### COGRADIENTS IN FUZZY BCK-ALGEBRAS

## HEE SIK KIM

ABSTRACT. In this paper we apply the notion of  $\triangleright_{\mu}$  and  $\triangleleft_{\mu}$  to fuzzy BCK-algebra, and show that  $\triangleleft_{\mu}$  is cogradient to a partial order of the BCK-algebra.

### 1. Introduction

J. Neggers ([7]) has defined a pogroupoid and he obtained a functorial connection between posets and pogroupoids and associated structure mappings. J. Neggers and H. S. Kim ([8]) demonstrated that a pogroupoid  $X(\cdot)$  is modular\* if and only if its associated poset  $X(\leq)$  is  $(C_2 + \underline{1})$ -free, a condition which corresponds naturally to the notion of sublattice (in the sense of Kelly-Rival [3, 5]) isomorphic to  $N_5$ , and that this is equivalent to the associativity of the pogroupoid. J. Neggers and H. S. Kim ([10]) introduced the notion of the relation  $\rhd_{\mu}$  on fuzzy pogroupoid, and proved that for given a pogroupoid  $X(\cdot)$ , the associated poset  $X(\leq)$  is  $(C_2 + \underline{1})$ -free iff the relation  $\rhd_{\mu}$  is transitive for any fuzzy subset  $\mu$  of X. In this paper we apply the notion of  $\rhd_{\mu}$  and  $\vartriangleleft_{\mu}$  to fuzzy BCK-algebra, and show that  $\vartriangleleft_{\mu}$  is cogradient to a partial order of the BCK-algebra.

# 2. A relation $\triangleright_{\mu}$

The notion of BCK-algebras was formulated first in 1966 by K. Iséki. This notion was originated from two different ways. One is based on set theory, and the other is propositional calcului. A BCK-algebra is a

Received June 1, 1998.

<sup>1991</sup> Mathematics Subject Classification: 03E72, 06A06, 06F35.

Key words and phrases: fuzzy subset, BCK-algebra, poset, cogradient.

Supported by Hanyang University Research Fund, 1998.

#### Hee Sik Kim

non-empty set X together with a binary operation \* and a constant 0 satisfying the following axims: for all  $x, y, z \in X$ ,

- (I) ((x\*y)\*(x\*z))\*(z\*y) = 0,
- (II) (x\*(x\*y))\*y=0,
- (III) x \* x = 0,
- (IV) x \* y = 0 and y \* x = 0 imply x = y,
- (V) 0 \* x = 0.

The concept of a fuzzy set was introduced by L. A. Zadeh ([16]). A fuzzy subset of a set X is a function  $\mu: X \to [0,1]$ . The applications of fuzzy concepts to posets and groupoids have been investigated by several authors (including [2, 10, 13, 15, 17]). A map  $\mu: X \to [0,1]$  is called a fuzzy subalgebra of a BCK-algebra X if  $\mu(x*y) \ge \min\{\mu(x), \mu(y)\}$ , for any  $x, y \in X$ . Note that if  $\mu$  is a fuzzy subalgebra of a BCK-algebra X then  $\mu(0) \ge \mu(x)$  for all  $x \in X$ .

Suppose (X, \*, 0) and (Y, \*', 0') are two BCK-algebras. A mapping  $f: X \to Y$  is called a BCK-homomorphism if for any  $x, y \in X$ , f(x\*y) = f(x)\*f(y). Moreover, if f is one-one and onto, then we can say f a BCK-isomorphism and denote it by  $X \cong Y$ . With this concept we have the following properties: (i) f(0) = 0', and (ii) if x\*y = 0 in X, then f(x)\*'f(y) = 0' in Y.

On the while, the concept of isomorphism in the poset theory is a little bit different from the concept of BCK-algebras. Even though there is a one-one and onto order-preserving mapping between two posets, the two posets need not be isomorphic ([1]). We say two posets X and Y are (poset)-isomorphic if there is a one-one and onto order preserving mapping f and its inverse mapping  $f^{-1}$  is also order preserving. There are two ways to define a partially ordered set: (i) weak inclusion; reflexive, anti-symmetric, transitive (ii) strong inclusion; irreflexive, transitive, and they are equivalent ([12, pp. 1-3]).

