AVERAGE DISTANCES AND OCTAHEDRAL NORMS

PIER LUIGI PAPINI

ABSTRACT. In [6], Godefroy defined octahedral norms to give an isomorphic characterization of spaces containing ℓ_1 . Here we will show that such norms can be defined by using "average distances", as introduced in [1]. Also, we indicate some other properties of average distances: in particular, we give some estimates for their values in the product of two spaces, furnished with the max or the sum norm.

1. Introduction and notation

Let $(X, \|.\|)$ be a Banach space, of dimension at least two, over the real field R.

We shall use the following notations:

 $S_X = \{x \in X; ||x|| = 1\};$ we shall simply write S instead of S_X when no confusion can arise;

 X^* will denote the dual of X;

 $\mathsf{F}(S) = \{F \subset S; \ F \ \text{is finite and nonempty}\}.$ If $F = \{x_1, x_2, \cdots, x_n\} \subset S \ \text{and} \ x \in X$, we set

$$\mu(F, x) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - x||.$$

We do not exclude, when we write $F = \{x_1, x_2, \dots, x_n\}$, that $x_i = x_j$ for some pairs i, j.

For $F \in F(S)$, we also set

$$\mu(F,S) = \{\alpha \geq 0; \text{ there exists } x \in S \text{ such that } \mu(F,x) = \alpha\};$$

 $\mu_1(F) = \inf\{\mu(F,S)\};$

Received March 24, 1998.

1991 Mathematics Subject Classification: 46B03, 46B20, 46B25.

Key words and phrases: average distance, octahedral norms, spaces containing ℓ_1 .

$$\mu_2(F) = \sup\{\mu(F, S)\}.$$

Given $F \in \mathsf{F}(S)$, since S is connected, $\mu(F,S)$ is an interval; so $\overline{\mu(\mathsf{F},S)} = [\mu_1(F), \mu_2(F)]$. Now set

$$\mu_1(X) = \sup{\{\mu_1(F); F \in F(S)\}}$$

and

$$\mu_2(X) = \inf\{\mu_2(F); F \in F(S)\}.$$

We recall the following result (See [10], p. 332):

LEMMA 1.1. For any Banach space X we have

For any $F \in F(S)$ (and any X) we have:

$$(1.2) \qquad \max\{1, \mu_1(F)\} \le \mu_1(X) \le \mu_2(X) \le \mu_2(F) \le 2.$$

Note that $[\mu_1(X), \mu_2(X)] = \bigcap \{\overline{\mu(F, S)}; F \in F(S)\}.$

If $\mu \in [\mu_1(X), \mu_2(X)]$, then μ is called an average distance for X.

For general results on average distances, see [1]-[3] and [7]-[9].

In sections 2 and 3 of this paper we study the condition $\mu_2(X) = 2$, which is strictly connected with the property of containing a copy of ℓ_1 ; in sections 4 and 5 we study how μ_1 and μ_2 behave when we consider the product of two spaces: we indicate results concerning the "extreme cases", of products performed with the max or the sum norm.

2. A characterization of octahedral norms

The following definition was introduced in [6].

DEFINITION 1. We say that a norm in X is octahedral if for every finite dimensional subspace F of X and a every $\eta > 0$, there exists $y \in S_X$ such that for every $x \in F$, we have

$$||x+y|| \ge (1-\eta) \cdot (||x||+1).$$

Recall the following result (see [4], Theorem III.2.5).

PROPOSITION 2.1. For any Banach space X the following are equivalent:

- (a) X contains a subspace isomorphic to ℓ_1 ;
- (b) there exists an octahedral norm on X.

Next theorem is the main result of this section.

THEOREM 2.1. For a normed space X, the following are equivalent:

- (c) the norm of X is octahedral;
- (d) $\mu_2(X) = 2$.

Proof. It is clear that if X has an octahedral norm, then for every finite subset Φ of S_X we have $\mu_2(\Phi) = 2$, thus $\mu_2(X) = 2$: so (c) implies (d).

