A METRIC ON NORMED ALMOST LINEAR SPACES

SANG HAN LEE AND KIL-WOUNG JUN

ABSTRACT. In this paper, we introduce a semi-metric on a normed almost linear space X via functional. And we prove that a normed almost linear space X is complete if and only if V_X and W_X are complete when X splits as $X = W_X + V_X$. Also, we prove that the dual space X^* of a normed almost linear space X is complete.

Let $(X, ||\cdot||)$ be a normed almost linear space. In general, the function d(x,y) = ||x-y|| is not a metric on X whereas it is true for a normed linear space. G. Godini ([3]) proved that for a normed almost linear space X there exists a semi-metric which satisfies some properties. In this paper, we show that there exists a semi-metric μ induced by a norm on a normed almost linear space X via functional. Moreover, if X^* is total over X then the semi-metric μ is a metric. As an application, a normed almost linear space X is complete if and only if V_X and W_X are complete when X splits as $X = W_X + V_X$, which improves the result in [5]. Also, we prove that the dual space X^* of a normed almost linear space X is complete. All spaces involved in this paper are over the real field \mathbb{R} . Let us denote by \mathbb{R}_+ the set $\{\lambda \in \mathbb{R} : \lambda \geq 0\}$. We recall some definitions and results used in this paper.

An almost linear space (als) is a set X together with two mappings $s: X \times X \to X$ and $m: \mathbb{R} \times X \to X$ satisfying the conditions $(L_1) - (L_8)$ given below. For $x, y \in X$ and $\lambda \in \mathbb{R}$ we denote s(x,y) by x+y and $m(\lambda,x)$ by λx , when these will not lead to misunderstandings. Let $x,y,z \in X$ and $\lambda,\mu \in \mathbb{R}$. $(L_1) x + (y+z) = (x+y) + z$; $(L_2) x + y = y + x$; (L_3) There exists an element $0 \in X$ such that x+0=x for each $x \in X$;

Received June 5, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 46B99.

Key words and phrases: normed almost linear space, almost linear functional.

This study was supported by the Post-Doctoral Program, Korea Research Foundation, 1997.

(L₄) 1x = x; (L₅) $\lambda(x+y) = \lambda x + \lambda y$; (L₆) 0x = 0; (L₇) $\lambda(\mu x) = (\lambda \mu)x$; (L₈) $(\lambda + \mu)x = \lambda x + \mu x$ for $\lambda \geq 0$, $\mu \geq 0$.

We denote -1x by -x, and x - y means x + (-y). Note that x - x need not be equal to zero in an als since an element in an als does not have an inverse element. For an als X we introduce the following two sets:

$$V_X = \{ x \in X : x - x = 0 \}$$

$$W_X = \{x \in X : x = -x\}.$$

 V_X and W_X are almost linear subspaces of X (i.e., closed under addition and multiplication by scalars) and, in fact, V_X is a linear space. Clearly an als X is a linear space iff $V_X = X$ iff $W_X = \{0\}$. Note that $V_X \cap W_X = \{0\}$ and $W_X = \{x - x : x \in X\}$.

A norm on an als X is a functional $||\cdot||: X \to \mathbb{R}$ satisfying the conditions $(N_1)-(N_3)$ below. Let $x,y,z\in X$ and $\lambda\in\mathbb{R}$. $(N_1)||x-z||\leq ||x-y||+||y-z||$; $(N_2)||\lambda x||=|\lambda|||x||$; $(N_3)||x||=0$ iff x=0. An als X together with $||\cdot||: X \to \mathbb{R}$ satisfying $(N_1)-(N_3)$ is called a normed almost linear space (nals). Using (N_1) we get $||x+y||\leq ||x||+||y||$ and $||x-y||\geq |||x||-||y||$ for $x,y\in X$. By the above axioms it follows that $||x||\geq 0$ for each $x\in X$. We denote by B_X and S_X the sets $\{x\in X: ||x||\leq 1\}$ and $\{x\in X: ||x||=1\}$, respectively.

The following proposition is needed in the sequel.

PROPOSITION 1 ([1]). Let $(X, ||\cdot||)$ be a nals. Then,

- (a) For $x \in X$, $w \in W_X$, we have $\max\{||x||, ||w||\} \le ||x+w||$.
- (b) The relations $w_1 + v_1 = w_2 + v_2$, $w_i \in W_X$, $v_i \in V_X$, i = 1, 2 imply that $w_1 = w_2$ and $v_1 = v_2$.

