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ON NON-PROPER PSEUDO-EINSTEIN RULED REAL
HYPERSURFACES IN COMPLEX SPACE FORMS

YouNG JIN SUH

ABSTRACT. In the paper [12] we have introduced the new kind of
pseudo-Einstein ruled real hypersurfaces in complex space forms
Mn(c), 0, which are foliated by pseudo-FEinstein leaves. The pur-
pose of this paper is to give a geometric condition for non-proper
pseudo-Einstein ruled real hypersurfaces to be totally geodesic in
the sense of Kimura [8] for ¢ > 0 and Ahn, Lee and the present
author (1] for ¢ < 0.

1. Introduction

A complex n(>2)-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is
denoted by M,(c). A complete and simply connected complex space
form is a complex projective space P,(C), a complex Euclidean space
C" or a complex hyperbolic space H,(C), according as ¢ >0, c =0 or
¢ < 0. The induced almost contact metric structure of a real hypersur-
face M of M,(c) is denoted by (¢,&,7, g)-

There exist many studies about real hypersurfaces of My,(c). One of
the first research is the classification of homogeneous real hypersurfaces
in a complex projective space P,(C) by Takagi {14], who showed that
these hypersurfaces of P,(C) could be divided into six types which
are said to be of type Ay, A, B,C,D, and E, and in Cecil-Ryan [4]
and Kimura [7] proved that they are realized as the tubes of constant
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Non-proper pseudo-Einstein ruled

radius over Kaehlerian submanifolds if the structure vector field ¢ is
principal. Also Berndt [2,3] showed recently that all real hypersurfaces
with constant principal curvatures of a complex hyperbolic space H,(C)
are realized as the tubes of constant radius over certain submanifolds
when the structure vector field ¢ is principal. Nowadays in H,(C) they
are said to be of type Ag, A1, A2, and B.

When the structure vector field { is not principal, Kimura [8] and
Ahn, Lee and the present author [1] have constructed an example of
ruled real hypersurfaces foliated by totally geodesic leaves, which are
integrable submanifolds of the distribution Ty defined by the subspace
To(x) = {XeT,M|X 1L¢,ze M}, along the direction of ¢ and Finstein
complex hypersurfaces in P,(C) and H,(C) respectively. The expres-
sion of the Weingarten map is given by

A€ = af + U, AU = f¢ and AX =0,

where we have defined a unit vector U orthogonal to £ in such a way
that BU = A€ — af and [ denotes the length of a vector field A¢ — af
and B(x)#0 for any point z in M, and for any X in the distribution Tp
and orthogonal to £&. Recently, several characterizations of such kind
of ruled real hypersurfaces have been studied by the papers ([1], [3],
(8], [9] and [13]). Moreover, among them there are so many ruled real
hypersurfaces, which are foliated in parallel by the leaves of the distri-
bution Tp = {X €T, M|X 1£} along the integral curve of the structure
vector £. Then in such a situation the vector field U defined in above
is always parallel along the direction of &.

Now as a general extension of this fact we introduce a new kind of
ruled real hypersurfaces in M, (c) foliated by pseudo-Einstein leaves,
which are integrable submanifolds of the distribution T defined by
the subspace {XeT,M|X L£}, along the direction of £ and pseudo-
FEinstein complex hypersurfaces in M,,(¢). Then such kind of ruled real
hypersurfaces are said to be pseudo-Finstein, because its Ricci tensor
of the integral submanifold M(t) is given by

St = (gc — ) + (g — N{URU* + pUR($U)*}.
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Moreover, its expression of the Weingarten map is given by
AU = B +~4U + 69U and ApU = 6U — v¢U.

In Lemma 3.1 we know that the function A in above is given by A =
2(y% + 62). When A = u, ruled real hypersurfaces foliated by such
kind of leaves are said to be Finstein. In particular, A = p = 0,
this kind of Einstein ruled real hypersurfaces are congruent to ruled
real hypersurfaces in M, (c¢) foliated by totally geodesic Einstein leaves
M,,_1(c), which are said to be totally geodesic ruled real hypersurfaces
in the sense of Kimura [8] for ¢ > 0 and Ahn, Lee and the present
author [1] for ¢ < 0. In such a situation the function v and § both
vanish identically.