Now we prove that (d) implies (c). Let $\mu_2(X) = 2$. Take a finite dimensional subspace F of X and let $\eta \in (0,1)$; if y is an arbitrary point of S_X , then for any $x \in X$ we have:

$$\frac{\|x+y\|}{\|x\|+1} \ge \frac{\|\|x\|-1\|}{\|x\|+1};$$

if $\|x\| \ge 1$, then the last term is $= 1 - \frac{2}{\|x\|+1}$, and so $\ge 1 - \eta$ when $\|x\| \ge \frac{2}{\eta} - 1$; if $\|x\| \le 1$, then the last term is $= \frac{2}{\|x\|+1} - 1$, and so it is $\ge 1 - \eta$ when $\|x\| \le \frac{\eta}{2-\eta} = 1 - \frac{2-2\eta}{2-\eta}$. Now set $C = \left\{x \in F; \frac{\eta}{2-\eta} \le \|x\| \le \frac{2}{\eta} - 1\right\}$: C is a compact subset of F, so we can find, for any $\varepsilon \in (0,1)$, a finite ε -net for it, say G. Let G contain n elements, say g_1, g_2, \cdots, g_n ; set $g_i' = \frac{g_i}{\|g_i\|}$ (note that $\Theta \not\in G$ if ε is small enough).

(note that $\Theta \not\in G$ if ε is small enough). Take $y \in S_X$ such that $\frac{1}{n} \sum_{i=1}^n \|y - g_i'\| \ge 2 - \frac{\varepsilon}{n}$, thus $\|y - g_i'\| \ge 2n - \varepsilon - 2(n-1) = 2 - \varepsilon$ for every i.

For any $x \in C$, we can choose a point in G, say g, such that $||x+g|| < \varepsilon$: let g = tg' with ||g'|| = 1 and some $t \ge 0$. We obtain:

$$\frac{\|y+x\|}{\|x\|+1} \ge \frac{\|y-g\|-\varepsilon}{1+\|g\|+\varepsilon}.$$

Then consider $f(\tau) = ||y - \tau g'||$; note that f(0) = 1 and $f(1) \ge 2 - \varepsilon$; if $t \le 1$, by using the fact that $f(\tau)$ is 1-Lipschitz, we obtain: $f(t) \ge 2 - \varepsilon - (1 - t)$, which implies

$$\frac{\|y-g\|-\varepsilon}{1+\|g\|+\varepsilon} \geq \frac{1-\varepsilon+t-\varepsilon}{1+t+\varepsilon} = 1 - \frac{3\varepsilon}{1+t+\varepsilon}.$$

Pier Luigi Papini

Since the last function increases with t ($0 \le t \le 1$), we obtain

$$\frac{\|y-g\|-\varepsilon}{1+\|g\|+\varepsilon} \ge 1 - \frac{3\varepsilon}{1+\varepsilon}.$$

If $t \ge 1$, by using the fact that $f(\tau)$ is convex we obtain: $2 - \varepsilon \le \|y - g'\| = f(1) \le (1 - \frac{1}{t}) \cdot f(0) + \frac{1}{t} \cdot f(t) = (1 - \frac{1}{t}) + \frac{1}{t} \cdot \|y - g\|$, and so $f(t) = \|y - g\| \ge t(2 - \varepsilon) - t + 1 = 1 + t - \varepsilon t$; therefore,

$$\frac{\|y+x\|}{\|x\|+1} \ge \frac{1+t-\varepsilon t-\varepsilon}{1+t+\varepsilon}.$$

The last function increases with t, so we obtain

$$\frac{\|y+x\|}{\|x\|+1} \ge 1 - \frac{3\varepsilon}{2+\varepsilon} > 1 - \frac{3\varepsilon}{1+\varepsilon}.$$

Therefore, if $\frac{3\varepsilon}{1+\varepsilon} < \eta \left(\Leftrightarrow \varepsilon < \frac{\eta}{3-\eta} \right)$ we obtain: $\frac{\|y+x\|}{\|x\|+1} \le 1-\eta$, which concludes the proof.

REMARK 1. Our result proves that X contains (isomorphically) ℓ_1 if and only if there is a renorming of X for which $\mu_2(X)=2$. This shows that the condition $\mu_2(X)<2$ is not invariant for renormings: for example, $\mu_2(\ell_\infty)=3/2$ (see [8], Proposition 5); but since it contains ℓ_1 , the space ℓ_∞ has a renorming which is octahedral ($\mu_2=2$).

But something different can be said.

Recall the following proposition (see [1], Theorem 8.1).