Let X be an als. A functional $f: X \to \mathbb{R}$ is called an almost linear functional if f is additive, positively homogeneous and $f(w) \geq 0$ for each $w \in W_X$. Let $X^\#$ be the set of all almost linear functionals on X. Define addition in $X^\#$ by $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ for $x \in X$ and the multiplication by scalars $(\lambda \circ f)(x) = f(\lambda x)$ for $x \in X$, $\lambda \in \mathbb{R}$. The element $0 \in X^\#$ is the functional which is 0 for each $x \in X$. Then $X^\#$ is an als. An almost linear subspace Γ of $X^\#$ is said to be total over

X if the relations $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ for each $f \in \Gamma$ imply that $x_1 = x_2$.

When X is a nals, for $f \in X^{\#}$ define $||f|| = \sup\{|f(x)| : x \in X, ||x|| \le 1\}$, and let $X^* = \{f \in X^{\#} : ||f|| < \infty\}$. Then X^* is a nals (cf. [2]). We shall call such a space X^* the dual space of X. For a nals X and $f \in X^*$, an equivalent formula for the norm of f is

$$||f|| = \sup\{|f(x)| : x \in S_X\} = \sup\left\{\frac{|f(x)|}{||x||} : x \in X, \ x \neq 0\right\},$$

hence

$$|f(x)| \le ||f|| ||x||.$$

In the theory of a normed linear space an important tool is the Hahn-Banach theorem. An analogous theorem is no longer true in a nals ([1, 4.5 Example]). But we have the following proposition.

PROPOSITION 2 ([4]). Let $(X, \|\cdot\|)$ be a nals. Then,

- (a) For each $x \in X$, there exists $f \in B_{X^*}$ such that f(x) = ||x||.
- (b) If a nals X splits as $X = W_X + V_X$ and $f \in (V_X)^*$, then there exists $\bar{f} \in V_{X^*}$ such that $\|\bar{f}\| = \|f\|$ and $\bar{f}(v+w) = f(v)$ for each $v \in V_X$, $w \in W_X$.
- (c) For each $x \in X$, $||x|| = \sup \left\{ \frac{|f(x)|}{||f||} : f \in X^*, f \neq 0 \right\}$.
- G. Godini introduced ([3, Corollary 3.3]) a semi-metric ρ on a nals $(X, ||\cdot||)$ which satisfies the following properties:

(1)
$$\rho(x,v) = ||x-v|| \quad (x \in X, \ v \in V_X),$$

(2)
$$\rho(x+z,y+z) = \rho(x,y) \quad (x,y,z \in X),$$

(3)
$$\rho(\lambda x, \lambda y) = |\lambda| \rho(x, y) \quad (x, y \in X, \ \lambda \in \mathbb{R}),$$

$$(4) ||x|| - ||y|| | \le \rho(x,y) \le ||x-y|| \quad (x,y \in X),$$

(5)
$$\lim_{\lambda \to \lambda_0} \rho(\lambda x, x) = \rho(\lambda_0 x, x) \quad (x \in X, \ \lambda_0 > 0).$$

G. Godini's semi-metric ρ is a metric when X has a basis (cf. [5, Theorem 6]). Now, we construct a new semi-metric on a nals X via functional.

THEOREM 3. Let $(X, ||\cdot||)$ be a nals with dual X^* . Define $\mu: X \times X \to \mathbb{R}$ by

(6)
$$\mu(x,y) = \sup\{|f(x) - f(y)| : f \in B_{X^*}\} \quad (x,y \in X).$$

Then μ is a semi-metric on X satisfying the properties of ρ in (1) – (5). Moreover, if X^* is total over X then μ is a metric on X.

Proof. Clearly, μ is a semi-metric on X. For $x \in X$, $v \in V_X$, there exists $g \in B_{X^*}$ such that g(x-v) = ||x-v|| by Proposition 2(a). Hence

$$||x-v|| = g(x-v) = |g(x)-g(v)| \le \mu(x,v).$$

Also, for each $f \in B_{X^*}$

$$|f(x) - f(v)| = |f(x - v)| \le ||f|| \ ||x - v|| \le ||x - v||,$$

whence $\mu(x,v) \leq ||x-v||$. Thus $\mu(x,v) = ||x-v||$. For $x,y,z \in X$ and $f \in B_{X^*}$, we have |f(x+z)-f(y+z)| = |f(x)-f(y)|. Hence, $\mu(x+z,y+z) = \mu(x,y)$. The property (3) is obvious for $\lambda \geq 0$. Let $\lambda < 0$. Then