When the function u = 0 and at least one of the functions v and &
vanishes identically, this kind of pseudo-FEinstein ruled ones are said to
be non-proper. Of course, totally geodesic ruled ones in the sense of
Kimura (8] and Ahn, Lee and the present author [1] are contained in
the class of non-proper pseudo-Einstein ruled real hypersurfaces.

Then it naturally rises to the question that “Whether this kind of
non-proper pseudo-Einstein ruled real hypersurfaces in M,(c) except
totally geodesic ruled ones can be existed or not ?” Or otherwise, “What
kind of geometric condition can be imposed for non-proper pseudo Ein-
stein ruled ones to be congruent to one of geodesic ruled ones ?” From
this point of view we answer this problem affirmatively and assert the
following;:

THEOREM. Let M be a non-proper pseudo-Einstein ruled real hy-
persurface in Mp(c), ¢#0, n>2. If the vector U is parallel along the
direction of €, then M is locally congruent to one of ruled real hypersur-
faces with each leaves totally geodesics and parallel along the direction
of the structure vector field €.

The present author would like to express his sincere gratitude to the
referee for his valuable comments and careful reading of our manuscript.

2. Preliminaries’

First of all, we recall fundamental properties of real hypersurfaces
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of a complex space form. Let M be a real hypersurface of a complex
n-dimensional complex space form M, (c) of constant holomorphic sec-
tional curvature ¢(#0) and let C' be a unit normal vector field on a
neighborhood of a point z in M. We denote by J an almost complex
structure of M,(c). For a local vector field X on a neighborhood of z
in M, the transformation of X and C under J can be represented as

JX = ¢X + n(X)C, JC = =¢,

where ¢ defines a skew-symmetric transformation on the tangent bun-
dle TM of M, while n and £ denote a 1-form and a vector field on
a neighborhood of z in M, respectively. Moreover, it is seen that
9(&,X) = n(X),where g denotes the induced Riemannian metric on
M. By properties of the almost complex structure J, the set (¢,£,7,9)
of tensors satisfies

¢*=-I+n®¢, ¢£=0, n(¢X)=0, n() =1,

where I denotes the identity transformation. Accordingly, the set is so
called an almost contact metric structure. Furthermore the covariant
derivative of the structure tensors are given by

(2.1) (Vx@)Y =n(Y)AX — g(AX,Y){, Vx¢=¢AX,

where V is the Riemannian connection of g and A denotes the shape
operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional cur-
vature ¢, the equation of Gauss and Codazzi are respectively given as
follows

R(Y,Z)X

c
(22) = {9(Z,X)Y —g(Y, X)Z + 9(6Z, X)$Y ~ g(¢Y, X)¢Z

—29(¢Y, Z)9 X} + 9(AZ, X)AY — g(AY, X)AZ,

c

(23) (VxA)Y —(VyA)X = 1 {n(X)¢Y —n(Y)$X — 29(¢X,Y)¢},
where R denotes the Riemannian curvature tensor of M and VxA
denotes the covariant derivative of the shape operator A with respect to

X. Now let us suppose that the structure vector £ is a principal vector
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with principal curvature a, that is, A = a€. Then, differentiating this,
we have

(2.4) (VxA) = (Xa)f + apAX — APAX,
where we have used (2.1). Then it follows
(25)  9((VxA)Y,§) = (Xen(Y) + ag(Y, ¢AX) — g(Y, ApAX)

for any tangent vector fields X and Y on M. By the equation of Codazzi
(2.3), we have

(2.6) 2APAX — gqsx = a(pA + Ag)X.

Now in order to get our results, we introduce a lemma, which was
derived from the formulas (2.4), (2.5) and (2.6), in the paper [5] due to
Ki and the present author as follows:

LEMMA 2.1. Let M be a real hypersurface in a complex space form
M, (c), n>2. If it satisfies

(2.7) Ap+ A =0,

then we have ¢ = 0.

3. Pseudo-Einstein ruled real hypersurface

This section is concerned with the necessary properties about pseudo-
FEinstein ruled real hypersurfaces. Before going to give the notion of
pseudo-Einstein ruled ones, we recall a ruled real hypersurface M of
My(c), c#£0 which is defined in Kimura [7]. Let us denote by D a J-
invariant integrable (2n — 2)-dimensional distribution defined on M,(c)
whose integral manifolds are holomorphic planes normal to the plane
spanned by unit normals C and JC and let v : I— M, (c) be an integral
curve for the vector £ = —JC.