In a BCK-algebra X we define a binary operation  $\leq$  by  $x \leq y$  if and only if x\*y=0. We can see that a BCK-algebra contains a poset structure in it. The poset  $(X, \leq)$  is said to be the associated poset with the BCK-algebra (X; \*, 0). The association is not bi-unique, i.e., non-isomorphic BCK-algebras may have order-isomorphic posets associated with them.

## Cogradients in fuzzy BCK-algebras

Example 2.1. Consider the following two BCK-algebras having the same poset structure:

| *1 | 0 | 1  | 2  | 3 | 4 |   |     |             |   |
|----|---|----|----|---|---|---|-----|-------------|---|
| 0  | 0 | 0  | 0  | 0 | 0 |   |     | - 4         |   |
| 1  | 1 | 0  | 1  | 0 | 0 |   |     | • 4         |   |
| 2  | 2 | 2  | 0  | 0 | 0 |   |     | 3           |   |
| 3  | 3 | 3  | 3  | 0 | 0 |   | 1 < | <b>`</b>    | 2 |
| 4  | 4 | 4  | 4  | 3 | 0 |   | `   | $\bigvee_0$ |   |
|    |   |    | 1  |   |   |   |     | 1           |   |
|    |   | *2 | 0  | 1 | 2 | 3 | 4   |             |   |
|    |   | 0  | 0  | 0 | 0 | 0 | 0   |             |   |
|    |   | 1  | 1  | 0 | 1 | 0 | 0   |             |   |
|    |   | 2  | 2  | 2 | 0 | 0 | 0   |             |   |
|    |   | 3  | 3  | 3 | 3 | 0 | 0   |             |   |
|    |   | 4  | 4. | 3 | 4 | 1 | 0   |             |   |

Define a map  $f: X := \{0, 1, 2, 3, 4\} \rightarrow X$  by f(i) = i (i = 0, 1, 2, 3, 4). Then f is a poset isomorphism, but not a BCK-isomorphism, since  $f(4 *_1 1) = 4 \neq 3 = f(4) *_2 f(1)$ .

Let  $\mu:X\to [0,1]$  be a fuzzy subset of a BCK-algebra X. Define a relation  $\rhd_{\mu}$  on X by

$$x \rhd_{\mu} y \iff \mu(x * y) < \mu(y * x).$$

Since x\*x=0,  $\mu(x*x)<\mu(x*x)$  does not hold, and hence the relation  $\rhd_{\mu}$  is irreflexive. Similarly, we define a relation  $\vartriangleleft_{\mu}$  on X by  $x \vartriangleleft_{\mu} y \Longleftrightarrow \mu(y*x) < \mu(x*y)$ .

Example 2.2. Consider the following BCK-algebra X ([6, pp. 273]).

Hee Sik Kim

| * | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 2 | 2 | 2 | 0 | 0 | 2 |
| 3 | 3 | 3 | 2 | 0 | 3 |
| 4 | 4 | 4 | 4 | 4 | 0 |



Define a map  $\mu: X \to [0,1]$  by  $0 \le \mu(0) < \mu(3) < \mu(4) < \mu(1) < \mu(2) \le 1$ . Then the transitivity of  $\rhd_{\mu}$  does not hold, since  $1 \rhd_{\mu} 3$  and  $3 \rhd_{\mu} 4$ , but not  $1 \rhd_{\mu} 4$ . If we define a map  $\nu: X \to [0,1]$  by  $1 \ge \nu(0) > \nu(4) > \nu(3) > \nu(2) > \nu(1) \ge 0$ , then  $X(\rhd_{\nu})$  is a poset as following left Hasse diagram:



Moreover, if we define a fuzzy subset  $\xi: X \to [0,1]$  on the BCK-algebra  $(X, *_1)$  described in Example 2.1 by  $0 \le \xi(0) = \xi(3) < \xi(1) = \xi(2) < \xi(4) \le 1$ , then  $X(\triangleright_{\xi})$  is a poset as the above right Hasse diagram.