$$\mu(\lambda x, \lambda y) = \sup\{|f(\lambda x) - f(\lambda y)| : f \in B_{X^*}\}$$

$$= \sup\{|\lambda| |f(-x) - f(-y)| : f \in B_{X^*}\}$$

$$= |\lambda| \sup\{|(-1 \circ f)(x) - (-1 \circ f)(y)| : f \in B_{X^*}\}$$

$$= |\lambda| \sup\{|g(x) - g(y)| : g \in B_{X^*}\}, \text{ put } g = -1 \circ f$$

$$= |\lambda| \mu(x, y).$$

Hence μ satisfies the property of ρ in (3). For $x,y\in X$ and $f\in B_{X^*}$,

$$|f(x)| \le |f(x) - f(y)| + |f(y)| \le \mu(x, y) + ||y||.$$

Hence $||x|| \le \mu(x,y) + ||y||$. Similarly $||y|| \le \mu(x,y) + ||x||$, whence the first inequality in (4) follows. Since $-f(-x) \le f(x)$ for each $f \in B_{X^*}$, we have

$$f(x) - f(y) \le f(x) + f(-y) = f(x - y) \le ||x - y||.$$

Similarly, $f(y) - f(x) \le ||y - x|| = ||x - y||$ for each $f \in B_{X^*}$. Hence $|f(x) - f(y)| \le ||x - y||$ for each $f \in B_{X^*}$, whence the right-hand side inequality in (4) follows. For $\lambda > 0$,

$$\mu(\lambda x, x) = \sup\{|f(\lambda x) - f(x)| : f \in B_{X^*}\}$$

$$= \sup\{|\lambda - 1| |f(x)| : f \in B_{X^*}\}$$

$$= |\lambda - 1| \sup\{|f(x)| : f \in B_{X^*}\}$$

$$= |\lambda - 1| ||x||.$$

Hence, for $x \in X$ and $\lambda_0 > 0$ we have

$$\lim_{\lambda \to \lambda_0} \mu(\lambda x, x) = \lim_{\lambda \to \lambda_0} |\lambda - 1| ||x|| = |\lambda_0 - 1| ||x|| = \mu(\lambda_0 x, x),$$

whence μ satisfies the property of ρ in (5). By definition of total, the second statement of the theorem is clear. The proof of the theorem is complete.

From Theorem 6 in [5] and Theorem 3, we get the following corollary.

COROLLARY 4. Let $(X, ||\cdot||)$ be a nals with dual X^* . If X has a basis or X^* is total over X, then there exists a metric on X satisfying the properties of ρ in (1)-(5).

EXAMPLE 5. Let \mathbb{R}^2 be endowed with the Euclidean norm $||\cdot||$ and let $e_1=(1,0),\ e_2=(0,1).$ Let $A_i=\{\lambda e_i:\lambda\geq 0\},\ i=1,2$ and let $X=A_1\cup A_2.$ Define s(x,y)=x+y if both $x,y\in A_i,\ i=1,2,$ and $s(x,y)=s(y,x)=(||x||+||y||)e_2$ if $x\in A_i\setminus\{0\},\ y\in A_j\setminus\{0\},$ $i\neq j.$ And define $m(\lambda,x)=|\lambda|x.$ Let $0\in X$ be the element $0\in\mathbb{R}^2.$ Then X together with $||\cdot||$ is a nals. There is no metric on X with (1)-(5). Indeed, suppose μ is a metric on X. Then $\mu(e_1+e_2,e_2+e_2)=\mu(2e_2,2e_2)=0\neq \mu(e_1,e_2).$ Therefore μ has no property (2). Therefore X has no basis. Also, X^* is not total over X by Corollary 4.

In a nals X the semi-metric μ defined by (6) generates a topology on X (which is not a Hausdorff in general) and in the sequel any topological concept such as closeness, completion, continuity, will be understood for this topology. Moreover the topology on $(V_X, ||\cdot||)$ generated by μ is the same as the topology generated by norm.

THEOREM 6. Let $(X, ||\cdot||)$ be a nals. Then V_X is closed in X.

Proof. Let $\{v_n\}$ be a sequence in V_X such that

$$\lim_{n\to\infty}\mu(v_n,x)=0$$

for some $x \in X$. Since

$$\mu(0, x - x) = \mu(v_n - v_n, x - x)$$

$$\leq \mu(v_n - v_n, x - v_n) + \mu(x - v_n, x - x)$$

$$= \mu(v_n, x) + \mu(-v_n, -x)$$

$$= \mu(v_n, x) + |-1|\mu(v_n, x)$$

$$= 2\mu(v_n, x)$$

for each $n \in N$, we have $\mu(0, x - x) = 0$. Hence x - x = 0. Therefore $x \in V_X$.

THEOREM 7. If a nals X splits as $X = W_X + V_X$ or X^* is total over X, then W_X is closed in X.

Proof. Suppose that $\{w_n\}$ is a sequence in W_X which converges to $x \in X$. (1) Let $X = W_X + V_X$ and $x = w_0 + v_0$ where $w_0 \in W_X$, $v_0 \in V_X$. Note that

$$\lim_{n\to\infty} |f(w_n) - f(x)| = 0$$

for all $f \in B_{X^*}$. If $v_0 \neq 0$, then there exists $g \in B_{(V_X)^*}$ such that $g(v_0) = ||v_0|| \neq 0$ by Proposition 2(a). By Proposition 2(b), there exists $\overline{g} \in B_{X^*}$ such that $\overline{g}(w+v) = g(v)$ for each $w \in W_X$, $v \in V_X$. For this $\overline{g} \in B_{X^*}$,

$$\lim_{n\to\infty} |\overline{g}(w_n) - \overline{g}(x)| = \lim_{n\to\infty} |g(v_0)| = ||v_0|| \neq 0,$$

a contradiction. Thus $v_0 = 0$, whence $x = w_0 \in W_X$. Therefore W_X is closed in X.

(2) Let X^* be total over X. Since

$$\mu(x, -x) \le \mu(x, w_n) + \mu(w_n, -x)$$

$$= \mu(x, w_n) + \mu(-w_n, -x)$$

$$= 2\mu(x, w_n)$$

A metric on normed almost linear spaces

for each $n \in N$, we have $\mu(x, -x) = 0$. Since X^* is total over X, μ is a metric on X. Hence x = -x. Therefore $x \in W_X$.

Thus, if a split nals X is complete, then V_X and W_X are complete. However, if a nals X is not split, then the converse does not hold (cf. [5, Example 9]). When X splits as $X = W_X + V_X$, Theorem 6 and Theorem 7 yield the following theorem.

THEOREM 8. Let $(X, ||\cdot||)$ be a split nals. Then X is complete if and only if V_X and W_X are complete.

Proof. Let V_X and W_X be complete and let $\{x_n = v_n + w_n\}$ be a Cauchy sequence in $X = W_X + V_X$. For $v_n - v_m \in V_X$, there exists $g \in B_{(V_X)^*}$ such that $g(v_n - v_m) = ||v_n - v_m||$. By Proposition 2(b), there exists $\bar{g} \in V_{X^*}$ such that $||\bar{g}|| = ||g||$ and $\bar{g}(v + w) = g(v)$ for each $v \in V_X$, $w \in W_X$. We have

$$\mu(v_n, v_m) = ||v_n - v_m|| = g(v_n - v_m) = g(v_n) - g(v_m)$$

= $\bar{g}(v_n + w_n) - \bar{g}(v_m + w_m) \le \mu(x_n, x_m),$

whence $\{v_n\}$ is a Cauchy sequence in V_X . Since V_X is complete, there exists $v_0 \in V_X$ such that

$$\lim_{n\to\infty}\mu(v_n,v_0)=0.$$

For each $f \in B_{X^*}$, define g(v+w) = f(w) for each $v \in V_X$, $w \in W_X$. Since $||w|| \le ||v+w||$, we have

$$|g(v+w)| = |f(w)| \le ||f|| \ ||w|| \le ||f|| \ ||v+w||.$$

Thus $g \in B_{X^*}$. Also, we have

$$|f(w_n) - f(w_m)| = |g(v_n + w_n) - g(v_m + w_m)| \le \mu(x_n, x_m),$$

whence $\mu(w_n, w_m) \leq \mu(x_n, x_m)$. Therefore $\{w_n\}$ is a Cauchy sequence in W_X . Since W_X is complete, there exists $w_0 \in W_X$ such that

$$\lim_{n\to\infty}\mu(w_n,w_0)=0.$$

Put $x = v_0 + w_0$. Then

$$\mu(x_n, x) = \mu(v_n + w_n, v_0 + w_0)$$

$$\leq \mu(v_n + w_n, w_n + v_0) + \mu(w_n + v_0, v_0 + w_0)$$

$$= \mu(v_n, v_0) + \mu(w_n, w_0).$$

Thus $\{x_n\}$ converges to $x \in X$.

• For the dual space X^* of a nals X, we can define (cf. [2, Theorem 5.4]) a metric $d: X^* \times X^* \to \mathbb{R}$ by

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in B_X\} \ (f,g \in X^*).$$

Then d satisfies the properties of ρ in (1)-(5). In the sequel, any topological concept on the dual space of a nals will be understood for this topology.

THEOREM 9. The dual space X^* of a nals X is complete.

Proof. Let $\{f_n\}$ be a Cauchy sequence in X^* . Then

$$d(f_n, f_m) = \sup\{|f_n(x) - f_m(x)| : x \in B_X\} \to 0$$

as $m, n \to \infty$. Thus $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{R} for each $x \in B_X$. Since

$$|f_n(x) - f_m(x)| = ||x|| \left| f_n\left(\frac{x}{||x||}\right) - f_m\left(\frac{x}{||x||}\right) \right|$$

for each nonzero $x \in X$, $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{R} for each $x \in X$. Hence, we can define

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (x \in X).$$

Clearly, f is an almost linear functional on X. Since $|||f_n|| - ||f_m||| \le d(f_n, f_m)$, $\{||f_n||\}$ is a Cauchy sequence in \mathbb{R} whence $\lim_{n\to\infty} ||f_n|| < \infty$. Since

$$||f|| = \sup\{|f(x)| : x \in B_X\}$$

$$= \sup\{|\lim_{n \to \infty} f_n(x)| : x \in B_X\}$$

$$\leq \sup\{\lim_{n \to \infty} ||f_n|| ||x|| : x \in B_X\}$$

$$= \lim_{n \to \infty} ||f_n||,$$

A metric on normed almost linear spaces

we have $||f|| < \infty$. Now, we prove that $\{f_n\}$ converges to f. Let $\epsilon > 0$ be given. Since $d(f_n, f_m) \to 0$ as $m, n \to \infty$, there exists $n_0 \in N$ such that

$$d(f_n, f_m) = \sup\{|f_n(x) - f_m(x)| : x \in B_X\} < \epsilon$$

for all $n, m \ge n_0$. Therefore

$$d(f_n, f) = \sup\{|f_n(x) - f(x)| : x \in B_X\}$$
$$= \sup\{|f_n(x) - \lim_{m \to \infty} f_m(x)| : x \in B_X\}$$
$$< \epsilon$$

for all $n > n_0$. This shows that $\{f_n\}$ converges to f.

REMARK. If X is a normed linear space, then $d(f,g) = \sup\{|f(x) - g(x)| : x \in B_X\} = ||f - g||$. Thus, the above theorem is a generalization of a fact in a normed linear space.

As in the case of a normed linear space, we can define a reflexive nals (cf. [4]). Then we have a generalized result of fact in a normed linear space.

COROLLARY 10. A reflexive nals X is complete.

If a nals X is reflexive, then X splits as $X = W_X + V_X$ (cf. [4, Theorem 2.6]), whence we have the following corollary from Theorem 8.

COROLLARY 11. If a nals X is reflexive, then V_X and W_X are complete.

References

- [1] G. Godini, An approach to generalizing Banach spaces: Normed almost linear spaces, Proceedings of the 12th Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo II. Ser. 5 (1984), 33-50.
- [2] _____, A framework for best simultaneous approximation: Normed almost linear spaces, J. Approx. Theory 43 (1985), 338-358.
- [3] _____, On normed almost linear spaces, Math. Ann. 279 (1988), 449-455.
- [4] S. M. Im and S. H. Lee, A characterization of reflexivity of normed almost linear spaces, Comm. Korean Math. Soc. 12 (1997), 211-219.

Sang Han Lee and Kil-Woung Jun

[5] _____, A metric induced by a norm on normed almost linear spaces, Bull. Korean Math. Soc. 34 (1997), 115-125.

SANG HAN LEE, CHUNGBUK PROVINCIAL OKCHON COLLEGE, OKCHON, CHUNGBUK 373-800, KOREA *E-mail*: shlee@occ.ac.kr

KIL-WOUNG JUN, DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJEON 305-764, KOREA *E-mail*: kwjun@math.chungnam.ac.kr