For any t(el) let M,(lt_)l(c) be a totally geodesic complex hypersurface
through the point ~(t) of M,(c) which is orthogonal to a holomorphic
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plane spanned by v/(¢) and Jv/(¢). Set M = {zeM,,’ t) (¢) : tel}. Then
the construction of M asserts that M is a real hypersurface of Mp(c),
which is called a ruled real hypersurface. This means that there exists
a ruled real hypersurfaces of M,(c) with the given distribution D. This
kind of ruled real hypersurface is foliated by leaves, which are totally
geodesic complex hypersurfaces Mr(f_)l(c) Then from its construction

it can be easily seen that the expression of the Weingarten map is given
by

A€ = af + U, AU = B¢ and AX =0,

where U is a unit vector orthogonal to { and a and 3 (8#0) denote
certain differentiable functions defined on M and for any X in D or-
thogonal to U. Moreover, it can be easily seen that the Ricci tensor
S* of the complex hypersurface M(t) in M,(c) is proportional to its
Riemannian metric such that §* = %fg. That is, all of its leaves are
Einstein complex hypersurfaces in M,(c). So such a ruled real hyper-
surface is naturally said to be Einstein ruled.

Now let us consider more generalized notion than the above ones.
We want to consider a generalized ruled real hypersurface M, which
is foliated by pseudo-Einstein leaves. Here, the meaning of pseudo-
FEinstein leaves are integrable submanifolds of the distribution D which
are pseudo-Finstein complex hypersurfaces in M,,(c). Then in this case,
this kind of generalized ruled real hypersurface is said to be pseudo-
FEinstein ruled real hypersurfaces.

For the construction of this, let us also consider a regular curve v :
I—-My(c). Then for any t(€I) let F( ). bea pseudo-Einstein complex
hypersurface through the point ~(t) of Mn(c) which is orthogonal to a
holomorphic plane spanned by +/(¢) and Jv/(t). Set M = {:z:el"(t)
tel}. Then this construction gives us many pseudo-Einstein ruled real
hypersurface.

Now, let us consider two shape operators A and A¢ of any integral
submanifold M(t) = F(t) 1 of the distribution D = {XeT, M|X L£{} in
M, (c) in the direction of C and €. For any unit vector field V along D,
let V* be the corresponding 1-form defined by V*(V) = ¢g(V,V) = 1.
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If they satisfy
A2+ AL = ul + N(VOV™ + ¢V (¢V)*)

for a certain vector field V', where A and p are smooth function on M,
then the real hypersurface M with the given distribution D of M,(c)
is said to be pseudo-Einstein ruled. In particular, if A = u, then it
is said to be Finstein ruled and if A = p = 0, then it is said to be
totally geodesic and Einstein ruled, and is the ruled real hypersurface
as discussed in above. Accordingly, we say that the real hypersurface M
is pseudo- Finstein ruled, Einstein ruled or totally geodesic ruled, then it
is easily seen that any integral submanifold of D, which is a submanifold
of real codimension 2 in M,(c), is pseudo-Einstein, Einstein or totally
geodesic, respectively.

Since To(= D) is integrable, we know that
(3.1) 9((A¢ + $A)X,Y) = 0

for any vector fields X and Y in Ty (See Kimura [8], Kimura and Maeda
(9)).

Now we are going to give a Ricci tensor of the integral submanifold
M(t) of the distribution D, which is a pseudo- Einstein submanifold of
real codimension 2 in M,(c). Since M(t) is a submanifold of codimen-
sion 2, § and C are orthonormal vector fields on its leaf in M,(c). So
by the equation of Gauss, we have

VxY = VxY + g(AX,Y)C
= V%Y + g(4e X, Y)¢ + g(AcX,Y)C,

where V and V? are the covariant derivatives in the ambient space
M,.(c) and in the submanifold M(¢), respectively and moreover A¢ and
A¢ are the shape operators in the direction of C and ¢, respectively.
Then we have

Q(VXY,Q = Q(VXY, g) = “‘g(VXé',Y) = g(A€X>Y)7
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for any X,Y €Ty, from which it implies that
(3.2) A X = —¢pAX, XeTp.
On the other hand, by the equation of Gauss, we have
9(AX,Y) = g(AcX,Y), X, YeTh
and therefore
(3.3) AcX = AX - Bg9(X,U)§, XeTh.
By (3.1) we have a formula
(3.4) ApX = —¢pAX — Bg(X,9U)¢, X€To.
From this it can be easily seen that the traces of these two shape op-
erators A and Ac are both equal to zero. Now by using (2.2), the

curvature tensor of the integral submanifold M(¢) is given by

g(RYX,Y)Z,W)
= 2{0(¥, 2)9(X, W) — g(X, Z)g(Y, W) + 9(4Y, Z)g(#X, W)

+ 9(AcY, Z)g(Ae X, W) + g(AcY, Z)g(Ac X, W)
— 9(AeX, 2)g(AcY, W) — g(Ac X, Z)g(AcY, W)

for any vector fields X, Y, Z and W in D. Since the traces of the above
two shape operators A; and A¢ are both equal to zero, its Ricci tensor
St of M(t) in My(c) is given by

2n-2
(3.5) 98, 2)=) . 9(R'(ei,Y)Z,e:)
=5cg(¥,2) - g((A + AB)Y, Z)
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for any Y,Z in D. Then the tensor Ag + A% of the pseudo-Einstein
submanifold M (t) can be constructed in such a way that

(Ag + A2 U= N,
(3.6) (Ag + AZ)oU = AU,

(A% +AL)X = pX, XeDlU,¢U,

where ) and p are smooth functions on M(t). So its Ricci tensor S* of
M(t) is given by

St = (gc — 1) T+ (1= N{USU" + gUS(4U)"}.

Then from the formula (3.5) it follows

LEMMA 3.1. (See[12]) Let M be a pseudo-Einstein and not Einstein
ruled real hypersurfaces in My,(c), ¢#0, n>3. Then we have

(37) { AU = BE+~U + U,

ApU = U — U, A =2(v%+42%)

In particular, if it is totally geodesic, we have v = § = 0.
Proof. Naturally let us put

A€ = o + BU,

(3.8) AU = BE+AU + 6¢U + €X,

APU = —v¢U + 46U — €9 X,
for some vector field X orthogonal to £,U and ¢U where in the third
equation we have used the condition (3.1), because the distribution D

is integrable. Since M is supposed to be proper pseudo-Finstein, we
may put AZu. In order to prove € = 0, firstly let us prove the following

(3.9) ﬁU:m+w&+<@+%>U
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Indeed, (3.2), (3.3) and the first formula of (3.6) imply

AU = —AepAU + Ag(AU — BE)
= ¢APAU + A(AU — B€) — Bg(AU — B¢, U)¢
= 2{A’U — BAEL — Bg(AU, U)¢},

where in the third equality we have used the condition (3.4). Secondly,
we calculate the following

(3.10) AU = Bo¢ + %qu.

In fact, (3.2), (3.3) and the second formula of (3.6) give

AU =(AZ + AL)pU
=¢ AU + A%¢U — B2¢U — Bg(AU,U)E.

So by (3.8) we get the above (3.10). Finally we give the following for
any X orthogonal to &, U and ¢U.

(3.11) A%X = Be€ + —’2fX,

because the third formula of (3.6) and the condition (3.1) imply that

pX = — AcpAX + Ac{AX — Bg(X,U)¢}
=2(A2X — Bg(AX,U)e).

Now let us apply the shape operator A to the second formula of (3.8)
and use also (3.8) and (3.9). Then

€AX = (-’; —72~52> U —veX + bepX

= €2U — veX + bep X,
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where we have used

(3.12) |AQU |2 = 7% + 8% + €°
A
2 ?
which can be obtained from (3.8) and (3.10). So let us assume €50,
then AX = eU —vX + §¢X. This implies
A%X =eAU —yAX +§A¢X
=(B€ + YU + §¢U + €X) — (U —1X + 6¢X)
— (egU — 79X — 6X)
=0 + (2 ++* + 6%)X.

From this together with (3.11) it follows
| p= 272+ 6%+ €%).

Then by (3.12) we have A = p, which makes a contradiction. So we
should have € = 0. It completes the proof of Lemma 3.1. O

REMARK 3.1. When both the functions A and p in (3.6) vanish
identically, (3.10) and (3.11) imply respectively

AgpU =0and AX =0

for any X orthogonal to &, U and ¢U. Then from this together with
(3.12) it follows the function A = 0, that is y = = 0. Then naturally,
M is congruent to totally geodesic ruled real hypersurfaces in Mp(c),

c#0.

REMARK 3.2. When the function p in (3.6) vanishes identically,
(3.11) gives ||AX|| = 0. This implies ¢ = 0. So it naturally satisfies

AU = BE€+~U + dgU,
AU = 6U — U,
AX =0, XL§U,oU.
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When p = 0 and at least one of the function v and § vanishes iden-
tically, M is said to be non-proper pseudo-FEinstein ruled real hyper-
surfaces. So for convenience sake let us say the function ¢ vanishes
identically. Then by Remark 3.2 we can put

A =af+pU,

AU =pg+U,

AU = —v¢U,

AX =0
for any X €Ty, where T7 denotes a distribution defined by a subspace
T (z) = {ueTo(z) : g(u,U(x)) = g(u, ¢U(z)) = 0}.

Next the covariant derivative (VxA)Y with respect to X and Y in
To is explicitly expressed. The equation (2.3) of Codazzi gives us

(VxA)E - (VeA)X = —2¢X.

(3.13)

By the direct calculation of the left hand side of the above relation and
using the second equation of (3.2) we get

da(X)€ + adAX + dB(X)U + BV xU — ApAX

3.14
(3:14) — Ve(AX) + AVeX + §¢X =0, XeTo.

Now from (3.1), (3.2) and the above equation we can derive the
following

LEMMA 3.2. Let M be a non-proper pseudo-Einstein ruled real hy-
persurfaces in My(c), ¢£0, n>2. Then it follows

(3.15)
{82 =7 —ay - §+29(VeU,9U)v}oU, X =U
BVxU = —(§7)¢U — ¢V U, X =9¢U
— 56X — g(X,¢VU)yoU, XeT,
and
0, X=U
(3.16) dB(X)=<X Y2 —ay+ B2+ 5 —2v9(VepU,U), X =¢U
—v9(VeX,U), XeTh.
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Proof. Putting X = U in (3.14) and taking an inner product with
U imply
dg(U) = 0.

Moreover, by taking an orthogonal part from £ and U, we know that
BYGU + apAU — AAU + §¢U — B2U + AV U —AVU = 0.
From this, together with (3.13), it follows that
2 __ .2 ¢
BVuU = {82 —+* — ay = £ +29(VeU, ¢U) | $U.

So we have the first formula of (3.15). Also putting X = ¢U in (3.14)
and using (3.13), we have

da(QUE + U + dB(U)U + BY yuU — ApASU

(317) + Ve(voU) + AVeoU = —%&U.

On the other hand, we can put
VU = g(VeU, ¢U)U + g(VeU, Z2) 2

for some unit Z in Ty = [¢,U, U]+ which is the orthogonal complement
of the distribution [£,U, ¢U] spanned by £,U and ¢U. So by (3.13), it
follows that

APV U = —g(VU, 9pU)AU.

Then the last two terms of the left side of (3.17) becomes

Ve(vpU) + AV (@U) = dy(&)oU + v{~BE€ + ¢VU}

(3.18) ~ 9(VeU, U)AU — B{at + BU}.

Substituting (3.18) into (3.17) and comparing an orthogonal part from
£ and U imply
BV suU = —dy(§)oU — 1¢VU.
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So, this gives the second formula of (3.15). Moreover, if we take an
inner product (3.17) with U, we also get the second formula of (3.16).

On the other hand, (3.13) and (3.14) imply
(3.19) da(X)€ + dB(X)U + BV XU + AV X + Zd)X =0
for any X €T;. From this, if we take an inner product with U, it follows
dB(X) = —v9(VeX,U),

which gives the third formula of (3.16).

Now for any X €T, we can express the vector V¢ X in such a way
that

VeX = g(VeX,U)U + g(VeX,¢U)$U + 9(VeX, 2)Z

for some unit Z in Ty. Then by applying the shape operator A to this
formula and substituting this into (3.19), we have

da(X)E + dB(X)U + BV xU + g(Ve X, U)AU
+ (X, ¢VeU)yoU + §¢X =0.

