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A METRIC ON NORMED ALMOST LINEAR SPACES

SANG HAN LEE AND K1L-WoOUNG JUN

ABSTRACT. In this paper, we introduce a semi-metric on a normed
almost linear space X via functional. And we prove that a normed
almost linear space X is complete if and only if Vx and Wy are
complete when X splits as X = Wx + Vx. Also, we prove that the
dual space X* of a normed almost linear space X is complete.

Let (X, ||-||) be a normed almost linear space. In general, the function
d(z,y) = ||z — y|| is not a metric on X whereas it is true for a normed
linear space. G. Godini ([3]) proved that for a normed almost linear
space X there exists a semi-metric which satisfies some properties. In
this paper, we show that there exists a semi-metric y induced by a norm
on a normed almost linear space X via functional. Moreover, if X* is
total over X then the semi-metric y is a metric. As an application, a
normed almost linear space X is complete if and only if Vx and Wx are
complete when X splits as X = Wx + Vx, which improves the result
in [5). Also, we prove that the dual space X* of a normed almost linear
space X is complete. All spaces involved in this paper are over the real
field R. Let us denote by Ry the set {\ € R : A > 0}. We recall some
definitions and results used in this paper.

An almost linear space (als) is a set X together with two mappings
s: XxX — X andm : RxX — X satisfying the conditions (L,)—(Ls)
given below. For z,y € X and A € R we denote s(z,y) by z + y and
m(A,z) by Az, when these will not lead to misunderstandings. Let
z,y,2 € X and A, p € R. (L) z+(y+2) = (z+y)+2; (L2) z+y = y+z;
(L3) There exists an element 0 € X such that 2+0 = z for each z € X
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(L) 1z = x; (Ls) Az +y) = Az +Xy; (Le) 0z = 0; (L7) Apx) = (Au)z;
(Lg) (A\+ p)z = Az + px for A>0, u>0.

We denote —1z by —z, and z — y means z + (—y). Note that z — z
need not be equal to zero in an als since an element in an als does not
have an inverse element. For an als X we introduce the following two
sets:

Vx={zeX:z—z=0}

Wx ={zeX:z=—-z}.

Vx and W are almost linear subspaces of X (i.e., closed under addition
and multiplication by scalars) and, in fact, Vx is a linear space. Clearly
an als X is a linear space iff Vx = X iff Wx = {0}. Note that Vx N
Wx = {0} and Wx = {z —z: z € X}.

A norm on an als X is a functional || - || : X — R satisfying the
conditions (N7)—(N3) below. Letz,y,z € X and A € R. (V) ||z—2z]| <
|z —yll +|ly — 2ll; (N2) [|Az]| = |A] ||z]]; (N3) ||<]| = 0 iff = = 0. An als

X together with ||-]] : X — R satisfying (V1) — (IV3) is called a normed
almost linear space (nals). Using (N1) we get ||z + y|| < [|z]| + |{yl]
and ||z —y|| = | |lz|]] = lly|| | for z,y € X. By the above axioms it

follows that ||z|| > 0 for each z € X. We denote by Bx and Sx the
sets {z € X : ||z|] <1} and {z € X : ||z|| = 1}, respectively.

The following proposition is needed in the sequel.

ProposITION 1 ([1}). Let (X,||-||) be a nals. Then,

(a) For z € X, w € Wy, we have max{||z||, ||w||} < ||z + wi|.
(b) The relations w1 +v1 = we +v2, w; € Wx, v; € Vx, i = 1,2
imply that w, = ws and v; = vs.

Let X be an als. A functional f : X — R is called an almost linear
functional if f is additive, positively homogeneous and f(w) > 0 for
each w € Wx. Let X# be the set of all almost linear functionals on X.
Define addition in X# by (f1 + f2)(z) = fi(z) + fo(z) for z € X and
the multiplication by scalars (Ao f)(z) = f(Az) for z € X, A € R. The
element 0 € X# is the functional which is 0 for each £ € X. Then X#
is an als. An almost linear subspace I' of X# is said to be total over
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X if the relations z1,z2 € X, f(21) = f(@g) for each f € T imply that
Iy = I9.

When X is a nals, for f € X# define ||f]| = sup{|f(z)] : = €
X, llzl) < 1}, and let X* = {f € X# : ||f]| < oo}. Then X* is a nals
(cf. [2]). We shall call such a space X* the dual space of X. For a nals
X and f € X*, an equivalent formula for the norm of f is

171 = sup{|f (@) = € 5x} = sup { "I’,( "” zeX, o o} ,

L @) < A F il

In the theory of a normed linear space an important tool is the Hahn-
Banach theorem. An analogous theorem is no longer true in 2 nals ([1,
4.5 Example]). But we have the following proposition.

PROPOSITION 2 ([4]). Let (X,]|-|) be a nals. Then,

(a) For each z € X, there exists f € Bx~ such that f(=z) = ||=l|.

(b) If a nals X sphts as X = Wx + Vx and f € (Vx)*, then there
exists f € Vx» such that ||fl| = |fll and f(v +w) = f(v) for
eachv € Vx, w e Wx.

(c) Foreachz € X, ||z| =sup{'—fu%}-' : feX*,f;éO}.

G. Godini introduced ([3, Corollary 3.3]) a semi-metric p on a nals
(X, 1+ 1) which satisfies the following properties:

hence

(1) plz,v) =|lz~v|| (z€X, veVx),

(2) ple+zy+2) =pl,y) (2,9,2 € X),
3) p(Az, Ay) = |Alp(x,y) (z,y € X, A€R),
(4) Hizll = Il | < p(z,9) <llz =yl (2,9 € X),
(5) Ali)n){o p(Az,z) = p(hoz,z) (z € X, Ao > 0).

G. Godini’s semi-metric p is a metric when X has a basis (cf. [5,
Theorem 6]). Now, we construct a new semi-metric on a nals X via
functional.
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THEOREM 3. Let (X,|| - ||) be a nals with dual X*. Define p :
XxX—->R by

(6) wz,y) = sup{|f(z) — ()| : f € Bx-} (2,9 € X).

Then p is a semi-metric on X satisfying the properties of p in (1) - (5).
Moreover, if X* is total over X then p is a metric on X.
Proof. Clearly, u is a semi-metric on X. For z € X, v € Vx, there
exists g € Bx~ such that g(z—v) = ||z —v|| by Proposition 2(a). Hence
|lz — vl = g(z — v) = |g(x) — 9(v)| < p(z,v)-

Also, for each f € Bx-

If (@) = ()] = |f(z =)l < [If]l [z = l| < |z = vl],

whence u(z,v) < ||z — v||. Thus p(z,v) = ||z — v||. For z,y,2 € X
and f € Bx-, we have |f(z + 2) — f(y + 2)| = |f(z) — f(y)|. Hence,
p(z + 2,y + 2) = p(z,y). The property (3) is obvious for A > 0. Let
A < 0. Then

p(Az, My) = sup{|f(Az) — f(Ay)|: f € Bx~}
= sup{|A] |f(—=) — f(-y)|: f € Bx-}
= |Alsup{|(—1 0 f)(z) = (=10 f)(¥)|: f € Bx-}
= |A|sup{lg(x) — g(y)| : g € Bx-}, putg=—lof
= [Xu(z,y).

Hence u satisfies the property of p in (3). For z,y € X and f € Bx~,
17 @) < 1f(@) = F+ 1f W) < pl=, ) + |yl
Hence ||z|| < 4(z,y) + |lyl|. Similarly [ly]| < u(z,y) + |lz|l, whence the

first inequality in (4) follows. Since —f(—z) < f(z) for each f € Bx-,
we have

f@) = fy) < fz) + f(—y) = flz—y) < llz —yll.
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Similarly, f(y) - f(z) < |ly — z|| = ||z — y|| for each f € Bx~. Hence
|f(z) — fy)] < ||z — yl| for each f € Bx~«, whence the right-hand side
inequality in (4) follows. For A > 0,

p(Az, z) = sup{|f(\z) - f(z)|: f € Bx-}
= sup{|]A — 1| |f(z)| : f € Bx~}
= [A = 1| sup{|f(z)}: f € Bx-}
= A= 1] {|al.

Hence, for £ € X and Ay > 0 we have

lim p(Az,z) = lim |A—1} [|lz]] = Ao — 1} ||| = p(roz, z),
A—)Ao )\—})\o

whence p satisfies the property of p in (5). By definition of total, the
second statement of the theorem is clear. The proof of the theorem is
complete. (]

From Theorem 6 in [5] and Theorem 3, we get the following corollary.

COROLLARY 4. Let (X,||-||) be a nals with dual X*. If X has a
basis or X* is total over X, then there exists a metric on X satisfying
the properties of p in (1)-(5). :

EXAMPLE 5. Let R? be endowed with the Euclidean norm || - || and
let e; = (1,0), e = (0,1). Let A; = {de; : A > 0}, ¢ = 1,2 and
let X = A; U Ay. Define s(z,y) = ¢ + vy if both z,y € A;, i = 1,2,
and s(z,y) = s(y,z) = (|l=l| + llyll)ez if # € A4; \ {0}, y € A; \ {0},
i # j. And define m(\,z) = |\|z. Let 0 € X be the element 0 € R2.
Then X together with || - || is a nals. There is no metric on X with
(1)-(5). Indeed, suppose p is a metric on X. Then u(e; + ez, ez +€2) =
1(2e2,2e2) = 0 # p(ey, e2). Therefore p has no property (2). Therefore
X has no basis. Also, X™* is not total over X by Corollary 4.

In a nals X the semi-metric u defined by (6) generates a topology on
X (which is not a Hausdorff in general) and in the sequel any topological
concept such as closeness, completion, continuity, will be understood for
this topology. Moreover the topology on (Vx,|| - ||) generated by pu is
the same as the topology generated by norm.
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THEOREM 6. Let (X,||-||) be a nals. Then Vx is closed in X.
Proof. Let {v,} be a sequence in Vx such that

lim p(vp,z) =0
n—oo
for some z € X. Since

w0,z — z) = p(vn — Vn, T — )
< w(vp — Vn, T — vp) + (T — Un, T — )
= p(vn, ) + p(-vn, —T)
= p(vn,T) + | — 1| p4(vn, x)
= 2u(vn, z)

for each n € N, we have p(0,z — ) = 0. Hence x — z = 0. Therefore
z e Vy. O

THEOREM 7. Ifa nals X splits as X = Wx + Vx or X* is total over
X, then Wx is closed in X.

Proof. Suppose that {w,} is a sequence in Wx which converges to
z€ X. (1) Let X = Wx + Vx and & = wo + vp where wp € Wx, vo €
Vx. Note that

Jim [ f(wn) - f(2)| =0

for all f € Bx-. If vg # 0, then there exists g € B(yy)- such that
g(ve) = |lvo|]| # O by Proposition 2(a). By Proposition 2(b), there
exists § € Bx~» such that g(w + v) = g(v) for each w € Wx, v € Vx.
For this g € Bx»,

Jim [3(w) - 3(@)] = lim lo(vo)]| = llooll £,

a contradiction. Thus vg = 0, whence z = wo € Wx. Therefore Wx is
closed in X.
(2) Let X* be total over X. Since
w(z, —z) < p(@, wn) + p(Wn, —)
= w(z,wn) + :u'(—wm —)
= 2u(x, wn)
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for each n € N, we have u(z,—z) = 0. Since X* is total over X, pis a
metric on X. Hence z = —x. Therefore z € Wx. 0

Thus, if a split nals X is complete, then Vx and Wx are complete.
However, if a nals X is not split, then the converse does not hold (cf.
(5, Example 9]). When X splits as X = Wx + Vx, Theorem 6 and
Theorem 7 yield the following theorem.

THEOREM 8. Let (X,|]-|]) be a split nals. Then X is complete if
and only if Vx and Wx are complete.

Proof. Let Vx and Wx be complete and let {z, = v, + w,} be a
Cauchy sequence in X = Wx + Vx. For v, — vn, € Vx, there exists
g € Byy)+ such that g(vn, — vm) = ||vn — vm||. By Proposition 2(b),
there exists § € Vx~ such that ||3|| = ||g|| and §(v +w) = g(v) for each
v € Vx, w € Wy. We have

1(Vn, Um) = [[vn = vml| = g(vn = vm) = g(vp) - 9(vm)
= g('vn + wn) - g('vm + 'wm) < P'(-'L'n>xm),

whence {v,,} is a Cauchy sequence in Vx. Since Vx is complete, there
exists vy € Vx such that

nll)ngo 1(vn,v0) = 0.

For each f € Bx+, define g(v + w) = f(w) for each v € Vx, w € Wx.
Since |lwl|| < |jv + w]||, we have

lg(v +w)| = [f(w)| < LAl Tlwll < A Tl + wil-
Thus g € Bx». Also, we have

|f(wn) = fwm)] = |g(vn + wn) = g(vm + wm)| < p(@n, Tm),

whence p{wn, W) < p{Zn,Tm). Therefore {wy} is a Cauchy sequence
in Wx. Since Wx is complete, there exists wy € Wx such that

nll)n;o plwy, wo) = 0.
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Put £ = vg + wp. Then
{(Zn, ) = p(Vn + Wn, vo + wo)
< w(vn + Wn,wn + vo) + p{wn + vo, vo + wo)
= u’(v'na'UO) + ,u'(w'n.,wO)'
Thus {z,} converges to z € X. (|

- For the dual space X* of a nals X, we can define (cf. [2, Theorem
5.4]) a metric d: X* x X* — R by

d(f,g) = sup{|f(z) — g(z)| : = € Bx} (f,9 € X").

Then d satisfies the properties of p in (1)-(5). In the sequel, any topo-
logical concept on the dual space of a nals will be understood for this
topology.

THEOREM 9. The dual space X* of a nals X is complete.
Proof. Let {f,} be a Cauchy sequence in X*. Then
d(fmfm) = Sup{lfn(x) - fm(z)l RS BX} -0

asm,n — o0o. Thus {f,(z)} is a Cauchy sequence in R for each z € Bx.

e (@) = fn(@)] = lal] | £ (ﬁ) o (ﬁ)‘

for each nonzero z € X, {f.(z)} is a Cauchy sequence in R for each
z € X. Hence, we can define

f@):= lim fule) (= €X)

Clearly, f is an almost linear functional on X. Since | ||fa|| — || fm]| | £
d(fn, fm)s {||f=]|} is a Cauchy sequence in R whence limp_,c0 || fn|| <
oo. Since

1f1l = sup{|f(@)| : = € Bx)
= sup{] lim fu(z): @ € Bx}
< sup{ lim ||fall Izl : & € Bx}

= lim || fa]l,
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we have ||f|] < co. Now, we prove that {f.} converges to f. Let ¢ > 0
be given. Since d(f,, fm) — 0 as m,n — oo, there exists ng € N such
that

A fns fm) = sup{|fn(z) — fm(@)| : 2 € Bx} <e

for all n,m > ng. Therefore

d(fns ) = sup{|fa(@) = £(a)| : @ € Bx}
 =swp{fa@) - lim_fm(a)| i3 € Bx)
<€

for all n > ng. This shows that {f,} converges to f. a

REMARK. If X is a normed linear space, then d(f,g) = sup{|f(z) —
g9(z)| : « € Bx} = ||f —gl|- Thus, the above theorem is a generalization
of a fact in a normed linear space.

As in the case of a normed linear space, we can define a reflexive nals
(cf. [4]). Then we have a generalized result of fact in a normed linear
space.

COROLLARY 10. A reflexive nals X is complete.

If-a nals X is reﬂexivé, then X splits as X = Wx + Vx (cf. [4,
Theorem 2.6]), whence we have the following corollary from Theorem
8.

COROLLARY 11. If a nals X is reflexive, then Vx and Wx are com-
plete.
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