THEOREM 2.3. Let (X; \*, 0) be a BCK-algebra. Define a fuzzy subset  $\mu: X \to [0,1]$  by

$$\mu(x) := \left\{ egin{array}{ll} a & ext{if } x = 0, \\ b & ext{otherwise.} \end{array} \right.$$

where  $0 \le a < b \le 1$ . Then  $X(\triangleright_{\mu})$  is a poset.

*Proof.* Let  $x \rhd_{\mu} y$  and  $y \rhd_{\mu} z$ . Then  $\mu(x * y) < \mu(y * x)$ ,  $\mu(y * z) < \mu(z * y)$ . This means x \* y = 0 and y \* z = 0, since  $\mu$  is two-valued. It

follows from  $X(\leq)$  is a poset that  $x \leq z$ . By (IV) we obtain x \* z = 0 and  $z * x \neq 0$ . Hence  $\mu(x * z) = a < b = \mu(z * x)$ , i.e.,  $x \rhd_{\mu} z$ . Thus  $X(\rhd_{\mu})$  is a poset.

In Theorem 2.3 we introduced two-valued fuzzy subset  $\mu$  of a BCK-algebra for  $X(\triangleright_{\mu})$  to be a poset. We pose the following open problem:

PROBLEM. Under what other condition(s) for  $X(\triangleright_{\mu})$  to be a poset?

# 3. Cogradients in fuzzy BCK-algebras

Suppose  $R_1$  and  $R_2$  are relations on a set X. We shall consider relations  $R_1$  and  $R_2$  to be *cogradient* provided that  $(x,y) \in R_i$  (or  $xR_iy$ ) implies  $(y,x) \notin R_j$ , i,j=1,2,  $i \neq j$ , where  $x \neq y$ . We then obtain the following result.

THEOREM 3.1. If (X;\*,0) is a BCK-algebra, and if  $\mu: X \to [0,1]$  is a fuzzy subalgebra of this BCK-algebra, then the relations  $x \le y$  iff x\*y=0 and  $x \triangleleft_{\mu} y$  iff  $\mu(y*x) < \mu(x*y)$  are cogradient.

Proof. Let  $x,y\in X$  with  $x\vartriangleleft_{\mu}y$ . If y < x, then  $x*y\neq 0$ , but y\*x=0. Hence  $\mu(0)=\mu(y*x)<\mu(x*y)\leq \mu(0)$ , a contradiction. This means that y< x does not hold. On other hand, let  $x\leq y$  in  $X(\leq)$ . We may assume x< y in  $X(\leq)$ , since  $x\vartriangleleft_{\mu}x$  does not hold. Assume  $y\vartriangleleft_{\mu}x$ . Then  $\mu(x*y)<\mu(y*x)$ . Since x< y, x\*y=0, but  $y*x\neq 0$ . Hence  $\mu(0)=\mu(x*y)<\mu(y*x)\leq \mu(0)$ , a contradiction. It follows that  $y\vartriangleleft_{\mu}x$  does not hold. This proves the theorem.

Of course, in the general situation  $X(\leq)$  and  $X(\triangleright_{\mu})$  (or  $X(\triangleleft_{\mu})$ ) may fail to be cogradient. A question arises to what extent the cogradience of  $X(\leq)$  and  $X(\triangleright_{\mu})$  (or  $X(\triangleleft_{\mu})$ ) influences the "approximate" fuzzy subalgebra structure of the fuzzy subset  $\mu$  of X.

Suppose that (X; \*, 0) is a BCK-algebra and suppose that the fuzzy subset  $\mu$  is defined as follows:

$$\mu(x) := \left\{ egin{array}{ll} a & ext{if } x = 0, \\ b & ext{otherwise.} \end{array} \right.$$

where  $0 \le a < b \le 1$ . Now suppose x < y. Then x \* y = 0 and  $y * x \ne 0$ . Hence  $\mu(x * y) = a < b = \mu(y * x)$ , i.e.,  $x \rhd_{\mu} y$ . This means that  $\rhd_{\mu}$  is an extension of <. Conversely, if  $x \rhd_{\mu} y$ , then  $\mu(x * y) < \mu(y * x)$ , whence x \* y = 0 and x < y, since  $y * x \ne 0$ . Thus  $\rhd_{\mu} = <$ , i.e.,  $X(<) = X(\rhd_{\mu})$  precisely. Thus we summarize:

THEOREM 3.2. If (X; \*, 0) is a BCK-algebra and if  $\mu$  is a fuzzy subset of X where if  $x \neq 0$ ,  $\mu(0) = a < b = \mu(x)$ , then  $X(<) = X(\triangleright_{\mu})$ .