From this, if we compare the part orthogonal to £ and U, we have
c
Accordingly, we have completed the proof of Lemma 3.2. l

Now let us calculate

9(VxA)Y,E)

= g((VxA),Y) = g(Vx(AE) — AVxE,Y)

= g((Xa)¢ + aVx€&+ (XB)U + VXU — ApAX,Y)

= ag(pAX,Y) + dB(X)g(Y,U) + Bg(VxU,Y) — g(A¢AX,Y).
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Now any X €T can be written in such a way that
(3.20) X =g(X,U)U + g(X,0U)eU + 9(X,2)Z

for some unit Z€T}. Then for any X in T this expression and Lemma
3.2 imply the followings:

BVxU =Bg(X,U)VuU + Bg(X,$U)VeuU + g(X, 2)89 2U
=g(X, U)* = 7* = oy = 5 + 219(VU, $U)}9U
+ g(X, gU){—dv(§)U — 7¢VeU}
+ 9(X, 2){~36Z —19(2,6VV)8U},
and
dB(X) =9(X,U){1* — oy + B2 + 7 = 219(VedU, U)}
- 7g(X’ Z)g(VgZ, U)

So it follows that
(3.21)

=dB(X)g(U,Y) + Bg(VxU,Y) + ag(¢AX,Y)
- g(AGAX,Y)

=(9(X, U){6? =1 - a7 — £ + 2v9(VeU, 6U)}
~ 9(X, gU)dy(€) = 19(X, 2)9(Z,¢VeU)] g(4U, Y)
+{ = 19(X, U)g(6V U, Y) — 29(X, 2)g(92,Y)}

+{V¥—ay+ 8+ % ~ 27g(VedU, U) }g(X,9U)g(U,Y)
—19(X, 2)g(VeZ,U)g(U,Y) + ag(¢AX,Y) — g(ApAX,Y).

On the other hand, the expression (3.20) and (3.13) implies
pAX = v9(X,U)oU + vg(X, oU)U,
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and
AGAX =7g(X,U)AQU +19(X, pU) AU
= — v2g(X,U)¢U + vg(X,9U)(BE + V)
= —v29(X,U)gU + vBg(X, U)¢ + v2g(X, oU)U.

Substituting these formulas into (3.21) and taking account of the
equation of Codazzi (2.3), we have for any X,Y €Ty and Z€T)

9((VeA)X,Y)

= g((VxA)Y,¢)

= B*{g(X,U)g(¢U,Y) + g(X,¢U)g(U,Y)}
+ 2v9(VeU, U ){g(X,U)g(oU,Y) + g(X, ¢U)g(U,Y)}
—9(X,U)g(Y, oU)dv(§) —v9(X, Z)9(Z,$VU)g(6U,Y)
—v9(X,¢U)g(¢VeU,Y) —v9(X, Z)g(V:Z,U)g(U,Y),

where we have used the fact that
— Ho(X, D)g(9U,Y) — g(X,6U)g(U,Y) + 9(X, 2)9(4Z,Y)}
c
= _ZQ(QSX, Y)
because of (3.20). From this we can assert
(VeAU = {8 + 2v9(VeU,9U)}gU + 0(U)E,
and
(VeA)SU =2U + 299(VeU, $U)U
= dy(§)oU — v¢VU + 0(¢U)E.

Now summing up the formulas in above, non-proper pseudo Einstein
ruled real hypersurfaces in M,(c) satisfy the followings:
(3.22)
(VeA)U = A¢U  (mod &),
(VeA)PU = MU — dy(€)¢U —v¢VeU  (mod £),
(VEAX = —9(X,$Vel)$U +19(X,VeU)U  (mod €).
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When we assume that the vector field U is parallel along the direction
€, then VU = 0 and v = g(AU,U) is constant along the direction
€. Then (3.22) together with this assumption imply that a non-proper
pseudo Einstein ruled real hypersurface satisfies

(3.23) (VeA)X=foAX,

where fy = 32.

4, Proof of the Theorem

In this section we want to prove the main Theorem. It will be turned
out that non-proper pseudo Einstein ruled real hypersurfaces in complex
space form M,(c), c£0 are only totally geodesic ruled real hypersurfaces
in My(c) foliated in such a way that its structure vector U is parallel
along the direction of £. Namely it will be congruent to one of ruled

real hypersurfaces in th sense of Kimura [8] for ¢ > 0 and Ahn, Lee and
Suh [1] for ¢ < 0.

Let M be a real hypersurface in complex space forms M, (c), c#£0.
Now let us denote by Tp be a distribution defined by the subspace

To(z) = {XeTM|g(X, &) = 0}

in the tangent space T, M at any point z in M, which is called a holo-
morphic distribution.

On the other hand, we have seen in section 3 that non-proper pseudo
FEinstein ruled real hypersurfaces in M,(c) with the vector field U is
parallel along the direction of £ satisfies

(4.1) (VeA)X=fpAX (mod &)

for any vector field X in Tp and a smooth function f without zero
points. Moreover, we have known that its structure vector £ is not
principal.

First of all, we assert the following
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LEMMA 4.1. Let M be a real hypersurface satisfying
(4.1) (VeA)X=fpAX (mod §),

for any vector field X in Ty and a smooth function f without zero
points, then the distribution Ty is integrable.

Proof. By the assumption (4.1) and
9((VeA)X,Y) = g((VeA)Y, X)

it turns out to be

fe((Ad+¢A)X,Y) =0

for any vector fields X and Y in Tp. Since the function f has no zero
points, '

(4.2) 9((Ag+ $A)X,Y) = 0
for any vector fields X and Y in Tp. It completes the proof. a

Let M be a real hypersurface in M,(c), c#0, n>2 satisfying (4.1).
Then the distribution Tp is integrable by Lemma 4.1.

Now we can put A{ = a€ + BU, where U is a unit vector field in the
holomorphic distribution Ty, and a and 3 are smooth functions on M.
So we may consider that the function 3 does not vanish identically on
M. Let My be the non-empty open subset of M consisting of points x
at which B(z)#0. Moreover, the set My is a dense subset of M.

In fact, we suppose that the interior of the subset M — Mj is not
empty. On the interior we see § = 0. Namely, £ is a principal vector.
with principal curvature .. Then by (4.2) we have

Ad+ pA =0.
Since Lemma 2.1 is a local property, it implies ¢ = 0 on the interior and
hence on the whole M, a contradiction. So the interior of the subspace

M — My is empty, namely My is dense in M.
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By (2.3) and (4.1) there is a 1-form 8 such that
, 1
(Vy A€ = FOAY = JeY +0(Y)¢

for any vector field Y in Tp.

Differentiating A¢ = af + BU covariantly with respect to any vector
field X in T, we have

(4.3) BV xU =AGAX + (f — a)pAX — zlicd)X
— da(X)€ - dB(X)U + 8(X)¢,

where we have used (4.1) and (4.2). By (4.2) the above equation can
be reformed as

BY XU = — $A2X + (f — a)pAX ~ %cq&X
+ {~da(X) ~ Bg(AX, $U) + 6(X)}§ — dB(X)U.
From this, if we take an inner product of the above equation with &, we

get
~de(X) ~ Bg(AX, 9U) + 0(X) = Bg(AX, ¢U).

Thus it follows

(4.4) BY XU = — pA2X + (f — a)pAX — i—chX
+ Bg(AX, gU)§ - dB(X)U

for any vector field X in Tp.

On the open subset My we can put AU = B¢+ U + 6V, where §,U
and V are orthonormal vector fields, and 4 and & are smooth functions
on My. Now let us denote by L(V,W,--- ,X,Y) a subspace in the
tangent subspace T, M spanned by any vectors V,W,.-- , X,Y at any
point . Then by Lemma 4.1 we also have the following.
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LEMMA 4.2. Let M be a real hypersurface in My(c), n>3. If it
satisfies

(4.1) (VeA)X=fopAX (mod )

for any vector field X in Ty and a smooth function f without zero
points, then L(§, A£) is not A-invariant.

Proof. By Lemma 2.1 and the above remark we know that on the
subset My the vector A{ can be expressed as A€ = af + BU, where 8
is a smooth function defined on M and U is a unit vector orthogonal
to €.

Now let us suppose that the linear subspace L(, A€) in the tangent
space of M is A- invariant. Then the vector AU can be written in such
a way that AU = B¢ + ~U. From this, together with the integrability
of the distribution T in Lemma 4.1, we have

(4.5) AQU = —¢U,

because (A¢+ ¢pA)U = 0. Differentiating A = af + BU along X in Ty,
by the assumption (4.1) we also have the formula (4.3). Then taking
an inner product (4.3) with ¢U and using (4.5) imply

(46)  Bo(VxU,8U) = (f — @~ g(AX,U) ~ 3cg(X, ).

Taking an inner product of (4.4) with ¢U, we obtain
1
Bg(VxU,9U) = —g(A*X,U) + (f — )g(AX,U) — 769X, U)

for any vector field X in Tp. From (4.5) and the above equation it
follows that
g(A2X) U)= 7g(AXa U).

So it implies
Bg(AX, &) =0

for any vector field X in T, a contradiction. Thus we have the conclu-
sion. O
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Now we are going to prove our main Theorem in introduction. Let
M be a non-proper pseudo-Einstein ruled real hypersurfaces in M,(c).
Then it satisfies

(VeAYU  =X¢U  (mod &)
(*) § (VeA)pU =AU —dr(§)¢U — v¢VeU  (mod §)
(VeA)X  =-9(X,¢VU)vdU +v9(X,VU)U  (mod €).

When we assume that U is parallel along the direction of £, then VU =
0 and the smooth function ~ is constant along the direction of &.

Now let us suppose that the function v has no zero points. Then
by the assumption V U = 0 and the formula (*), we know that non-
proper pseudo-Einstein ruled real hypersurfaces in M, (c) satisfy (4.1)
for a smooth function f which has no zero points in such a way that

. ,32

(VeA)X=f9AX (mod &), ="

Then Lemma 4.2 implies that L(§, A€) is not A-invariant. But in sec-

tion 3 we know that AU = (€ + U for a non-proper pseudo Einstein

ruled real hypersurfaces. This makes a contradiction. So we should
have that the function « has some zero points.

Now let us denote by M’ a subset in M consisting of points at which
~ has the value 0. That is, the set M’ = {xeM|y(z) = 0} should be
non-empty. Now we suppose that M — M'#¢. Then on M — M’ we
know that the function v has no zero points. Accordingly, by using the
same arguments as in above, we can also makes a contradiction. So we
should have M — M’ = ¢. That is, the set M’ is dense in M. Then by
the continuity, the function « vanishes identically on M. This means
that M is totally geodesic pseudo-Einstein ruled real hypersurface in
the sense of Kimura [8] for ¢ > 0 and Ahn, Lee and the present author
[1] for ¢ < 0. Consequently, we complete the proof of our Theorem.

References

(1] S.S. Ahn, S. B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex
space form, Tsukuba J. Math. 17 (1993), 311-322.

335



(2]

(8]
(9]
(10]
11]
(12]
(13]

(14]

Non-proper pseudo-Einstein ruled

J. Berndt, Real hypersurfaces with constant principal curvatures in a complex
hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.

, Geometry and Topology of submanifolds 11, (Avignon, 1988), 10-19,
World Scientific, 1990.

T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex pro-
Jjective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.

U-H. Ki and Y. J. Suh, On real hypersurfaces of a complezx space form, Math.
J. Okayama 32 (1990), 207-221.

y On a characterization of real hypersurfaces of type A in a complex
space form, Canadian Math. Bull. 37 (1994), 238-244.

M. Kimura, Real hypersurfaces and complez submanifolds in complez projective
space, Trans Amer. Math. Soc. 296 (1986), 137-149.

» Sectional curvatures of a holomorphic plane in Pn(C), Math. Ann.
276 (1987), 487—497.

M. Kimura and S. Maeda, On real hypersurfaces of a complez projective space,
Math. Z. 202 (1989), 299-311.

Y. Maeda, On real hypersurfaces of a complez projective space, J. Math. Soc.
Japan 28 (1976), 529-540.

S. Montiel, Real hypersurfaces of a complezx hyperbolic space, J. Math. Soc.
Japan 37 (1985), 515-535.

Y. J. Suh, On pseudo Einstein ruled real hypersurfaces in complez space forms,
to appear in Note di Matematica 19 (1999).

, Characterizations of real hypersurfaces in compler space forms in
terms of Weingarten map, Nihonkai Math. J., 6 (1995), 63-79.

R. Takagi, On homogeneous real hypersurfaces of a complex projective space,
Osaka J. Math. 10 (1973), 495-506.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU
702-701, KOREA
E-mail: yjsuh@bh.kyungpook.ac.kr

336