PROPOSITION 2.2. For any space X, we have

$$[\mu_1(X^{**}), \mu_2(X^{**})] \subset [\mu_1(X), \mu_2(X)]$$

We know that $\mu_2(c_0) = 3/2$ (see [8]), and of course $\mu_2(X) < 2$ for any X obtained by renorming c_0 (since c_0 does not contain ℓ_1); same results for the space c. For ℓ_{∞} (the bidual of c_0 and c), according to Proposition 2.3, we must have $\mu_2(\ell_{\infty}) \leq 3/2$ (in fact, equality holds). Also: if ℓ_{00} is the bidual of c_0 renormed in some way, then we must have $\mu_2(\ell_{00}) < 2$. The renorming of ℓ_{∞} for which $\mu_2 = 2$ is not "a bidual norm": in fact (according to (3.2)), the predual should contain ℓ_1 . But $|\ell_1^{**}| = 2^c$ and $|\ell_{\infty}| = c$.

The following question was raised in [5], p. 12: if X contains ℓ_1 , does there exist a renorming of X such that the bidual norm is octahedral in X^{**} ?

If the answer to the above question is yes, then according to (2.2) the renorming of X must be octahedral.

3. Octahedral norms and vicinities

Consider now the following conditions:

- d) $\mu_2(X) = 2;$
- e) X contains ℓ_1 isomorphically;
- h) X contains ℓ_1 isometrically.
- k) $\mu_2(X) = 2$ and such value is attained.

The following implications (and no others) hold:

$$\begin{array}{cccc} & \Rightarrow & (h) & \Rightarrow \\ (k) & & & (e) \\ & \Rightarrow & (d) & \Rightarrow \end{array}$$

The space ℓ_1 shows that d) and h) together do not imply k) (see [8]). $k \rightarrow h$) was proved in [9], Proposition 2.

e) does not imply d): see [2], Section 4.

The following examples A and B will show that conditions d) and h) are independent.

EXAMPLE 1. Let $X=\ell_1$ endowed with the following (strictly convex) norm: if $x=(x_1,\cdots,x_n,\cdots)$, set $|||x|||=\sum_{n=1}^{\infty}|x_n|+\left(\sum_{n=1}^{\infty}\frac{|x_n|^2}{2^n}\right)^{1/2}$. This space does not contain ℓ_1 isometrically, and nevertheless $\mu_2(X)=2$; this shows that d) does not imply h).

EXAMPLE 2. Take $K = \{c\} \cup [a, b]$ with $c \notin [a, b]$; then for X = C(K), which contains ℓ_1 isometrically, we have $\mu_1(X) = \mu_2(X) = 3/2 < 2$ (see [9], Proposition 3). This shows that h) does not imply d).

4. Average distances and product of spaces with the max norm

In this section we indicate some results concerning μ_1 and μ_2 when the product of two spaces is done in the sense of ℓ_{∞} .

THEOREM 4.1. Let $Z = (X \oplus Y)_{\infty}$. Then:

(4.1)
$$\mu_2(Z) \ge \min(\mu_2(X), \mu_2(Y)).$$

Proof. Consider any $F=\{z_1,z_2,\cdots,z_n\}\subset S_Z$, with $z_i=(x_i,y_i)$ $(i=1,2,\cdots n)$. Then for every i we have either $x_i\in S_X$ or $y_i\in S_Y$: assume that (if any) $x_1,\cdots,x_k\in S_X$ and $y_{k+1},\cdots,y_n\in S_Y$ $(0\leq k\leq n)$; if 0< k< n, set $F_1=\{x_1,\cdots,x_k\};\ F_2=\{y_{k+1},\cdots,y_n\}$. Let $x\in S_X$, $y\in S_Y$, so $z=(x,y)\in S_Z$; set $\mu(F_1,x)=\alpha$; $\mu(F_2,y)=\beta$. We obtain:

$$egin{aligned} n\mu_2(F) &\geq n\mu(F,z) \ &= \sum_{i=1}^n \|(x,y) - (x_i,y_i)\| = \sum_{i=1}^n \max(\|x-x_i\|,\|y-y_i\|) \ &\geq \sum_{i=1}^k \|x-x_i\| + \sum_{i=k+1}^n \|y-y_i\| = k\alpha + (n-k)\beta \ &\geq n \cdot \min\{\alpha,\beta\}. \end{aligned}$$

Since $\mu_2(X) \leq \mu_2(F_1)$, we can choose x so that $\alpha \cong \mu_2(X)$; similarly, we can choose y so that $\beta \cong \mu_2(Y)$: we thus obtain $\mu_2(F_2) \geq \min(\alpha, \beta) \cong \min\{\mu_2(X), \mu_2(Y)\}$.

If k=0 or k=n, then $F=F_2$ of $F=F_1$: so in any case $\mu_2(F)\geq \mu_2(Y)$ or $\mu_2(F)\geq \mu_2(X)$.

In any case, since one of the two inequalities is true for $F \subset S_Z$ arbitrary, we obtain $\mu_2(Z) \ge \min\{\mu_2(X), \mu_2(Y)\}$ which is (4.1).

REMARK 2. The estimate given by (4.1) is sharp (we have equality in many simple cases).

In particular, let X or Y contain ℓ_1 , so according to Theorem 2.2 we can find an octahedral norm in one of these spaces; then the product $(X \oplus Y)_{\infty}$ gives automatically an octahedral norm for the product space.

THEOREM 4.2. Let $Z = (X \oplus Y)_{\infty}$. Then:

(4.2)
$$\mu_1(Z) \ge \min(\mu_1(X), \mu_1(Y)).$$

Proof. For any $\varepsilon > 0$, we can find sets $F_1 \subset S_X$, $F_2 \subset S_Y$, such that

$$\mu_1(F_1) \ge \mu_1(X) - \varepsilon; \quad \mu_1(F_2) \ge \mu_1(Y) - \varepsilon.$$

Without loss of generality, we can assume that F_1 and F_2 contain the same number of elements: in fact, let F_1 contain k elements and F_2 contain h elements; then we can "count" h times each element of F_1 and k times each element of F_2 , so as to obtain "sets" F_1' and F_2' having each n = kh elements (and the same value as F_1, F_2 for μ_1). Let $z_i = (x_i, y_i)$ with $x_i \in F_1'$, $y_i \in F_2'$, $i = 1, 2, \cdots, n$; then set $F = \{z_1, \cdots, z_n\}$: of course, $F \subset S_Z$.

Take now any element $z = (x, y) \in S_Z$; we must have either $x \in S_X$ or $y \in S_Y$. In the first case we obtain:

$$\mu(F, z) = \frac{1}{n} \sum_{i=1}^{n} \max(\|x - x_i\|, \|y - y_i\|)$$

$$\geq \frac{1}{n} (\|x - x_1\| + \dots + \|x - x_n\|) = \mu_1(F_1', x)$$

$$\geq \mu_1(F_1') \geq \mu_1(X) - \varepsilon;$$

similarly, if ||y|| = 1, we obtain $\mu(F, z) \ge \mu_1(Y) - \varepsilon$. In any case, we obtain (for any element $z \in S_Z$):

$$\mu(F,z) \ge \min(\mu_1(X),\mu_1(Y)) - \varepsilon,$$

which implies $\mu_1(Z) \ge \mu_1(F) \ge \min(\mu_1(X), \mu_1(Y)) - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, this proves (4.2).

Remark 3. According to Theorem 4.2, $\mu_1(Z) = 1$ $(Z = (X \oplus Y)_{\infty})$, implies $\mu_1(X) = 1$ or $\mu_1(Y) = 1$.

5. Average distances and product of spaces with the "sum" norm

In this section we indicate some estimates concerning μ_1 and μ_2 when the product is done in the sense of ℓ_1 .

Theorem 5.1. Let $Z=(X\oplus Y)_1,$ with $\min(\mu_2(X),\mu_2(Y))<2.$ Then:

(5.1)
$$\mu_2(Z) \le \frac{4 - \mu_2(X)\mu_2(Y)}{4 - \mu_2(X) - \mu_2(Y)}.$$

Proof. Given any $\varepsilon > 0$, we can find finite sets $F_1 = \{x_1, x_2, \dots, x_n\} \subset S_X$ and $F_2 = \{y_1, y_2, \dots, y_n\} \subset S_Y$ such that

(5.2)
$$\mu_2(F_1) < \mu_2(X) + \varepsilon; \quad \mu_2(F_2) < \mu_2(Y) + \varepsilon.$$

It is not a restriction to assume that F_1 and F_2 have the same number of elements (for example, if they have respectively h and k elements, we may "count" k times each element of F_1 and h times each element of F_2 to obtain new "sets" with $n = h \cdot k$ elements each).

Now take $\alpha \in (0,1)$, then set $F = \{z_1, z_2, \dots, z_n\}$, where, for each $i = 1, 2, \dots, n : z_i = (\alpha x_i, (1-\alpha)y_i)$.

Consider now in S_Z a point $z=(x,y): x\in X; y\in Y; ||x||+||y||=1$. Set $||x||=\lambda$ and $||y||=1-\lambda$. We have:

$$n\mu(F,z) = \sum_{i=1}^{n} \|(\alpha x_i, (1-\alpha)y_i) - (x,y)\|$$

$$= \sum_{i=1}^{n} \|\alpha x_i - x\| + \sum_{i=1}^{n} \|(1-\alpha)y_i - y\|$$

$$= \alpha \sum_{i=1}^{n} \|x_i - \frac{x}{\alpha}\| + (1-\alpha) \sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\|.$$

Suppose now that

(i)
$$||x|| = \lambda \ge \alpha$$
, so $||y|| = 1 - \lambda \le 1 - \alpha$;

we obtain:

$$\sum_{i=1}^{n} \left\| x_i - \frac{x}{\alpha} \right\| \leq \sum_{i=1}^{n} \left(\left\| x_i - \frac{x}{\|x\|} \right\| + \left\| \frac{x}{\|x\|} - \frac{x}{\alpha} \right\| \right)$$

$$\leq n \left(\mu_2(F_1) + \frac{\|x\|}{\alpha} - 1 \right);$$

now observe that the function (of $t \in R$) $f(t) = \sum_{i=1}^{n} \|y_i - t \frac{y}{\|y\|}\|$ is convex; moreover, f(0) = n and $f(1) \le n\mu_2(F_2)$. Since $\frac{y}{1-\alpha}$ can be expressed as a

convex combination of Θ and $\frac{y}{\|y\|}$ (namely, $\frac{y}{1-\alpha} = \left(1 - \frac{1-\lambda}{1-\alpha}\right)\Theta + \frac{1-\lambda}{1-\alpha}\frac{y}{\|y\|}$) we obtain:

$$\sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\| \le n \left(1 - \frac{1-\lambda}{1-\alpha} + \frac{1-\lambda}{1-\alpha} \mu_2(F_2)\right).$$

Thus $n\mu(F,z) = \alpha \sum_{i=1}^{n} \|x_i - \frac{x}{\alpha}\| + (1-\alpha) \sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\| \le n\alpha(\mu_2(F_1) + \frac{\lambda}{\alpha} - 1) + n(1-\alpha)(1 - \frac{1-\lambda}{1-\alpha} + \frac{1-\lambda}{1-\alpha}\mu_2(F_2)) = n[\alpha\mu_2(F_1) + \lambda - \alpha + \lambda - \alpha + (1-\lambda)\mu_2(F_2)];$ this implies:

(i')
$$\mu(F, z) \le \mu_2(F_2) + \alpha(\mu_2(F_1) - 2) + \lambda(2 - \mu_2(F_2))$$
$$\le \alpha \mu_2(F_1) - 2\alpha + 2 \text{ (since } \lambda \le 1).$$

Now suppose instead that

(ii)
$$||x|| = \lambda < \alpha, \text{ so } ||y|| = 1 - \lambda > 1 - \alpha;$$

with a similar reasoning, we obtain:

$$\sum_{i=1}^{n} \left\| y_i - \frac{y}{1-\alpha} \right\| \le n \left(\mu_2(F_2) + \frac{\|y\|}{1-\alpha} - 1 \right);$$

$$\sum_{i=1}^{n} \left\| x_i - \frac{x}{\alpha} \right\| \le n \left(1 - \frac{\lambda}{\alpha} + \frac{\lambda}{\alpha} \mu_2(F_1) \right),$$

and then

$$n\mu(F,z) = \alpha \sum_{i=1}^{n} \left\| x_{i} - \frac{x}{\alpha} \right\| + (1-\alpha) \sum_{i=1}^{n} \left\| y_{i} - \frac{y}{1-\alpha} \right\|$$

$$\leq n[\alpha - \lambda + \lambda \mu_{2}(F_{1}) + (1-\alpha)\mu_{2}(F_{2}) + 1 - \lambda - 1 + \alpha];$$

this implies

(ii')
$$\mu(F,z) \le \mu_2(F_2) + \alpha(2 - \mu_2(F_2)) + \lambda(\mu_2(F_1) - 2)$$
$$\le \mu_2(F_2) + \alpha(2 - \mu_2(F_2)).$$