Thus we may "code" X(<) precisely by taking a=0 and b=1, and within the class  $X(\triangleright_{\mu})$ , X(<) will be uniquely determined in this fashion.

Actually, if (X; \*, 0) is a *d-algebra* ([11]), i.e., if it satisfies conditions (III), (IV) and (V) for the BCK-algebra, then we may use the same scheme, i.e., we set

$$x \triangleleft_{\mu} y$$
 provided  $\mu(y * x) < \mu(x * y)$ .

Thus, if  $\mu: X \to [0,1]$  is a fuzzy subalgebra of the *d*-algebra, then  $\mu(x*y) \geq \min\{\mu(x), \mu(y)\}$  and  $\mu(0) \geq \mu(x)$  for all  $x \in X$ .

Suppose now that we define x < y iff x \* y = 0 in a d-algebra (X;\*,0). Then X(<) is not necessarily a poset. However, if  $\mu$  is a fuzzy subalgebra of X and if x < y then x \* y = 0 and  $y * x \neq 0$ , and hence  $\mu(y * x) \leq \mu(x * y) = \mu(0)$ . It means that either  $x \triangleleft_{\mu} y$  or  $\mu(y * x) = \mu(x * y)$ , i.e.,  $y \triangleleft_{\mu} x$  does not hold. Conversely, if  $x \triangleleft_{\mu} y$ , then y < x is impossible. It follows that:

COROLLARY 3.3. Theorem 3.1 holds if (X; \*, 0) is a d-algebra.

Similarly, we obtain:

COROLLARY 3.4. Theorem 3.2 holds if (X; \*, 0) is a d-algebra.

ACKNOWLEDGEMENT. The authors wish to express his thanks to the referee for valuable suggestions and help.

## References

[1] A. Abian, On the similarity of partially ordered sets, Amer. Math. Monthly 77 (1970), 1092-1094.

## Cogradients in fuzzy BCK-algebras

- [2] W. X. Gu and D. G. Chen. A fuzzy subgroupoid which is not a fuzzy group. Fuzzy Set and Sys. 62 (1994), 115-116.
- [3] G. Grätzer, General lattice theory, Academic Press, New York (1978).
- [4] J. K. Kim, Y. B. Jun and H. S. Kim, BCK-algebras inherited from the poset, Math. Japonica 45 (1997), 119-123.
- [5] D. Kelly and I. Rival, Planar lattices, Canad. J. Math. 27 (1975), 636-665.
- [6] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul (1994).
- [7] J. Neggers, Partially ordered sets and groupoids. Kyungpook Math. J. 16 (1976), 7-20.
- [8] J. Neggers and Hee Sik Kim, Modular semigroups and posets. Semigroup Forum **53** (1996), 57-62.
- [9] \_\_\_\_\_, Algebras associated with posets, (submitted).
- [10] \_\_\_\_\_, Fuzzy pogroupoids, (submitted).
- [11] \_\_\_\_\_, On d-algebras, Math. Slovaca 49 (1999), 19-26. [12] \_\_\_\_\_, Basic Posets, World Scientific Pub. Co., New Jersey, 1998.
- [13] P. Venugopalan, Fuzzy ordered sets, Fuzzy Sets and Sys. 46 (1992), 221-226.
- [14] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica 36 (1991), 935-942.
- [15] N. L. Youssef and K. A. Dib, A new approach to fuzzy groupoids 49 (1992), 381-392.
- [16] L. Zadeh, Fuzzy Sets, Inform. and Control 8 (1965), 338-353.
- \_\_\_\_, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177-[17]200.

HEE SIK KIM, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr