h - k elements each).

Now take a € (0,1), then set F' = {2, 29,---,2,}, where, for each i =
1,2,--- ,n:z = (az;, (1 — a)y;)-

Consider now in Sz a point z = (z,y) :z € X; yeY;|z|| + |yl = 1.
Set ||z|| = A and |ly|| = 1 — A\. We have:

nu(Fz) = 3l (1 a)y) - (2,9)]
(53) = > llami —afl + 3 (1 = )y —

n n
* y
= aZHZ‘i‘— a||+(1~a)2|jyi— l—a”'
=1 i=1
Suppose now that
(%) lzl =A>0a, soly=1-A<1—-a;

we obtain:

Szl < 2 :

T _z )
E
T
n (#2(F1) L 1) :

now observe that the function (of t € R) f(¢) = > ", llyi—t 7|l is convex;
moreover, f(0) =n and f(1) < nyuy(Fy). Since ¥ can be expressed as a

T; z H+
]

IA
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o — 1-) 1-A 4
convex ?omblnatlon of © and WyLH (namely, £ = (1- =)o + TEWLLH)
we obtain:

Z”?Ji"%&l|§n<l—i:)\+1_)\#2(F2)).

« ¢ 4
i=1 1

Thus np(F,2) = a T2, o= 2]+ (1=a) T2, s 12| < na(u(Fy) +
2D +nl-a)(1- 224+ 12 (R) =namFP)+rA—a+r-a+
(1 — A)pa(Fy)); this implies:

(@) W(F, 2) < pa(F) + apa(F1) — 2) + M2 — po(F))
< apy(Fi) —2a+2 (since A < 1).
Now suppose instead that

(4) Izl =A<a, sollyl=1-A>1-¢;

with a similar reasoning, we obtain:

Z:L:l lmi - i‘” <n (1 - 2 + '2#2(F1)) ,
and then
B = o flm-Zl+a-a - 27
=1 i=1

< nla= A+ M)+ (1—-a)u(F)+1-A—1+a];
this implies
(') W(F, z) < pa(Fo) + (2 = pp(F3)) + Mpa(F) — 2)
< pa(Fa) + a2 — pa(F3)).
Therefore, for any z € S(Z) (see (¥'), (:¢')):

u(F, z) < sup(aps(F1) — 20 +2, w(F)(1 - a) + 2a),
p2(F) < sup(2 + app(Fi) — 2, pa(F)(1 — a) + 2a).
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If we choose a so that a(4 — pg(Fy) — po(F1)) = 2 — pa(F3), thus 1 —a =
ll_i‘i?—(_ﬂ——, then we obtain
n2(F2)—pa(F1)

4 — pp(F)pa(F2)
wal(2) < palF) < 4 — pp(Fr) ~ po(F2)

According to (5.2), since the & chosen at the beginning can be arbitrarily
small, this implies the thesis. a

REMARK 4. Inequality (5.1) is meaningful, in the sense that it gives
p2((X ®Y)1) < 2, whenever max(p2(X), po(Y)) < 2.

THEOREM 5.2. Let Z = (X @®Y);, with 1 < min(u(X), i (Y)) < 2.
Then:

4 (X)m(Y) = (X)) (Y)

54 zZ) > .
(5:4) i(2) 4 (X) + i (Y) — p(X)pa (Y)]
Proof. For any € > 0, we can find sets F} = {z1,2, -+ ,2Z,} C Sx and
F2 == {yl;y?, U 7y17.} C SY Such that
(5.5) p(F) > p(X) — & w(Fz) > m(Y) — &

once again, we observe that it is not a restriction to assume that F; and
F, have the same number of elements. Now take o € (0, 1), then set F' =
{z1, 22, , Zs}, where, for each i =1,2,--- ,n: z = (az;, (1 — a)y;).
Consider now in Sz a point z = (z,y) : z € X;y € Y;|z|| + ||yl = 1.
Set ||z|| = A and ||ly|| = 1 — A. Again, we can use (5.3); also, to simplify
the notations set

. 1<

J = Hz; - Y; — =u
) Z o= gl = s 5 = gl =
Suppose now that
(4) lzl=A>a, so Jyl=1-A<1-q

note that the slope of the convex function f(t) = > ., l|lz; — tl—lg—fﬂ[l, for
t > 1, is at least n(u, — 1), so

o= 2 2 (i - (120 -1)):
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concerning Y i lyi — 7% || two estimates are possible (since the slope of
the convex function f(t) = 3 o, |lyi — tﬁ[—lll, for 0 < t < 1, is not larger
than n, while f(0) = n); we have:

En: Y lyll Hy
;- = || > nmax —_ [ L L, == ].
P v l—a“ =" (,uy (1 l-a)’ 2

Therefore, under assumption (z), we obtain (according to (5.3)):

wF2) 2 o= (2-1))
+(1-—a)max<yy— (1- i:i)’éﬁ)

= Mg — 1) + a + max ((1 — o)y +a = A (1~ a)%i) :

Note that
(f) max((1-a)u+a—A(1-a))

{(1—a)uy+a—>\ fa<i<a+(l-ao) (f1)

(1-a) fa+(1-a) <A<l (f2)-
In case (f;) holds, we obtain:
pF,z) 2 Mz —1)+a+(l-a)p,+a—-A
> (l-a)uy+2a+(a+(1—a)%g) (b — 2)

: 1—a
= apy + ‘_2—//':5/J'y-

Also in case (f,) holds, we obtain;
WE2) > M= +a+(1-a)

(a-l—(l—-a)yﬁ) '(Mz-l)—{-a—f—(l——a)-%i

2
| e’
= g+ T#z#y-

A\

Suppose instead now that
(1) lzll =A<ea, so {lyl=1-A>1-—q;
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with similar reasoning, we obtain:

> - 220 (a0 (2L 1)),

Also, concerning 3, ||z; — £||, two estimates are possible, and we have:

n
xT T
Zwﬁ~jﬁwmw(m—<bj%%,%>

Therefore, under assumption (i), we obtain (according to (5.3) and with
the notations (j)):

u(F, z)

oo (-2 4

H - e+ -1 (155 - 1))

-

1
:max(auz—a%—/\,a—gi) + 1=y +A—c.
Note that:

() max (ap; —a+ ), %)

apy —a+ ), if a(l-&)<A<o (91)
ot if 0<A<a(l-t) (92)

In case (g;1) holds, we obtain:

wF,z) > apg—a+ A+ (1 =Ny +A—a
Ka
> — = —
> apy + py 2a+a(1 2)(2 Hy)

o
py(l—a) + Habty -

i
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Also in case (gq) holds, we obtain:
w(F,z) > “;‘-‘” F(1-Ng+r-a

a§x+/‘y”a+.a(1-%§) (1— 1y)

a
= py(l—a)+ Hatly Sy

2

Therefore, we can say (since z is arbitrary) that we have

-«
2
But p; > pi(F1) and p, > pi(F3), thus, for every z we have:

(F, z)

> inf (alll(Fl) +

. [8%
p(F, z) > inf <auz + Bty ty(1—a) + uxuy-2-> :

-«

i (P (Fy), (1— a)u(Fy) + m(ﬂ)m(&)g-),

so the same estimate is true for p,(F).
Now we can choose o so that

S Fm(F) = (1 (B + (R (F) 5

(if 1 = m(F1), po = wm(F), then o = [2ug — ppo] = [2(p1 + p2 — papsn));
50 1—a = [2u1 — ppo] © [2(p1 + p2 — papsa)]).

Also, recall that F; and F; can be chosen so that p(F}) is very near to
p1(X) and py (F3) is very near to p4(Y) (see (5.5)); so, finally, we obtain:

(X)) (Y) — pd(X)Ed(Y)
m(Z) 2 m(F) > A (X) + (YY) — (X )a (V)

ap,l(Fl) +

, which is (5.4).
O

REMARK 5. For example, if 41(X) = 13 (Y) = k, the above estimate
is meaningful (it gives p1(Z) > 1) for k* — 8k + 8 < 0, so at least when
k>+5-1.
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