ESSENTIAL SPECTRA OF TOEPLITZ OPERATORS

M. W. Wong

ABSTRACT. The essential spectra for a class of Toeplitz operators on l^p , $1 \le p \le \infty$, are computed.

1. Introduction

For $1 \le p < \infty$, we let l^p be the set of all sequences

$$a = (\cdots, a_{-2}, a_{-1}, a_0, a_1, a_2, \cdots)$$

of complex numbers such that

$$||a||_p = \left\{ \sum_{n=-\infty}^{\infty} |a_n|^p \right\}^{\frac{1}{p}} < \infty,$$

and we let l^{∞} be the set of all sequences

$$a = (\cdots, a_{-2}, a_{-1}, a_0, a_1, a_2, \cdots)$$

of complex numbers such that

$$||a||_{\infty} = \sup\{|a_n| : n = 0, \pm 1, \pm 2, \cdots\} < \infty.$$

Then l^p is a complex Banach space in which the norm is given by $\| \|_p$, $1 \le p \le \infty$.

Let c be a sequence of real numbers in l^1 given by

$$c = (\cdots, c_{-2}, c_{-1}, c_0, c_1, c_2, \cdots).$$

Received August 7, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47B35.

Key words and phrases: Toeplitz operator, spectrum, essential spectrum, eigenvalue.

This research has been supported partially by the Natural Sciences and Engineering Research Council of Canada under OGP0008562.

Then, for any sequence

$$a = (\cdots, a_{-2}, a_{-1}, a_0, a_1, a_2, \cdots)$$

in l^p , $1 \leq p \leq \infty$, we define $T_c a$ to be the sequence of complex numbers by

$$T_c a = c * a,$$

where the mth entry of c*a is equal to $\sum_{m=0}^{\infty} c_{m-n}a_n, m=0,\pm 1,\pm 2,\cdots$

By Young's inequality, we can see that $T_c: l^p \to l^p$ is a bounded linear operator for $1 \le p \le \infty$. We denote $T_c: l^p \to l^p$, $1 \le p \le \infty$, by T_{cp} and call it the Toeplitz operator on l^p corresponding to the sequence c. The following result is Theorem 2.5 in the paper [7] by Wong.

THEOREM 1.1. Let c be a sequence of real numbers in l^1 given by

$$c = (\cdots, c_{-2}, c_{-1}, c_0, c_1, c_2, \cdots),$$

where

$$c_n = c_{-n}, \quad n = 0, \pm 1, \pm 2, \cdots,$$

and let φ be the continuous function on $[-\pi, \pi]$ such that

$$\varphi(\theta) = \sum_{n=-\infty}^{\infty} c_n e^{in\theta}, \ -\pi \le \theta \le \pi,$$

where the convergence is uniform and absolute on $[-\pi, \pi]$. Let m and M respectively be the minimum and maximum values of φ on $[-\pi, \pi]$. Then the spectrum $\sum (T_{cp})$ of T_{cp} , $1 \le p \le \infty$, is equal to [m, M].

The aim of this paper is to supplement Theorem 1.1 by computing the essential spectrum $\sum_{e}(T_{cp})$ of T_{cp} , $1 \leq p \leq \infty$. In Section 2, we recall the spectrum and the essential spectrum of a bounded linear operator A from a complex Banach space X into X. The main result on the essential spectrum $\sum_{e}(T_{cp})$ of T_{cp} , $1 \leq p \leq \infty$, is given and proved in Section 3.

2. The spectrum and the essential spectrum

Let A be a bounded linear operator from a complex Banach space X into X. Let $\rho(A)$ be the resolvent set of A defined by

$$\rho(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is one to one and onto}\},\$$

Essential spectra of Toeplitz operators

where I is the identity operator on X. The spectrum $\sum(A)$ of A is defined to be the set complement of $\rho(A)$ in \mathbb{C} . We denote the range of A by R(A), and the null spaces of A and A^t by N(A) and $N(A^t)$ respectively, where the adjoint A^t of A is defined as on, say, page 100 of the book [6] by Wong. We call A a Fredholm operator if R(A) is a closed subspace of X, and the dimensions $\alpha(A)$ and $\beta(A)$ of N(A) and $N(A^t)$ respectively are finite. For any Fredholm operator A, we define the index i(A) of A by

$$i(A) = \alpha(A) - \beta(A).$$

Let $\Phi(A)$ be the set defined by

$$\Phi(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is Fredholm and } i(A - \lambda I) = 0\}.$$

Then the essential spectrum $\sum_{e}(A)$, defined by Schechter in [4], is the set complement of $\Phi(A)$ in \mathbb{C} . A proof that $\sum_{e}(A)$ is a closed subset of $\sum_{e}(A)$ can be found in Section 4 of Chapter 1 of the book [5] by Schechter. The following result, noted in the paper [1] by Coburn, is a consequence of a result in the paper [2] by Joichi, which is given as Theorem 3.2 on page 171 of the book [5] by Schechter.

THEOREM 2.1. Let A be a bounded linear operator from a complex Banach space X into X. Then

$$\sum_{e} (A^{t}) = \{ \bar{\lambda} : \lambda \in \sum_{e} (A) \}.$$

REMARK 2.2. Theorem 2.1 is the analogue for the essential spectrum of a result of Phillips in the paper [3] to the effect that

$$\sum (A^t) = {\bar{\lambda} : \lambda \in \sum (A)}.$$

3. The main result

We can now state and prove the main result in this paper.

THEOREM 3.1. Let c and φ be as in Theorem 1.1. Then, for $1 \leq p \leq \infty$,

$$\sum_{e}(T_{cp})=[m,M],$$

where m and M are the minimum and maximum values of φ on $[-\pi, \pi]$ respectively.

Proof. Let $\lambda \in [m, M]$. Let us first suppose that φ is not equal to λ on a set with positive measure. Suppose $\lambda \in \Phi(T_{cp})$, $1 \leq p \leq 2$. Let a be a sequence in l^p , $1 \leq p \leq 2$, such that

$$(T_c - \lambda I)a = (\varphi - \lambda)f = 0,$$

where I is the identity operator on l^p , $1 \le p \le 2$, and f is the function in $L^2[-\pi,\pi]$ such that the sequence of Fourier coefficients of f is equal to a. Then f=0, i.e., a=0, and hence $T_{cp}-\lambda I$, $1 \le p \le 2$, is one to one and onto. This is a contradiction to Theorem 1.1 and hence $\lambda \in \sum_e (T_{cp})$, $1 \le p \le 2$, and by Theorem 2.1, $\lambda \in \sum_e (T_{cp})$, $1 \le p \le \infty$. Now, suppose that φ is equal to λ on a set S with positive measure. Let us write $S=\cup_{j=1}^{\infty}S_j$, where $\{S_j: j=1,2,\cdots\}$ is a countably infinite collection of pairwise disjoint subsets of S with positive measures. For $j=1,2,\cdots$, let χ_j be the characteristic function of S_j , and let a^j be the sequence of Fourier coefficients of χ_j . Then, for $j=1,2,\cdots$, and $p\ge 2$,

$$(T_{cp} - \lambda I)a^j = (\varphi - \lambda)\chi_j = 0.$$

Since $\{a^j: j=1,2,\cdots\}$ is a sequence of linearly independent sequences in $l^p, p\geq 2$, it follows that λ is an eigenvalue with infinite multiplicity of $T_{cp}, p\geq 2$. Therefore $\lambda\in\sum_e(T_{cp}), p\geq 2$, and hence, by Theorem 2.1, $\lambda\in\sum_e(T_{cp}), 1\leq p\leq\infty$. Thus, $[m,M]\subseteq\sum_e(T_{cp}), 1\leq p\leq\infty$, and, by Theorem 1.1, the proof is complete.

References

- L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- [2] J. T. Joichi, On operators with closed range, Proc. Amer. Math. Soc. 11 (1960), 80-83.

Essential spectra of Toeplitz operators

- [3] R. S. Phillips, The adjoint semigroup, Pacific J. Math. 5 (1955), 269-283.
- [4] M. Schechter, On the essential spectrum of an arbitrary operator I, J. Math. Anal. Appl. 13 (1966), 205-215.
- [5] _____, Principles of Functional Analysis, Academic Press, 1971.
- [6] M. W. Wong, An Introduction to Pseudo-Differential Operators, World Scientific, 1991.
- [7] ______, Asymptotic stability of equilibrium solutions of semilinear evolution Toeplitz-differential equations, Comm. Appl. Nonlinear Anal. 2 (1995), 57-64.

DEPARTMENT OF MATHEMATICS AND STATISTICS, YORK UNIVERSITY, 4700 KEELE STREET, TORONTO, ONTARIO M3J 1P3, CANADA