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ON A FUNCTIONAL EQUATION ASSOCIATED
WITH STOCHASTIC DISTANCE MEASURES

P. K. SAHOO

ABSTRACT. The general solution of the functional equation f1{pr, ¢s)
+faAps,qr) = g(p,q) + h(r,s) for p,q,r,s €]0,1] will be investi-
gated without any regularity assumptions on the unknown functions
flafZ)g,h‘ :]Oa 1[_’ R'

1. Introduction

Let I denote the open unit interval ]0, 1{. Let R denote the set of real
numbers. Let Ry = {x € R|z >0} and R; = {z € Ry |z # 1}. Let

k=1

Iy = {P = (p1,P2, - Pa) |0 < px <1, Zpk = 1}

denote the set of all n-ary discrete complete probability distributions
(without zero probabilities), that is I'? is the class of discrete distributions
on a finite set Q of cardinality n with n > 2. Over the years, many
distance measures between discrete probability distributions have been
proposed.

Almost all similarity, affinity or distance measures p,, : I'O xI'? — R,
that have been proposed between two discrete probability distributions
can be represented in the sum form

(1) (P Q) = d(pr, ai),
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where ¢ : I x I — R is a real-valued function on unit square, or a
monotonic transformation of the right side of (1), that is,

(2) pn(P, Q) = (Z b (., ‘Ik)> :
k=1

where ¢ : R — R, is a monotone function on R. The function ¢ is called
a generating function. It is also referred to as the kernel of u,(P, Q).
Some important examples of sum form distance measures between two
discrete probability distributions P and @ in I are (see [2]):

(a) Directed divergence

¢("I’.7 y) = I(logw - 10g y)a
Q=3 plog (B’f) ;
1 Gk
(b) Symmetric J-divergence

¢(z,y) = (z — y)(logz — logy),

I(PQ) =S (o — a0) log (2’—:) ;

k=1
(c) Hellinger coefficient

¢(z,y) = vy,
W
(d) Jeffreys distance .
$(z,y) = (Vo - v3)’,
i VB = V&)

(e) Chernoff coefficient
$(z,y) =%y,

Cna(P,Q) = Zp‘iq}c“ ael
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On a functional equation

(f) Variational distance

¢(z,y) = |z —yl,
Va(P,Q) = En: e — gil;
(g) Proportional distance .
¢(z,y) = min{z, y},
Xu(P,Q) = kﬁ; min{px, g };

(h) Kagan affinity measure

(z,y) = @—:—;ﬁ

n 2
4(PQ) =Y a[1- 2]
k=1

(i) Vajda affinity measure

T a
¢($,y)$y 'y"*l )
n a
An,a(PvQ)zzqk ]_),'C"'ll ’ C“Zl,
=1 Gk

() Matusita distance
$(z,y) = |e* — 4°|7,

Moo(PQ) =Y I —gfls, O0<a<l
k=1

(k) Divergence measure of degree o

1 o -
¢z, y) = 2a-1 1 [:r Yy - x] ’
1 n e .
Bna(P,Q) = 5o [; (vigs -—pk)] , a#l
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(1) Cosine a-divergence measure

w3 - m o ()]

NoalP,Q) = [1 —ZMcos (oo )}

(m) Divergence measure of Higashi and Klir

2z
=zl
¢(z,y) =z 0g —

L(P.Q) =3 putog (2

k=1

+ylo ,
Y Y gm+y

2
)+ autor (22
dk Pkt Gk
(n) Csiszar f-divergence measure

b(a,y) = of (g) ,

Zn,a(P7 Q) = Zpkf (%) >

k=1

(o) Kullback-Leibler type f-distance measure
¢(z,y) = z[f(z) - F(¥)],
na P Q Zpk[f Pk )]

The following,
(p) Renyi’s divergence measure

Pz, y) = 2°y'™* Y(z) =~ : Tlogz

log<2pkq ) a#1,
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On a functional equation

is a monotonic transformation of sum form distance measures. Renyi’s

divergence measure is the logarithm of the so-called exponential entropy
1

Eno(P,Q) = (Z%%ﬁ‘“) ,
k=1

In order to derive axiomatically the principle of minimum divergence,
Shore and Johnson [7] formulated a set of four axioms namely uniqueness,
invariance, system independence and subset independence. They proved
that if a functional p, : I'? x I'9 — R, satisfies the axioms of unique-
ness, invariance and subset independence, then there exists a generating
function (or kernel) ¢ : I x I — R such that

/'Ln(P7 Q) = Z¢(pk1Qk)

for all P, @ € I';. In view of this result one can conclude that the above
sum form representation is not artificial. In most applications involv-
ing distance measures between probability distributions one encounters
the minimization of u,(P,Q) and the sum form representation makes
problems tractable.

A sequence of measures {u,} is said to be symmetrically compositive
if for some A € R,

Hrm(P * B, Q x S) + phym (P % S, Q % R)
= 2un(P, Q) + 2um(R, S) + Aua(P, Q)pim(R, 5)
forall P,QeTI?, S,ReT?. If A\=0, then {u,} is said to be symmetri-
cally additive.
To characterize symmetrically compositive sumform distance measures

with a measurable generating function, one encounters the following func-
tional equation (see [6]):

f(pr,qs) + f(ps,qr) = 9(p, ) f(r,s) + g(r,s) f(p,9), (D, 7‘; s €]0,1[),

where f and g are real-valued functions on the square of the open unit
interval |0, 1[. The authors of [6] have determined the general solution of
the above functional equation when p,g,7, s are in the open-closed unit
interval ]0, 1] since their method relies on the end point 1. Without the
boundary point 1, the technique proposed in [6] for solving the above
equation does not work. To determine the general solution of the above
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functional equation one needs the solution of the following functional
equation:

3) f(pr,qs) + f(ps,qr) = 2f(p,q) + 2f(r, 5),

for all p,q,7,s €]0,1[. For functional equations related to characteriza-
tion of stochastic distance measures the interested readers should refer
to [1-6].

The aim of this paper is to determine the general solution of the fol-
lowing functional equation

(4) fi(pr, qs) + fa(ps, gr) = g(p, q) + h(r,s),

for all p,q,7,s €]0,1], which includes the functional equation (3) as a
special case. We are interested in solving equation (4) since it can be used
in characterization of inset information measures and inset stochastic
distance measures.

2. Notation and terminology

A map L : R, — R is called logarithmic if and only if L(zy) = L(z) +
L(y) for all z,y € R,. A function £ : R2 — R is called bilogarithmic if
and only if it is logarithmic in each variable. The capital letter L along
with its subscripts is used exclusively for logarithmic map.

3. Some auxiliary results

The following auxiliary results are needed to determine the general
solution of the functional equation (4).

LEMMA 3.1. The function f : I* — R satisfies the functional equation

(5) f(prygs) = f(p,q) + f(r,9)
for all p,q,r,s € I if and only if

where Ly, Ly : R, — R are logarithmic.
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On a functional equation

Proof. Let a € I be a fixed element and consider

f(p,9) = f(p, @) +2f(a,a) — 2f(a,a)
= f(paa, qaa) - 2f(a, a)
= f(pa-a,a-ga) - 2f(a,a)
= f(pa» a) + f(a" qa’) - 2f(a, a)
= Li(p) + La(g),

where

Ll(p) = f(pa, a) - f(a’s a')
L2(Q) = f(a) qa’)'— f(a) d).

Next, we show that L; and L, are logarithmic functions on R,. Observe
that

Ll(pQ) = f(qul, a) - f(a’ a)
= f(pga,a) + f(a,a) - 2f(a,a)
= f(pgaa, aa) - 2f(a, a)
= f(pa-ga,a-a) —2f(a,a)
= f(pa,a) + f(ga,a) — 2f(a, a)
= Li(p) + Li(q)

for all p,q € I. Hence L, is logarithmic. It is well known that L; can be
extended to R from /. Similarly, it can be shown that L, is a logarithmic
map on R,. This completes the proof of the lemma. a

LEMMA 3.2. The functions f,g,h : I*? — R satisfy the functional
equation

(7) f(or,qs) = g9(p,q) + h(r, s)
for all p,q,r,s € I if and only if

(8) f(p,g) = Li(p) + La(g) + ¢ + 5,
(9) 9(p, 9) = Li(p) + La(q) + v,
(10) h(r,s) = Li(r) + La(s) + B,

where Ly, Ly : Ry — R are logarithmic and «, 3 are arbitrary constants.
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Proof. Let a and b be any two fixed elements in I. Inserting r = a
and s = b in (7), we obtain

(11) 9(p, q) = f(pa, gb) — h{a,b).
Now again letting p = b and ¢ = a in (7), we have
(12) h(r,s) = f(rb, sa) — g(b, a).

By (11) and (12), (7) yields

(13) flpr,qs) = f(pa, gb) + f(rd, sa) + k,

where k = —h(a,b) — g(b,a). Replacing p by bp, q by aq, r by ar, and s
by bs in (13), we obtain

(14) f(abpr,abgs) = f(abp, abq) + f(abr, abs) + k.
Defining

(15) F(p,q) = f(abp, abq) + k

we see that the last equation transforms into

(16) F(pr,gs) = F(p,q) + F(r,s)

for all p,q,7,s € I. By Lemma 3.1, we obtain

where Ly, L, : R, — R are logarithmic. Therefore

(18) f(abp, abg) = Li(p) + La(q) — k

which is

(19) f(p,9) = Li(p) + La(q) +

where v is a constant. Using (19) in (11) and (12), we obtained (9)
and (10), respectively. Letting (19), (9) and (10) into (7), we see that

¥ = a + B and thus we have (8). This completes the proof. a
LEMMA 3.3. The function f : I* — R satisfies the functional equation

(20) f(pr,gs) + f(ps,qr) = 2f(p, q) + 2f(r, s)

for all p,q,r,s € I if and only if

(21) 50,0 = 1)+ Lia) +£(2.2),

where L : R, — R is logarithmic and £ : R?2 — R is bilogarithmic.
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Proof. Setting r = A = s in (20), we obtain

(22) fOw,Aq) = f(p,q) + L(N),
where A

(23) LX) = f(AA).

It is easy to show that L is logarithmic. Consider
(24) F(Mrap, Mdag) = f(p, q) + LA de).
Also we get

(25) f(Mdap, Mreq) = F(Qap, Aeq) + L) = f(p, q) + L(A2) + L{A1).

Thus from (24) and (25), we see that L(AAg) = L(\1) + L)) for all
M1, A2 € I. Hence L is logarithmic on I and it can be extended uniquely
to IR+.

Now we extend f to f from I to RZ as follows: For p,q € R, choose
) € R, sufficiently small such that A, Ap, Aq € I. Define

(26) f(p,q) = FOp, Ag) = L(N).

It is easy to show that f in (26) is well defined, that is independent of
the choice of A\. To show this, using (22) we write f(Aup, Apg) in two
different ways:

f(oup, Aug) = f(Ap, Ag) + L{p)
and also

Fup, Aug) = f(up, pq) + L(A).
Hence from the last two equations, we get
- (27) fOw,Aq) = L(A) = f(up, pg) — L(p).
Thus f is independent of the choice of \.

Next we establish that f satisfies the functional equation (20). Choose
p,q,7,5 € R, and X € I such that Ap, Ag, Ar, As € I. Next we compute
Flor,qs) + f(ps, qr) = F(\’pr, Ngs) + f(Nps, Noqr) — 2L(A%)
= f(ApAr, A\gAs) + F(ApAs, AgAr) — 4L(A)

= 2f(Ap, Aq) + 2f(Ar, As) — 4L(A)
= 2f(p: Q)+ 2f(r) s).

295



Sahoo

Hence f satisfies (20) for all p,q,7,s € R,. Here after, we simply assume
that f satisfies (20) for all p,q,7,5s € R,.

A substitution of p = ¢ = r = s = 1 in (20) yields f(1,1) = 0.
Further, substituting p = ¢ = 1 in (20), we see that f(r,s) = f(s,r) for
all ,s € R,. Letting ¢ = s =1 in (20), we have

(28) f(p,7) = 2g(p) + 29(r) — g(pr)
where :
(29) 9(p) := f(p, 1).

Note that g(1) = 0 in view of f(1,1) = 0. Letting s = 1 in (20) and then
using (28) in the resulting equation, we obtain

(30) 9(pqr) + g(p) + 9(g) + 9(r) = g(pr) + g(qr) + g(pq)
for p,q,7 € R,. Defining

(31) 2(p,r) = g(pr) — 9(p) — 9(r)
we see that (30) reduces to
(32) £(pg,7) = L(p,7) + €(q,7)

for all p,q,m € R;. Hence ¢ is logarithmic on R? on the first variable.
Since the right side of (31) is symmetric with respect to p and r, so also
the left side. Thus
t(p,r) = £(r,p),
that is £ is a real-valued bilogarithmic function on R2.
Again, defining

(33) G(p) = g(p) - &(p, p)

and using (33) in (31) and the symmetry of £, we obtain
(34) G(pr) = G(p) + G(r).

Thus

(35) G(p)=L(p), peRy,

where L : R; — R is an arbitrary logarithmic function. Now using (35)
and (33), we obtain

(36) 9(p) = L(p) + £(p, p)

296
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for all p € R;. The equation (36) in (28) yields

(37) )= 20 + 1(0) + (2.2
for all p, ¢ € R;. By (29) and (36), we see that

f(p,1) = L(p) + &(p, p)

for all p € R;, and since f(1,1) = 0, this extends to all R.. Using the
fact that f(p,1) = L(p) + £(p, p) for all p € R, and the symmetry of f,
we see that (37) holds for all p, ¢ € R,.. This completes the proof. a

LEMMA 3.4. The function f : I? — R satisfies the functional equation

(38) fpr,qs) + f(ps,qr) = 2f(p,q) + f(r,s) + f(s,7)
for all p,q,r,s € I if and only if '

(39)  f(pa) = Lo(@) ~ Lo(p) + La(p) + La(g) + £ (§ §) ,

where Ly, L; : R, — R are logarithmic and £ : R2 — R is bilogarithmic.

Proof. As in the proof of the previous lemma, we define f: RZ — R

f(®,9) = f(Ap, A\q) — L(}), _ _
where L(\) := f(A, A). Then L is logarithmic and f satisfies the func-
tional equation (38) for all p, ¢, 7, s € R... Hence from here on, we simply
assume that f satisfies (38) for all p,¢,7,s € R,.
Interchanging p with r and ¢ with s in (38), we get

as

(40) f(pryqs) + f(gr,ps) = 2f(r,s) + f(p,q) + f(¢, p)-
Subtracting (40) from (38), we obtain

(41) ¢(ps, qr) = #(p, ) + #(s,7),

where

(42) ¢(p,q) := f(p,9) — f(¢,p)-

From Lemma 3.1, we have ¢(p, q) = 2Ly(p)+2Lo(q), where Ly, Ly : Ry —
R are logarithmic. Since ¢ is skew symmetric, we see that Ly = —Lg and
hence '

(43) f(a,p) = f(p,q) + 2Lo(p) — 2Lo(g)-
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Letting (43) into (38), we see that
(44)  f(pr,gs)+ f(ps,qr) = 2f(p,q) +2f(r, s) + 2{Lo(7) — Lo(s)].
Defining

(45) F(p,q) = f(p,q) + [Lo(p) — Lo(q)],
we obtain from (44)

F(pr,qs) + F(ps, qr) = 2F(p,q) + 2F(r, 5)
for all p,q,7,s € R,. Hence by Lemma 3.3, we have

(46) F(p,0) = Ly(p) + L(g) + ¢ (g §) ,

where L; : Ry — R is logarithmic and £ : R2 — R is bilogarithmic.
From (45) and (46), we get the asserted solution (39). This completes
the proof. O

LEMMA 3.5. The functions f,g,h : I? — R satisfy the functional
equation

(47) f(pr,gs) + f(ps,qr) = g(p,q) + h(r,s)
for all p,q,r,s € I if and only if

(48)  f(p,q) = Lo(g) — Lo(p) + Ly(p) + L1(g) + £ (§ %’) +a+p,

49) 9(p,q) =2 [Lo(q) = Lo(p) + Ln(p) + Ly(q) + ¢ (g, g)] + 2,

)+

where Ly, L, : Ry — R are logarithmic and ¢ : RZ — R is bilogarithmic,
and «, 3 are arbitrary real constants.

(50)  h(r,s) = 2 [Ll(r) + Ly(s) +¢ (g

s

Proof. Let a € I be a fixed element. Substituting r = a = s in (47),
we get

(51) 9(p,9) = 2f(pa, qa) — h(a, a).
Similarly, letting p = a = ¢ in (47), we have
(52) h(rv S) = f("'a? Sa) + f(sa, 7‘0,) - g(aa a)'
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Letting (51) and (52) into (47), we obtain

(83) f(pr,gs) + f(ps,qr) = 2f(pa, qa) + f(ra, sa) + f(sa,ra) + 20p.
Replacing p by pa, r by ra, g by ga, and s by sa, we obtain

(54) F(pr,qs) + F(ps,qr) = 2F(p,q) + F(r,5) + F(s,7),

where

(55) F(p,q) := f (pa® qa®) + ao.

By Lemma 3.4 and (55), we obtain

(56)  F(pq) = Lo(@) — Lo(®) + La(p) + Ln(q) + £ (§ §) r,

where 7 is a constant. From (56) and (51), we obtain (49). Similarly,
(56) and (52), we obtain (50). Letting (49), (50) and (56) into (47), we
have v = a+ 3. Hence, with this and (56), we have the asserted solution
(48). O

LEMMA 3.6. The functions f, g : I? — R satisfy the functional equa-
tion

(57) f(or,qs) — f(ps,qr) = g(r,s)
for all p,q,r,s € I if and only if

(58) f(p,q) = ¢(pqg) + L(9),
(59) 9(p,q) = L(q) — L(p),

where L : R, — R is logarithmic and ¢ : R, — R is arbitrary.

Proof. First, we substitute 7 = a = ¢ in (57), we obtain

(60) f(pa, sa) = f(ps,a®) = g(a, s).
Replacing p by pa and s by sa in (60) and rearranging, we get
(61) f(a’p,a’s) = f(a’ps, a®) + g(a, as).

Similarly, replacing p by pa, r by ra, s by sa, and ¢ by qa in (57), we
have

(62) f(a®pr,a’qs) - f(a’ps,a’qr) = g(ar, as).
Using (61) in (62), we obtain
(63) 9(a, ags) — g(a, agqr) = g(ar, as).
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Again letting p = a = ¢ in (57), we get

(64) f(ar,as) — f(as,ar) = g(r, s).
Hence, by (60), the equation (64) yields

(65) g(r,s) = g(a, s) — g(a,7).

As before, by replacing r by ar and s by as, we have
(66) g(ar,as) = g(a, as) — g(a, ar).
Thus from (66) and (65), we see that

(67) 9(a,ags) — g(a, aqr) = g(a, as) - g(a, ar).
Defining ¢ : I? - R as

(68) - ¥(z) = g(a, az)

we have from (67)

(69) ¥(gs) — ¥(gr) = 9(s). — ¥(r)

for all g, s, € I. From (69), we obtain

(70) ¥(gs) — ¥(s) = ¥(gr) — ¥(r)

for all g, s,r € I. The last equation yields

(71) ¥(gs) — ¥(s) = 6(q),

where ¢ : I — R. Interchanging ¢ with s in (71), we see that
(72) P(sq) — ¥(q) = &(s).

From (71) and (72), we have
8(q) — ¥(q) = 8(s) —9(s) = k,

where k is a constant. Hence

(73) 8(q) =¥(q) + k.
Using (73) in (72), we have

(74) ¥(sq) —¥(a) +¢(s) + k.
Thus

(75) P(z) = L(z) + k,
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where L : R, — R is logarithmic. From (68), (65) and (75), we obtain

(76) g(r,s) = L(s) = L(r).
Using (60) and (76), we see that

(77) f(pa, sa) = o(ps) + g(a, ),
where

(78) a(ps) := f(ps,a®).

Now (76) and (76) give

(79)  f(pa,sa) = a(ps) + L(s) + a,

where o is a constant. Letting (79) into (57) we observe that ¢ is an
arbitrary function. Hence

(80) f(p, s) = ¢(ps) + L(s),
where ¢ = o + . This completes the proof of the lemma. 0
4. The main result

Now we are ready to determine the general solution of (4) without
any regularity assumptions on the unknown functions.

THEOREM 4.1. The functions fi, f2,9,h : I? — R satisfy the func-
tional equation

(81) filpr, 8) + faps, qr) = g(p, @) + R(r, 5),
for all p,q,r,s € I if and only if

62)  filp.a) = L(p,q) + Lalg) + £ (2, 2) + b(pg) — o,
83)  fulp.a) = L(p,a) — Ln(g) + £ (§ §) A

= PP - %
(84)  g(p,q) =2L(p,q) +2¢ (q, q) + 206 - 2a,
(83)  h(r,s) = 2La(r) + 2La(s) + La(s) = Ln(r) +2¢ (2, g) ~28,
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where L(p,q) := Lo(q) — Lo(p) + Li(p) + L1(q), Lo, L1, Ly : Ry — R are
logarithmic, £ : R2 — R is bilogarithmic, ¢ : Ry — R is arbitrary, and
a, 3 are arbitrary real constants.

Proof. It is easy to check that solution (82)-(85) enumerated in the

theorem satisfies (81).
Interchanging r with s in (81), we get

(86) filps, qr) + fa(pr,qs) = 9(p, q) + h(s, 7).
Adding (86) to (81), we obtain
(87) F(pr,qs) + F(ps, qr) = 29(p, q) + 2H(r, 5),
where
(88) F(p,q) = filp,9) + f2(p, 9)
(89) 2H(r,s) = h(r,s) + h(s,T).
Further, subtracting (86) from (81), we obtain
(90) f(pr7 QS) - f(ps) q1") = k(?", S),
where
(91) f(p7 q) = fl(p7 q) - f2(p7 q)
(92) 2H(r,s) = h{r,s) — h(s,r).
Using (88), (89), (91), and (92), we obtain
1 1 1
93)  fi=5FE+S),  f=z(F-F), h=352H+k).
From Lemma 3.6, Lemma 3.5, and (93) the asserted solution follows.
This completes the proof of the theorem. O
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