Therefore, for any $z \in S(Z)$ (see (i'), (ii')):

$$\mu(F, z) \le \sup(\alpha \mu_2(F_1) - 2\alpha + 2, \ \mu_2(F_2)(1 - \alpha) + 2\alpha),$$

SO

$$\mu_2(F) \le \sup(2 + \alpha \mu_2(F_1) - 2\alpha, \ \mu_2(F_2)(1 - \alpha) + 2\alpha).$$

If we choose α so that $\alpha(4 - \mu_2(F_2) - \mu_2(F_1)) = 2 - \mu_2(F_2)$, thus $1 - \alpha = \frac{2 - \mu_2(F_1)}{4 - \mu_2(F_2) - \mu_2(F_1)}$, then we obtain

$$\mu_2(Z) \le \mu_2(F) \le \frac{4 - \mu_2(F_1)\mu_2(F_2)}{4 - \mu_2(F_1) - \mu_2(F_2)}.$$

According to (5.2), since the ε chosen at the beginning can be arbitrarily small, this implies the thesis.

REMARK 4. Inequality (5.1) is meaningful, in the sense that it gives $\mu_2((X \oplus Y)_1) < 2$, whenever $\max(\mu_2(X), \mu_2(Y)) < 2$.

THEOREM 5.2. Let $Z = (X \oplus Y)_1$, with $1 < \min(\mu_1(X), \mu_1(Y)) < 2$. Then:

(5.4)
$$\mu_1(Z) \ge \frac{4\mu_1(X)\mu_1(Y) - \mu_1^2(X)\mu_1^2(Y)}{4[\mu_1(X) + \mu_1(Y) - \mu_1(X)\mu_1(Y)]}.$$

Proof. For any $\varepsilon > 0$, we can find sets $F_1 = \{x_1, x_2, \dots, x_n\} \subset S_X$ and $F_2 = \{y_1, y_2, \dots, y_n\} \subset S_Y$ such that

(5.5)
$$\mu_1(F_1) > \mu_1(X) - \varepsilon; \quad \mu_1(F_2) > \mu_1(Y) - \varepsilon;$$

once again, we observe that it is not a restriction to assume that F_1 and F_2 have the same number of elements. Now take $\alpha \in (0,1)$, then set $F = \{z_1, z_2, \dots, z_n\}$, where, for each $i = 1, 2, \dots, n: z_i = (\alpha x_i, (1-\alpha)y_i)$. Consider now in S_Z a point $z = (x,y): x \in X; y \in Y; ||x|| + ||y|| = 1$. Set $||x|| = \lambda$ and $||y|| = 1 - \lambda$. Again, we can use (5.3); also, to simplify the notations set

(j)
$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - \frac{x}{\|x\|}\| = \mu_x; \quad \frac{1}{n} \sum_{i=1}^{n} \|y_i - \frac{y}{\|y\|}\| = \mu_y.$$

Suppose now that

(i)
$$||x|| = \lambda \ge \alpha$$
, so $||y|| = 1 - \lambda \le 1 - \alpha$;

note that the slope of the convex function $f(t) = \sum_{i=1}^{n} \|x_i - t \frac{x}{\|x\|}\|$, for $t \ge 1$, is at least $n(\mu_x - 1)$, so

(5.6)
$$\sum_{i=1}^{n} \left\| x_i - \frac{x}{\alpha} \right\| \ge n \left(\mu_x + (\mu_x - 1) \left(\frac{\|x\|}{\alpha} - 1 \right) \right);$$

concerning $\sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\|$ two estimates are possible (since the slope of the convex function $f(t) = \sum_{i=1}^{n} \|y_i - t \frac{y}{\|y\|}\|$, for 0 < t < 1, is not larger than n, while f(0) = n); we have:

$$\sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\| \ge n \max\left(\mu_y - \left(1 - \frac{\|y\|}{1-\alpha}\right), \frac{\mu_y}{2}\right).$$

Therefore, under assumption (i), we obtain (according to (5.3)):

$$\mu(F,z) \geq \alpha \left(\mu_x + (\mu_x - 1)\left(\frac{\lambda}{\alpha} - 1\right)\right) + (1 - \alpha) \max\left(\mu_y - \left(1 - \frac{1 - \lambda}{1 - \alpha}\right), \frac{\mu_y}{2}\right)$$

$$= \lambda(\mu_x - 1) + \alpha + \max\left((1 - \alpha)\mu_y + \alpha - \lambda, (1 - \alpha)\frac{\mu_y}{2}\right).$$

Note that

$$(f) \max \left((1-\alpha)\mu_y + \alpha - \lambda, (1-\alpha)\frac{\mu_y}{2} \right)$$

$$= \begin{cases} (1-\alpha)\mu_y + \alpha - \lambda & \text{if } \alpha \le \lambda \le \alpha + (1-\alpha)\frac{\mu_y}{2} \\ (1-\alpha)\frac{\mu_y}{2} & \text{if } \alpha + (1-\alpha)\frac{\mu_y}{2} \le \lambda \le 1 \end{cases}$$

$$(f_1)$$

In case (f_1) holds, we obtain:

$$\mu(F,z) \geq \lambda(\mu_x - 1) + \alpha + (1 - \alpha)\mu_y + \alpha - \lambda$$

$$\geq (1 - \alpha)\mu_y + 2\alpha + \left(\alpha + (1 - \alpha)\frac{\mu_y}{2}\right)(\mu_x - 2)$$

$$= \alpha\mu_x + \frac{1 - \alpha}{2}\mu_x\mu_y.$$

Also in case (f_2) holds, we obtain;

$$\mu(F,z) \geq \lambda(\mu_x - 1) + \alpha + (1 - \alpha)\frac{\mu_y}{2}$$

$$\geq \left(\alpha + (1 - \alpha)\frac{\mu_y}{2}\right) \cdot (\mu_x - 1) + \alpha + (1 - \alpha) \cdot \frac{\mu_y}{2}$$

$$= \alpha\mu_x + \frac{1 - \alpha}{2}\mu_x\mu_y.$$

Suppose instead now that

(ii)
$$||x|| = \lambda < \alpha$$
, so $||y|| = 1 - \lambda > 1 - \alpha$;

Pier Luigi Papini

with similar reasoning, we obtain:

$$\sum_{i=1}^{n} \|y_i - \frac{y}{1-\alpha}\| \ge n \left(\mu_y + (\mu_y - 1) \left(\frac{\|y\|}{1-\alpha} - 1 \right) \right);$$

Also, concerning $\sum_{i=1}^{n} \|x_i - \frac{x}{\alpha}\|$, two estimates are possible, and we have:

$$\sum_{i=1}^{n} \|x_i - \frac{x}{\alpha}\| \ge n \max \left(\mu_x - \left(1 - \frac{\|x\|}{\alpha}\right), \frac{\mu_x}{2}\right).$$

Therefore, under assumption (ii), we obtain (according to (5.3) and with the notations (j)):

$$\begin{split} &\mu(F,z) \\ & \geq \alpha \left(\max \left(\mu_x - \left(1 - \frac{\lambda}{\alpha} \right), \frac{\mu_x}{2} \right) \right. \\ & \left. + (1 - \alpha)(\mu_y + (\mu_y - 1) \left(\frac{1 - \lambda}{1 - \alpha} - 1 \right) \right) \\ & = \max \left(\alpha \mu_x - \alpha + \lambda, \frac{\alpha \mu_x}{2} \right) + (1 - \lambda)\mu_y + \lambda - \alpha. \end{split}$$

Note that:

$$(g) \max \left(\alpha \mu_x - \alpha + \lambda, \frac{\alpha \mu_x}{2}\right)$$

$$= \begin{cases} \alpha \mu_x - \alpha + \lambda, & \text{if } \alpha (1 - \frac{\mu_x}{2}) \le \lambda < \alpha \\ \frac{\alpha \mu_x}{2}, & \text{if } 0 \le \lambda \le \alpha (1 - \frac{\mu_x}{2}). \end{cases}$$
 (g₁)

In case (g_1) holds, we obtain:

$$\mu(F,z) \geq \alpha \mu_x - \alpha + \lambda + (1-\lambda)\mu_y + \lambda - \alpha$$

$$\geq \alpha \mu_x + \mu_y - 2\alpha + \alpha \left(1 - \frac{\mu_x}{2}\right)(2 - \mu_y)$$

$$= \mu_y(1-\alpha) + \mu_x \mu_y \frac{\alpha}{2}.$$

Also in case (g_2) holds, we obtain:

$$\mu(F,z) \geq \frac{\alpha\mu_x}{2} + (1-\lambda)\mu_y + \lambda - \alpha$$

$$\geq \frac{\alpha\mu_x}{2} + \mu_y - \alpha + \alpha\left(1 - \frac{\mu_x}{2}\right)(1 - \mu_y)$$

$$= \mu_y(1-\alpha) + \mu_x\mu_y\frac{\alpha}{2}.$$

Therefore, we can say (since z is arbitrary) that we have

$$\mu(F,z) \geq \inf \left(\alpha \mu_x + \frac{1-\alpha}{2} \mu_x \mu_y, \ \mu_y (1-\alpha) + \mu_x \mu_y \frac{\alpha}{2} \right).$$

But $\mu_x \ge \mu_1(F_1)$ and $\mu_y \ge \mu_1(F_2)$, thus, for every z we have:

$$\mu(F,z)$$

$$\geq \inf \left(\alpha \mu_1(F_1) + \frac{1-\alpha}{2} \mu_1(F_1) \mu_1(F_2), \ (1-\alpha) \mu_1(F_2) + \mu_1(F_1) \mu_1(F_2) \frac{\alpha}{2} \right),$$

so the same estimate is true for $\mu_1(F)$.

Now we can choose α so that

$$\alpha \mu_1(F_1) + \frac{1-\alpha}{2} \mu_1(F_1) \mu_1(F_2) = (1-\alpha) \mu_1(F_2) + \mu_1(F_1) \mu_1(F_2) \frac{\alpha}{2}$$

(if $\mu_1 = \mu_1(F_1)$, $\mu_2 = \mu_1(F_2)$, then $\alpha = [2\mu_2 - \mu_1\mu_2] : [2(\mu_1 + \mu_2 - \mu_1\mu_2)]$; so $1 - \alpha = [2\mu_1 - \mu_1\mu_2] : [2(\mu_1 + \mu_2 - \mu_1\mu_2)]$.

Also, recall that F_1 and F_2 can be chosen so that $\mu_1(F_1)$ is very near to $\mu_1(X)$ and $\mu_1(F_2)$ is very near to $\mu_1(Y)$ (see (5.5)); so, finally, we obtain:

$$\mu_1(Z) \ge \mu_1(F) \ge \frac{4\mu_1(X)\mu_1(Y) - \mu_1^2(X)\mu_1^2(Y)}{4[\mu_1(X) + \mu_1(Y) - \mu_1(X)\mu_1(Y)]}$$
, which is (5.4).

REMARK 5. For example, if $\mu_1(X) = \mu_1(Y) = k$, the above estimate is meaningful (it gives $\mu_1(Z) > 1$) for $k^3 - 8k + 8 < 0$, so at least when $k > \sqrt{5} - 1$.

ACKNOWLEDGEMENTS. This research was supported by the following institutions: University of Bologna (funds for selected research topics); GNAFA-CNR (National Research Council of Italy); Italian National Research Groups (MURST): "Functional Analysis".

Pier Luigi Papini

References

- [1] M. Baronti, E. Casini, and P. L. Papini, On the average distance property and the size of the unit sphere, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 1-20.
- [2] _____, Average distances and the geometry of Banach spaces, Nonlinear Anal., to appear.
- [3] J. Cleary, S. A. Morris and D. Yost, Numerical geometry numbers for shapes, Amer. Math. Monthly 93 (1986), 260-275.
- [4] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Longman Scientific & Technical, Harlow (GB), 1993.
- [5] G. Godefroy, Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. 95 (1989), 1-15.
- [6] G. Godefroy and B. Maurey, Normes lisses et normes anguleuses sur les espaces de Banach séparables, (unpublished preprint).
- [7] P. K. Lin, The average distance property of Banach spaces, Arch. Math. 68 (1997), 496-502.
- [8] R. Wolf, On the average distance property of spheres in Banach spaces, Arch. Math. 62 (1994), 338-344.
- [9] _____, Averaging distances in certain Banach spaces, Bull. Austral. Math. Soc. 55 (1997), 147-160.
- [10] D. Yost, Average distance in compact connected spaces, Bull. Austral. Math. Soc. 26 (1982), 331-342.

DIPARTIMENTO DI MATEMATICA - UNIVERSITÁ, PIAZZA PORTA S. DONATO, 5, 40127 BOLOGNA, ITALY

E-mail: papini@dm.unibo.it